
Extending the Statechart Formalism:
Event Scheduling & Disposition

Arthur Allen, MetaSphere

Dennis de Champeaux, Onto00

Arthur Allen
MetaSphere Inc.

199 First Street, Suite 340
Los Altos CA 94022

tel: 415-948-8755
FAX: 415-948-7632

email: ada@metasphere.com

Dennis de Champeaux
Onto00

14519 Bercaw Lane
San Jose CA 95 124
tel: 408-559-7264

FAX: 408-371-2713
email: ddc@netcom.com

Abstract Keywords

Statecharts are extended to deal with events when
no applicable transition is available, and to resolve
conflicts relative to event scheduling and response
that can arise whenever multiple states can be active
simultaneously. “Event closure” and event
scheduling are achieved without having to clutter
up a basic statechart. The extensions are effected
by means of declarative event disposition rules.
These rules, together with the statechart topology,
determine the contents of one or more disposition
matrices. These matrices are combined with the
statechart state to determine the response of the
event dispatcher to incoming events. The operation
of the event dispatcher is also described. A detailed
example illustrates these concepts, which are fur-
ther characterized, for the benefit of working pro-
grammers, in the form of a behavioral design
pattern. A tool called Statecraft embodies these
notions.

Statechart, event closure, declarative disposition rule,

disposition matrix, event scheduling, generic

response, behavioral design pattern.

1 Introduction

Having to specify only what a software system is

supposed to do and avoiding the details of how a

system works has been for many years, and still is,

an elusive goal. 00 has made progress towards this

goal, which is one of its surprises. These days there

are already two commercial products available --

from SES and Object Time -- that can translate high

level designs directly into executable programs with

respectable performance [Selic94+]. It is true that

one still has to provide procedural detail for all state

transitions within a state transition diagram, but these

tasks are typically small in comparison with having

to do a full scale design and a subsequent

implementation. In addition, maintenance of

software generated by these products is greatly

simplified since the execution model is very close to

the analysis model. In particular, the notion of a

single thread of control is preserved.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

OOPSLA ‘95 Austin, TX, USA
0 1995 ACM O-89791 -703-0/9510010...$3.50

This paper underwrites the same development phi-

losophy: pushing declarative behavior specifications

as far as possible.

The current trend in object oriented analysis and

design is, whenever possible, to model object state

and state transitions by means of an embedded

Statechart. The powerful Statechart formalism, first

described by [Harel87], and adopted with some

reservations by [Booch93], [Rumbaugh91+],

[Firesmith95], and [Selic92+], is visual in nature, and

permits modelling of object state and behavior by

way of a collection of parallel and nested automata,

encompassed within a single diagrammatic formula-

tion.

Software objects are typically viewed as being driven

by external events that can manifest in a variety of

ways, such as the invocation of a method, arrival of a

message, and so forth. Once recognized, an event is

typically forwarded to the statechart for processing.

Statecharts are very effective for shaping object be-

havior in response to an event that is expected, that is

an event that enables a transition rooted in an active

state. Unfortunately, this formalism provides little

support in the case when an event is not expected, or

only partially expected’. Object behavior may

depend as much on the one as the other.

The current accepted solution to this problem is to

start with a base statechart that responds in the pre-

scribed manner to expected events occurring in an

idealized sequence; to this chart are added sufficient

transitions aimed at managing event stimuli such that

every event that can occur is always expected (this

can be called event closure) even when meaningful

action is deferred.

For example, an event that is subject to deferral

when first announced might be jammed back into a

queue by one such transition until explicitly re-

submitted upon the occurrence of yet another event.

This technique is often supplemented by direct pro-

cedural inhibition and subsequent enabling of event

I An unexpected event is one that does not enable any

transition currently eligible to fire. A partially expected

event is one that drives two or more state machines, at least

one of which expects the event while others do not, and

where there is a need for synchrony (see the example in

sections 2 and 5).

stimuli by transitions within the base or augmented

statechart.

We believe that these approaches suffer from a

number of significant drawbacks:

ad-hoc The event scheduling policy is ad-

hoc and has no formal basis. As a

result it becomes increasingly

difficult to insure coverage of all

possible unexpected event occur-

rences as the number of events,

states and active state combinations

grows large.

wasted

expressive

power

They often lead to a misuse of the

formidable expressive power of a

statechart, when all that may be re-

quired is one of several gerzeric

responses that could well be state

and event independent.

induced pro- A complex statechart will typically

cedural have multiple states active simulta-

cross neously, one per active hierarchical

couplings or parallel state machine. Conflicts

will inevitably arise in such settings

when two or more active states wish

to respond in different and mutu-

ally exclusive fashion to a given

event (e.g. defer versus accept,

defer versus discard). Such con-

flicts must be recognized and dealt

with on a case by case basis within

designated transition action proce-

dures. This practice is difficult to

carry out in practice, and unavoid-

ably leads to undesirable proce-

dural cross-couplings*. These

cross-couplings between the states

of a complex statechart compro-

mise modularity, and represents a

* It is perhaps in order to circumvent this problem that a

number of methods (e.g. [Selic92+]. [Rumbaugh91+])

PROTOCOL OBJECT

Figure 2: external view of the protocol object showing banded

Figure 1: Reliable communication
is achieved by interposing a protocol
object between the client and the
network socket

The service is asynchronous, i.e., multiple trans-

mission requests may be pending while the peer

protocol processes one at a time. Each request is

separately acknowledged (transitions 8 or 9 followed

by 4).

2.4 Event Closure through Statechart
Augmentation

As it stands the example statechart is incomplete: it

will function correctly only if events impinge on it

in an idealized sequence, which cannot always be

expected to occur in practice under protracted use,

subject to varying load conditions. Consider the

following unresolved issues:

1) Incoming indications and acknowledgements are

not discarded as they should when the object is un-

bound.

2) Incoming acknowledgements are not discarded

when there is a token mismatch.

queues, events and ancillary components

3) Incoming acknowledgements are not discarded

when no longer expected.

4) Incoming data messages are not held off as they

should while a prior message is still being processed

(i.e. when state machine 4 is in state 9 due to a

buffer shortage).

5) New interface requests are not deferred as they

should until the present one is fully processed. For

example, suppose that state machine 3 returns to

state 5, while state machine 1 is still in state 3 be-

cause of a buffer shortage preventing the allocation

of a response message to the client. In that case a

pending XMIT-DATA-REQUEST is partially

expected and should be deferred.

6) Requests issued “out of state” (for example a

XMIT-DATA-REQUEST while the object is in state

UNBOUND) do not give rise to a NAK response.

The events that could occur are not all expected.

Event closure can be achieved by adding transitions

in the appropriate places that effect the necessary

response. An alternative non-procedural approach to

event closure will be demonstrated in section 5.

5

?RESP-BUFFER-READY/forward-response-to-client0

. AWAIT-

XMIT-DATA-REQUEST or
BIND-REQUEST or
UNBIND-REQUEST/

?REQUEST-DONE/

request_response_bufar()

I/F FSM (1)

- -

?XMIT-DATA-REQUEST/ ?HEADER-BUFFER-READY/

request-header-buffer(); prepare-rnsg-header();

forward-msgfo-socket(),
(7) ?XMIT-TIMEOUT &&

(retries<max)/
AWAIT-XMIT

(5) AWAIT- start-ilmer(); retries =O;

) HEADER- --AWAIT-XMIT - forward-msg-to-socket():
DATA (5) BUFFER (6) (6) ACK (7) starl-tlmer(); retries++

A A
?XMIT-DATA-ACK && token-match0 /

?XMITTIMEOUT 88 (retries>max)/ stop-timer(); broadcast(REQUEST-DONE);

broadcast(REOUEST DONE);
(8)

TRANSMIT FSM fa

---------------m-w_ ----

?RECV_DATA-INDICATION/ RECEIVE FSM (4)

request-ack-buffer();

- AWAIT-RCV
strip-header-and-forward-to-client

) AWAIT-ACK
-DATA (6) (10) -BUFFER (9)

1

i

?ACK-BUFFER-READY/
forward-ack-msg-to-socket0

DATAXFER (4)
(11)

A

(16)

‘?BIND-ACW (12) (13)
?UNBIND-ACW t

broadcast(REQUEST-DONE)
broadcast(REQUEST-DONE) ?IJNBIND-REQUEST

UNBOUND /forward_req-to-socket0

(10) PEER PROTOCOL FSM (21

(14)

(15)

?BIND-REQUEST/

forward-req-to-socket0

?BlND-NAWbroadcast(REQUEST_DONE)

Figure 3: the statechart for the protocol object comprises 4 state machines and 10 states.

3 A Computational Framework

3.1 Overview

The collection of state machines comprising a state-

chart can be embedded within a larger computa-

tional framework, depicted in figure 4, suited to the

implementation of event driven objects. The added

elements comprising the event management layer

are queues, bands and the event dispatcher.

The statechart formalism, as described in [Hare1871

and [Hare194+], is accepted in its entirety, including

concurrent states and internal event broadcastingb.

The event management layer concerns itself with

%nternal event broadcasting is a powerful mechanism (albeit

with complex semantics) that can be used as a source of

internal stimuli.

6

exterrznl events, not internal broadcast7 events

which are assumed to be dispatched by mechanisms

internal to the statechart. The event management

layer considers events for disposition when the chain

reaction of broadcast events resulting from the last

external event has subsided, and the statechart has

reached a quiescent state.

3.2 Events, Queues and Bands

A ~~lerle is a channel for event objects to the state-

chart. The set of events 8c1,sses associated with a

queue, and allowed usage sequences, define a dis-

tinct protocol class. An event queue typically has a

physical basis which is the actual source of event

stimuli. For example, a message queue, or an API.

Every queue will typically have an associated event

recognizer, that is, one or more procedures respon-

sible for mapping a physical occurrence into a cor-

responding integer valued event identifier that dis-

tinguish it from all other events that can impinge on

the object.

All incoming events are placed in an associated

qLlelle and within each queue, within a particular

event band. Every band within a banded queue has

an associated priority. Events within a band are ser-

viced in FIFO sequence. Band priorities establish a

priority that spans all bands for all queues attached

to an object. Figure 3 illustrates an object endowed

with four queues endowed with three separate proto-

col classes. The queue instance of type B contains

three bands. assigned priorities 3, 4 and 7 respec-

tively. The last of these has lower priority than the

first two bands of all instances of queue type C9.

In summary, an event object is queued within an

associated band in FIFO order, and subsequently

7The same assumption holds true for spontaneous

transitions [Firesmith95].

*[Gamma94+] refers to events as we understand them as

Commands.

OInstead of introducing bands and band priorities, one might

assign priorities to individual events. This approach will,

however, typically entail greater overhead than grouping

events of equal priority into equivalence classes called bands.

dispatched by the Event Dispatcher according to

band priority and band state.

4 The Method of Disposition

4.1 Definitions

An event E is acceptable or expected by a Statechart

at time T if it enables at least one transition originat-

ing from a state that is active at time T.

The state event guard for event E in state S is de-

fined as the disjunction (logical OR) of all event

guards associated with transitions enabled by E in

Sl”. If at least one transition enabled by event E in a

state S does not have a boolean guard, the state event

guard for E in S will always be true --it is a tautol-

ogy. Similarly, if a given state S has no transitions

enabled by event E, the state event guard for E in S

is always false. In practice state event guards can be

synthesized by hand or by a code generator from an

analysis of the statechart topology. A non-trivial

state event guard is one which is neither a tautology

nor a falsehood (as knowable from the statechart

topology). In the discussion that follows state event

guards are always assumed to be non-trivial. As will

be shown, every state event guard is employed as a

look-ahead probe, to establish the present receptivity

of the associated state to the associated event.

4.2 Event Dispositions

A disposition specifies a generic event handling

policy to the event management layer. Each disposi-

tion has a numeric identifier, an assigned priority

and an action block. The identifier serves to distin-

guish one disposition from another. Priority assign-

ments must establish a strict ordering among all dis-

positions defined for a queue type. Disposition

action blocks contain program statements

(expressions without side-effects’ ’ involving object

instance variables, message and band manipulations,

lo Whenever more than one transition is enabled by E from

S, they are considered in a priority sequence established by

the implementer.

’ ‘At the very least side-effects must not modify the value of

guards within the statechart.

etc.) that define and implement the disposition

semantics.

2 inStanCeS Of queue type C w/ 3 bands

Event
Okpatcher

StateChart

I

Euent Management layer

II 1 2-

Instance of
queue type A
w/2 bands

5
H 4 Instance of queue type B w/3 bands

Figure 4: Computational Framework -- the state-

chart is surrounded by an active

event layer that manages the delivery of events

arriving at its queues.

According to the method of dispositions, every

queue is endowed with a set of dispositions that

describes the full range of generic responses the

statechart may exhibit to any events associated with

the queue. A software designer is free to define the

set of dispositions and disposition semantics as

appropriate for each queue. Nevertheless, each such

set must include the reserved ACCEPT disposition,

the significance of which will become apparent

shortly.

The following dispositions, listed by decreasing

priority, might be defined for a queue acting as a

service interface to a protocol object:

FATAL-PROTOCOL-ERROR

> DEFER

> ACCEPT

> PASS-ON

>WEAK-DEFER

>DISCARD-SILENTLY

>NAK-OUTOFSTATE

The ACCEPT disposition arises for a given event E

and state S whenever E enables at least one transition

originating in S, i.e., the event is expected.

Dispositions other than ACCEPT become relevant

when event E is not expected in state S, or when

there is a state event guard for E in S.

The reserved NEUTRAL disposition (which is

discussed further below) serves to desensitize a state-

chart to an event in a given state. It must always be

assigned the lowest priority whenever it is used.

The default disposition is the disposition with the

lowest assigned priority, with one exception: in those

cases where the NEUTRAL disposition is employed,

the disposition assigned the next higher priority

serves as the default disposition. Whenever ACCEPT

is not appropriate (as determined by the statechart

topology) the default disposition is used, unless

otherwise coerced by a software designer, using

disposition rules to shape event scheduling in the

desired fashion.

Within the set of dispositions listed above, DEFER

and WEAK-DEFER share the same action block yet

differ by their assigned priorities: the first is stronger

than ACCEPT, whereas the second is weaker than

ACCEPT but stronger than DISCARD-SILENTLY

and the default disposition, NAK-OUTOFSTATE.

Had the NEUTRAL disposition be appended to the

bottom, NAK-OUTOFSTATE would still serve as

the default disposition.

8

4.3 Guarded Dispositions

As previously discussed, the ACCEPT disposition

arises for a given event E and state S whenever E is

expected in S. By default, the disposition for an

event E expected in state S is ACCEPT regardless of

the value of the state event guard -- the event is

announced, and if all guards evaluates to false it has

no effect and is forgotten. This is not always the

desired behavior. A guarded disposition is one that

pertains in lieu of ACCEPT whenever the event state

guard is false. If this disposition involves event

deferral, the event will be queued and automatically

resubmitted when the state event guard later evalu-

ates to true.

4.4 Disposition Rules

A disposition rule is a statement that specifies use of

a disposition other than ACCEPT or the default

disposition. For instance:

“on all events in bands x, y when in states z, c

disposition is DEFER”

‘on events z, d for any state disposition is

PASS-ON”

“‘on all events except t, c when in state e disposition

is DISCARD-SILENTLY”

Guarded dispositions can be specified in the same

fashion. For example the statement:

“on events x, y when in states z, c guarded

disposition is DEFER”

disposition =

priority-to-disposition(queue-type,

disposition-matrix[queue_type,event,state])

As a practical matter, the contents of the disposition

matrix, which can grow quite large’ 3 (50x50

matrices are not uncommon) can be filled in auto-

matically by a code generator based on an analysis

of the state machine topology and the disposition

rules specified by a programmer. Unless a disposi-

tion rule specifies otherwise, all matrix entries for

which ACCEPT does not apply receive the default

priority value. Guarded dispositions require the

evaluation of a disposition function14 that returns a

disposition priority value according to the statechart

state and the values of any object instance variables

used in guard expressions.

4.6 Disposition Map

At any given time a statechart may have a number of

active states, each exhibiting its own disposition to a

proposed event E. The ultimate disposition of the

entire statechart must be obtained by a process of

resolution.

The method of resolution is very simple and

proceeds as follows: for each active state, obtain its

disposition priority to event E; the disposition with

the highest priority prevails15. This algorithm is

implemented within the Disposition Map which,

given an object reference, and a proposed event and

queue type, returns the event disposition.

4.5 Disposition Priority Matrix

The Disposition Priority Matrix is used to determine

the disposition of a protocol object to a proposed

event while in a given state. Specifically, the matrix

cell value given by disposition-matrix[queue-type,

event, state] is the priority of that disposition relative

to other dispositions defined for the queue of the

event’s origin. The actual disposition value can be

obtained by function compositiont2, as follows:

t2Each disposition is assigned a unique priority relative to a

queue.

’ 3Despite their potentially large dimensionality, disposi-

tion matrices are quite compact, requiring at most one byte

per cell.

t4A disposition function associated with the disposition

matrix can be derived automatically from the corresponding

state event guard. which itself can be derived automatically

from the statechart topology. As a practtcal matter, the

disposition matrix cells governed by guarded dispositions

can hold small indices into a table of disposition functions.

I5 This procedure can be applied to event hierarchies (see

[Rumbaugh91]) by considering the disposition of the

statechart to E as well as the abstract events from which E

is derived.

9

In light of this explanation, we are now in position to

show how the NEUTRAL disposition can be used to

desensitize a statechart to a given event in a given

state. This disposition should be employed (as it will

be in our example) whenever there is a need to

observe or track events submitted to the statechart

non-intrusively. One application of this facility is

concurrent protocol verification.

First, recall that the NEUTRAL disposition is always

assigned the lowest priority. Given an event, let us

assume that there are, at all times, one or more one

active states that exhibit dispositions other than

NEUTRAL to this event. This assumption is easily

met in a statechart, such as our example in Figure 3,

that has two or more concurrent state machines.

Within such a setting, the NEUTRAL disposition will

never be decisive, since any other disposition, quite

possibly the default disposition, is guaranteed to

prevail during resolution.

4.7 Event Dispatching

Event dispatching and disposition behavior is shaped

using a list of declarative disposition rules involving

a set of prioritized generic responses. In this section

we describe how this procedure is carried out at run-

time.

A band can be in one four possible states: Enabled,

Scheduled, Guarded and Declined.,The default state

-- Enabled-- is entered when a band is first initial-

ized. This is the state of rest when a band is empty

and eligible to submit new events as they are

received, at which point the band enters the sched-

uled state, and is placed in the priority band queue.

The Event Dispatcher is entered by a thread of exe-

cution bearing a new event object to a queue. It

services all scheduled bands in its priority band

queue until none remain. Events within a given band

are serviced one at a time in FIFO order, until the

band is empty (it returns to the Enabled state) or

enters one of two possible states of deferral.

The event dispatcher proposes for disposition the

first event in the foremost band in the banded

queue. The disposition map yields a disposition

value for the event. This value and the queue type

are used to identify and invoke an associated generic

response embodied within the associated disposition

action block. Ultimately, a response procedure must

either accept or decline an event proposal.

Acceptance of an event causes the event object to be

removed from the band that holds it. If the band is

empty it enters the Enabled state; otherwise it

remains in the Scheduled state. Whenever an event

proposal is declined, the band to which it still

belongs enters one of two possible states: the

Guarded state is entered when the disposition is

guarded by a state event guard16; otherwise the

Declined state is entered.

Whenever an event has been accepted, the generic

response procedure must, upon completion, indicate

to the dispatcher whether to 1) proceed with the

event to the statechart17 (as shown in figure 5), or 2)

solicit another event proposal from the foremost

scheduled band’ 8.

Once activated the event dispatcher drives the state-

chart until no more eligible events can be found.

Deferred bands are re-appraised as appropriate

during this process: deferred and guarded bands are

re-scheduled on every state change. Guarded bands

are re-scheduled also if the associated guard evalu-

ates to true.

5.0 Example Revisited

We take up once again the example introduced in

section 2, by first defining dispositionsI and their

relative priorities for each queue, followed by a

16A state event guard may involve event attribute values.

17By construction the ACCEPT generic response must

always accept the proposed event and request its submission

to the statechart.

L 8 An event proposal might be accepted only to be

discarded, for example to implement the DISCARD-

SILENTLY disposition. In such cases step 2 is appropriate.

19We omit a definition of the procedures that implement the

disposition semantics: their intended generic purpose should

be self-evident, and their implementation within a target run-

time environment should be entirely straightforward.

10

series of disposition rules used to populate the

disposition matrices for each queue.

tlisposition
priority
matrim

/ misc. operations

disposition
action blocks

Figure 5: Once entered, the event dispatcher

drives the statechart until no more eligible events

can be found. Deferred bands are re-appraised as

appropriate during the process.

5.1 Queue Descriptions
ADMINISTRATIVE QUEUE:

Bands:

ADMIN-BAND (priority 1) with events:

HEADER-BUFFER-READY,

RESP-BUFFER-READY,

XMIT-TIMEOUT,

ACK-BUFFER-READY

Dispositions: ACCEPT (priority 1)

DISCARD-SILENTLY (priority 2)

INDICATION QUEUE:

Bands:

REPLY-BAND (priority 2) with events:

BIND-ACK,

BIND-NAK,

UNBIND-ACK

INDICATION-BAND (priority 3) with

events

RECV-DATA-IND,

XMIT-DATA-ACK

Dispositions: ACCEPT (priority 1)

DISCARD-SILENTLY (priority 2)

DEFER (priority 3)

REQUEST QUEUE:

Bands:

REQUEST-BAND (priority 4) with events:

BIND-REQ,

UNBIND-REQ,

XMIT-DATA-REQ,

NAK-REQ

Dispositions: DEFER (priority 1)

ACCEPT (priority 2)

NAK-OUT-OF-STATE (priority 3)

NEUTRAL (priority 4)

5.2 Disposition Rules

/I Incoming indications and acknowledgements are

I/ discarded when the object is unbound.

on events RECV-DATA-IND and

XMIT-DATA-ACK, when in state UNBOUND

disposition is DISCARD-SILENTLY;

/t Incoming acknowledgements are discarded when

/I there is a token mismatch.

on event XMIT-DATA-ACK, when in state

AWAIT-XMIT-AM guarded disposition is

DISCARD-SILENTLY;

I/ Incoming acknowledgements are discarded when

// not expected.

on event XMIT-DATA-ACK when in state

AWAIT-XMIT-ACK, AWAIT-HEADER-BUFFER

disposition is DISCARD-SILENTLY;

/I New interface requests are deferred until the

I/ present one is fully processed

on any event in band REQBAND when in state

A WAIT-RESP-READY, A WAIT-RESP-BUFFER

disposition is DEFER.

11

// We desensitize the interface state machine to

// interface request events (all but NAK-REQ) the

// timeliness and disposition of which is determined

// elsewhere within the statechart. For instance, the

// acceptance of event XMIT-DATA-REQUEST

// should be determined by transition 5 and the

// previous rule, not transition 2 (see figure 3).

011 events BIND-REP and UNBIND-REQ and

XMIT-DATA-REQ, when in state A WAIT-REQ

disposition is NEUTRAL.

The contents of the disposition matrices and the

associated disposition functions and guards implied

by these statements are produced automatically by a

code generator, and have been omitted.

We note that event closure and scheduling is

achieved non-procedurally, without need of any

changes to the base statechart, which thus retains its

original purposeful simplicity.

6 Related Work

In a recent paper [Hare194+], Hare] et al. propose an

event management scheme for statecharts that bears

some resemblance to the one proposed in this paper.

Under their scheme, every object is endowed with

one or more event queues. Unexpected events that

arrive from a given service direction are automati-

cally subject to deferral within the queue associated

with that service. An event thus deferred is automati-

cally resubmitted when it enables at least one transi-

tion for which the condition (guard), if any, evalu-

ates to true. Internal broadcast events are handled

separately, and are always given precedence over

external events, which are considered only when the

chain reaction of broadcast events have run their

course, and the statechart has reached a quiescent

state.

In effect, this scheme can be implemented easily

using the method of dispositions with a single

disposition (DEFER) defined as the default disposi-

tion, and with guarded disposition rules. We submit

that the proposed scheme still imposes unnecessary

work on the statechart of a generic nature, for

instance to discard events that may arrive “too late”

rather than early. Moreover it fails to address the

potential need for synchrony between multiple state

machines relative to a given event or, more gener-

ally, to provide a vehicle for conflict resolution

between differing dispositions manifested by

concurrently active states.

7 A Behavioral Desian Pattern

Within the appendix we submit a contribution to the

growing catalog of design patterns, the along the

lines set forth in [Gamma94+]. The presentation is

somewhat compressed owing to limitations on space.

Our design pattern applies to objects with state

characterized by state complexity, and multi-faceted

event-driven interactions with other objects.

8 Final Remarks

Finite state machines are often criticized for their

tendency towards combinatorial explosion as the

number of states, events and state transitions grows

large. Harel’s statecharts are the traditional solution

to this problem. However, we have observed that

even statecharts are insufficient to deal with the

inherent complexities of event driven objects subject

to “faulty” stimuli or asynchronous, overlapped

stimuli from a number of other objects. A major

source of trouble is the systematic treatment of

unexpected, out-of-sequence or partially expected

events -- these are events that cannot be handled

immediately (and thus require re-scheduling), or for

which an immediate generic response is appropriate.

We have described the method of dispositions that

deals with these problems. According to this method,

event scheduling, disposition and closure is shaped

using a list of declarative disposition rules, involving

a set of prioritized generic responses carried out

within an active event management layer surround-

ing a basic statechart. The full expressive power of

the statechart can now be focused exclusively on

expressing event and state sensitive behavior in

response to idealized or anticipated event stimuli,

resulting in statecharts of greater clarity and reduced

complexity.

This method is quite general, and can be adapted to

a broad class of statechart-like methods, of either

Moore or Mealy type, that allow transitions to be

enabled by events in an explicit manner.

[Firesmith surveys several methods that should

lend themselves to such an adaptation.

We have constructed a development tool, Statecraft,

that comprises a C code generator, document writer,

and run-time library. Support for C++ is expected in

the near future. The selection of C as our initial

target language was necessitated by our application

domain, namely object-oriented development of

kernel-level protocol software. The Statecraft facil-

ity has been used successfully in the implementation,

for commercial purposes, of a number of significant

communication protocols (e.g. point-to-point proto-

col, IS0 Transport layer class 0) and application

programming interfaces (e.g. TLI and sockets).

Rough comparisons suggest that the performance

and code size of software generated using this tool is

on par with implementations done “by hand”, but

required far less effort to develop, and are arguably

easier to understand and maintain.

Continuing research efforts include a study of the

implications of this new method relative to single

and multiple inheritance of behavior, and develop-

ment of a drag and drop visual interface for the

Statecraft tool.

9 References

[Allen941 Allen, A., Object Oriented Message

Handlin g Sub-system and Method,

patent pending with the US patent office,

1994.

[Allen951 A. Allen, “A Method for Object Oriented

Protocol Development”, submitted to the

International Conference on Protocol

Specification. Testing 62 Verification ‘95,

1995.

[Ansart83+] J.P. Ansart, V. Chari, M. Meyer, 0.

Rafiq, D. Simon, “Description,

Simulation, Implementation of

Communication Protocols using PDIL”,

ACM Sincomm’83. Svmuosium on

Communication Architectures and

Protocols, U. of Texas at Austin, March

1983.

[Bochmann87] G. Bochmann’Usage of Protocol

Development Tools: The Results of a

Survey”, Protocol Snecification. Testing

and Verification, VII, Elsevier Science

Publishers B.V. (North Holland), 1987.

[Bochmann80] G. Bochmann”A general Transition

Model for Protocols and

Communication Services”, IEEE Trans.

Communications Vol 28, No 4, April

1980, 643-650.

[Booch93] G. Booth, Object Oriented Analysis and

Design, Benjamin/Cummins, 1993.

[deChampeaux93+] D. de Champeaux, D. Lea & P.

Faure, Object Oriented System

Development, Addison-Wesley, 1993.

[Embley92+] D. Embley, B. Kurtz, S. Woodfield,

Object-Oriented Svstems Analvsis ,

Yourdon Press, Prentice Hall 1992.

[Firesmith D. Firesmith, “Object-oriented state

modelling using ADM4”, Journal of

Object-Oriented Programming , 57-65,

1994.

[Gamma94+] E. Gamma, R. Helm, R. Johnson, J.

[Hare1871

Vlissides, Design Patterns , Addison-

Wesley, 1994.

D. Harel, “Statecharts: A Visual

Formalism for Complex Systems”, sci.

Comuut. Prog. , 231-274, 1987.

[Hare194+] D. Harel, E. Gery, M. Politi, Obiect-

Oriented Modeling with Statecharts,

Technical Review CS94-20, The

Weizmann Institute, of Science, Rehovot,

Israel, 1994

[Holzmann91] G. Holzmann, Design and Validation

of Comnuter Protocols, Prentice Hall,

1991.

[Liu94] C. Liu, “An Object-Based Approach to

Protocol Software Implementation”,

Proceedings of the ACM SIGCOMM

Conference on Communications

Architectures, Protocols and

Apnlications, 1994.

[Rumbaugh91+] J. Rumbaugh, M. Blaha, W.

Premerlani, F. Eddy, & W. Lorensen,

Object Oriented Modellinrr and Design,

Prentice Hall, 1991.

13

[ShankarB I] U. Shankar, “Modular Design

Principles for Protocols with an

Application to the Transport Layer”,

Proceedings of the IEEE, Vol. 70, No.

12, December 199 1.

[Shlaer91+] S. Shlaer & S.J. Mellor, Object

Lifecycles: Modelling the World in

States, Yourdon Press, 1991.

[Selic92+] B. Selic, G. Gullekson, J. McGee &

I.Engelbert, “ROOM: An Object-

Oriented Methodology for Developing

Real-Time Systems”, Proc. 5th

International Workshon on CASE,

Montreal Canada, 1992.

[SeIic94+] Selic, B., R. Tigg, D. Daoust & P. Ward,

“Resolved: High Level Efficient Models

Can be Formally Transformed into

Complete and Efficient Real-Time

Implementations”, position paper

presented at OOPSLA’94.

Appendix: A Behavioral Desian
Pattern

14

DISPOSITION Object Behavioral

Intent

Given a complex object that incorporates a

statechart, provide an event (command20)

management object that assumes responsi-

bility for command queueing, disposition

and dispatching to the statechart, according

to the method of dispositions.

Motivation

See section 1: Introduction.

Structure

+ multi-faceted command-driven interac-

tions with other objects, where the inter-

actions may be unpredictably sequenced,

prioritized, concurrent, error-prone or

asynchronous.

Participants

, I 1

Disposition accesse5 currency Stat&hart
-. Yailables Of

state vector

put(command_ld)
slate_eventLguards()

state_chan~walker(commandld)

Applicability

This method applies in connection with

objects that are characterized by

+ state complexity, modelled by two or

more concurrent automata, and nested

automata as needed,

Object-with-state

+ contains instances of the associated

Disposition and StateChart classes.

+ forwards incoming commands to

the Disposition object.

Disposition

+ defines the ptrtO command invo-

ked by Object-with-state to for-

ward commands.

+ performs event recognition,

queuing, disposition and dispatch-

ing.

+ within a concurrent execution

environment, serializes access to

the statechart object.

StateChart

+ implements the required statechart

behavior in response to events

announced one at a time by the

Disposition object.

+ implements internal event broad-

casting.

Disposition Matrix

+ specifies, in matrix form, the

disposition priority, and the

disposition, for each event in each

state.

+ implements the disposition map

that yields the disposition of the

entire statechart (in a given state)

to a given event.

Collaborations

+ Object-with-state forwards all incoming

messages to the Disposition object.

20 [Gamma94+] refers to events as we understand them as

Commands.

15

+ Disposition delegates all event process-

ing to the StateChart object, and
Known Uses

invokes the disposition map method of This pattern has been used to implement a

the Disposition Matrix object. variety of command-driven reactive objects,

+ StateChart maintains a reference to the
most notably in the domain of communica-

Disposition object, thereby providing
tion protocols.

access to Disposition attributes (e.g. Related Patterns
misc. currency variables such as current-

event, current-queue, current- band, and
Command, State, StateChart, Adaptor.

so forth).

+ The Disposition Matrix consults the state

of the statechart object while evaluating

the disposition map.

Consequences

By entrusting event scheduling and disposi-

tion to a specialized event management

object, through which all incoming com-

mands must pass, use of this design pattern

+ insures event (command) closure.

+ simplifies the design of objects that

incorporate complex automata.

+ can result in improved software

reliability.

Implementation

We can expect a code generator to produce

an implementation of the Disposition,

Disposition Matrix and StateChart object

classes, for a specific design captured in a

suitable high level description language.

Within such a linguistic framework, we

would expect low level procedural detail,

pertaining to guard expressions, action

routines, disposition action blocks, and so

forth, to be expressed directly in the targeted

language (e.g. C++) within structured proce-

dure blocks. Here again, the code generator

can be expected to encapsulate these code

blocks within private or public class

methods, and associated data structures, so as

insure their subsequent activation at run

time.

16

