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Abstract Keywords 

Statecharts are extended to deal with events when 
no applicable transition is available, and to resolve 
conflicts relative to event scheduling and response 
that can arise whenever multiple states can be active 
simultaneously. “Event closure” and event 
scheduling are achieved without having to clutter 
up a basic statechart. The extensions are effected 
by means of declarative event disposition rules. 
These rules, together with the statechart topology, 
determine the contents of one or more disposition 
matrices. These matrices are combined with the 
statechart state to determine the response of the 
event dispatcher to incoming events. The operation 
of the event dispatcher is also described. A detailed 
example illustrates these concepts, which are fur- 
ther characterized, for the benefit of working pro- 
grammers, in the form of a behavioral design 
pattern. A tool called Statecraft embodies these 
notions. 

Statechart, event closure, declarative disposition rule, 

disposition matrix, event scheduling, generic 

response, behavioral design pattern. 

1 Introduction 

Having to specify only what a software system is 

supposed to do and avoiding the details of how a 

system works has been for many years, and still is, 

an elusive goal. 00 has made progress towards this 

goal, which is one of its surprises. These days there 

are already two commercial products available -- 

from SES and Object Time -- that can translate high 

level designs directly into executable programs with 

respectable performance [Selic94+]. It is true that 

one still has to provide procedural detail for all state 

transitions within a state transition diagram, but these 

tasks are typically small in comparison with having 

to do a full scale design and a subsequent 

implementation. In addition, maintenance of 

software generated by these products is greatly 

simplified since the execution model is very close to 

the analysis model. In particular, the notion of a 

single thread of control is preserved. 
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This paper underwrites the same development phi- 

losophy: pushing declarative behavior specifications 

as far as possible. 



The current trend in object oriented analysis and 

design is, whenever possible, to model object state 

and state transitions by means of an embedded 

Statechart. The powerful Statechart formalism, first 

described by [Harel87], and adopted with some 

reservations by [Booch93], [Rumbaugh91+], 

[Firesmith95], and [Selic92+], is visual in nature, and 

permits modelling of object state and behavior by 

way of a collection of parallel and nested automata, 

encompassed within a single diagrammatic formula- 

tion. 

Software objects are typically viewed as being driven 

by external events that can manifest in a variety of 

ways, such as the invocation of a method, arrival of a 

message, and so forth. Once recognized, an event is 

typically forwarded to the statechart for processing. 

Statecharts are very effective for shaping object be- 

havior in response to an event that is expected, that is 

an event that enables a transition rooted in an active 

state. Unfortunately, this formalism provides little 

support in the case when an event is not expected, or 

only partially expected’. Object behavior may 

depend as much on the one as the other. 

The current accepted solution to this problem is to 

start with a base statechart that responds in the pre- 

scribed manner to expected events occurring in an 

idealized sequence; to this chart are added sufficient 

transitions aimed at managing event stimuli such that 

every event that can occur is always expected (this 

can be called event closure) even when meaningful 

action is deferred. 

For example, an event that is subject to deferral 

when first announced might be jammed back into a 

queue by one such transition until explicitly re- 

submitted upon the occurrence of yet another event. 

This technique is often supplemented by direct pro- 

cedural inhibition and subsequent enabling of event 

I An unexpected event is one that does not enable any 

transition currently eligible to fire. A partially expected 

event is one that drives two or more state machines, at least 

one of which expects the event while others do not, and 

where there is a need for synchrony (see the example in 

sections 2 and 5). 

stimuli by transitions within the base or augmented 

statechart. 

We believe that these approaches suffer from a 

number of significant drawbacks: 

ad-hoc The event scheduling policy is ad- 

hoc and has no formal basis. As a 

result it becomes increasingly 

difficult to insure coverage of all 

possible unexpected event occur- 

rences as the number of events, 

states and active state combinations 

grows large. 

wasted 

expressive 

power 

They often lead to a misuse of the 

formidable expressive power of a 

statechart, when all that may be re- 

quired is one of several gerzeric 

responses that could well be state 

and event independent. 

induced pro- A complex statechart will typically 

cedural have multiple states active simulta- 

cross neously, one per active hierarchical 

couplings or parallel state machine. Conflicts 

will inevitably arise in such settings 

when two or more active states wish 

to respond in different and mutu- 

ally exclusive fashion to a given 

event (e.g. defer versus accept, 

defer versus discard). Such con- 

flicts must be recognized and dealt 

with on a case by case basis within 

designated transition action proce- 

dures. This practice is difficult to 

carry out in practice, and unavoid- 

ably leads to undesirable proce- 

dural cross-couplings*. These 

cross-couplings between the states 

of a complex statechart compro- 

mise modularity, and represents a 

* It is perhaps in order to circumvent this problem that a 

number of methods (e.g. [Selic92+]. [Rumbaugh91+]) 







PROTOCOL OBJECT 

Figure 2: external view of the protocol object showing banded 

Figure 1: Reliable communication 
is achieved by interposing a protocol 
object between the client and the 
network socket 

The service is asynchronous, i.e., multiple trans- 

mission requests may be pending while the peer 

protocol processes one at a time. Each request is 

separately acknowledged (transitions 8 or 9 followed 

by 4). 

2.4 Event Closure through Statechart 
Augmentation 

As it stands the example statechart is incomplete: it 

will function correctly only if events impinge on it 

in an idealized sequence, which cannot always be 

expected to occur in practice under protracted use, 

subject to varying load conditions. Consider the 

following unresolved issues: 

1) Incoming indications and acknowledgements are 

not discarded as they should when the object is un- 

bound. 

2) Incoming acknowledgements are not discarded 

when there is a token mismatch. 

queues, events and ancillary components 

3) Incoming acknowledgements are not discarded 

when no longer expected. 

4) Incoming data messages are not held off as they 

should while a prior message is still being processed 

(i.e. when state machine 4 is in state 9 due to a 

buffer shortage). 

5) New interface requests are not deferred as they 

should until the present one is fully processed. For 

example, suppose that state machine 3 returns to 

state 5, while state machine 1 is still in state 3 be- 

cause of a buffer shortage preventing the allocation 

of a response message to the client. In that case a 

pending XMIT-DATA-REQUEST is partially 

expected and should be deferred. 

6) Requests issued “out of state” (for example a 

XMIT-DATA-REQUEST while the object is in state 

UNBOUND) do not give rise to a NAK response. 

The events that could occur are not all expected. 

Event closure can be achieved by adding transitions 

in the appropriate places that effect the necessary 

response. An alternative non-procedural approach to 

event closure will be demonstrated in section 5. 
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I/F FSM (1) 

- - 

?XMIT-DATA-REQUEST/ ?HEADER-BUFFER-READY/ 

request-header-buffer(); prepare-rnsg-header(); 

forward-msgfo-socket(), 
(7) ?XMIT-TIMEOUT && 

(retries<max)/ 
AWAIT-XMIT 

(5) AWAIT- start-ilmer(); retries =O; 

) HEADER- --AWAIT-XMIT - forward-msg-to-socket(): 
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?XMIT-DATA-ACK && token-match0 / 

?XMITTIMEOUT 88 (retries>max)/ stop-timer(); broadcast(REQUEST-DONE); 

broadcast(REOUEST DONE); 
(8) 

TRANSMIT FSM fa 

---------------m-w_ ---- 

?RECV_DATA-INDICATION/ RECEIVE FSM (4) 

request-ack-buffer(); 

- AWAIT-RCV 
strip-header-and-forward-to-client 

) AWAIT-ACK 
-DATA (6) (10) -BUFFER (9) 

1 

i 

?ACK-BUFFER-READY/ 
forward-ack-msg-to-socket0 

DATAXFER (4) 
(11) 

A 

(16) 

‘?BIND-ACW (12) (13) 
?UNBIND-ACW t 

broadcast(REQUEST-DONE) 
broadcast(REQUEST-DONE) ?IJNBIND-REQUEST 

UNBOUND /forward_req-to-socket0 

(10) PEER PROTOCOL FSM (21 

(14) 

(15) 

?BIND-REQUEST/ 

forward-req-to-socket0 

?BlND-NAWbroadcast(REQUEST_DONE) 

Figure 3: the statechart for the protocol object comprises 4 state machines and 10 states. 

3 A Computational Framework 

3.1 Overview 

The collection of state machines comprising a state- 

chart can be embedded within a larger computa- 

tional framework, depicted in figure 4, suited to the 

implementation of event driven objects. The added 

elements comprising the event management layer 

are queues, bands and the event dispatcher. 

The statechart formalism, as described in [Hare1871 

and [Hare194+], is accepted in its entirety, including 

concurrent states and internal event broadcastingb. 

The event management layer concerns itself with 

%nternal event broadcasting is a powerful mechanism (albeit 

with complex semantics) that can be used as a source of 

internal stimuli. 
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exterrznl events, not internal broadcast7 events 

which are assumed to be dispatched by mechanisms 

internal to the statechart. The event management 

layer considers events for disposition when the chain 

reaction of broadcast events resulting from the last 

external event has subsided, and the statechart has 

reached a quiescent state. 

3.2 Events, Queues and Bands 

A ~~lerle is a channel for event objects to the state- 

chart. The set of events 8c1,sses associated with a 

queue, and allowed usage sequences, define a dis- 

tinct protocol class. An event queue typically has a 

physical basis which is the actual source of event 

stimuli. For example, a message queue, or an API. 

Every queue will typically have an associated event 

recognizer, that is, one or more procedures respon- 

sible for mapping a physical occurrence into a cor- 

responding integer valued event identifier that dis- 

tinguish it from all other events that can impinge on 

the object. 

All incoming events are placed in an associated 

qLlelle and within each queue, within a particular 

event band. Every band within a banded queue has 

an associated priority. Events within a band are ser- 

viced in FIFO sequence. Band priorities establish a 

priority that spans all bands for all queues attached 

to an object. Figure 3 illustrates an object endowed 

with four queues endowed with three separate proto- 

col classes. The queue instance of type B contains 

three bands. assigned priorities 3, 4 and 7 respec- 

tively. The last of these has lower priority than the 

first two bands of all instances of queue type C9. 

In summary, an event object is queued within an 

associated band in FIFO order, and subsequently 

7The same assumption holds true for spontaneous 

transitions [Firesmith95]. 

*[Gamma94+] refers to events as we understand them as 

Commands. 

OInstead of introducing bands and band priorities, one might 

assign priorities to individual events. This approach will, 

however, typically entail greater overhead than grouping 

events of equal priority into equivalence classes called bands. 

dispatched by the Event Dispatcher according to 

band priority and band state. 

4 The Method of Disposition 

4.1 Definitions 

An event E is acceptable or expected by a Statechart 

at time T if it enables at least one transition originat- 

ing from a state that is active at time T. 

The state event guard for event E in state S is de- 

fined as the disjunction (logical OR) of all event 

guards associated with transitions enabled by E in 

Sl”. If at least one transition enabled by event E in a 

state S does not have a boolean guard, the state event 

guard for E in S will always be true --it is a tautol- 

ogy. Similarly, if a given state S has no transitions 

enabled by event E, the state event guard for E in S 

is always false. In practice state event guards can be 

synthesized by hand or by a code generator from an 

analysis of the statechart topology. A non-trivial 

state event guard is one which is neither a tautology 

nor a falsehood (as knowable from the statechart 

topology). In the discussion that follows state event 

guards are always assumed to be non-trivial. As will 

be shown, every state event guard is employed as a 

look-ahead probe, to establish the present receptivity 

of the associated state to the associated event. 

4.2 Event Dispositions 

A disposition specifies a generic event handling 

policy to the event management layer. Each disposi- 

tion has a numeric identifier, an assigned priority 

and an action block. The identifier serves to distin- 

guish one disposition from another. Priority assign- 

ments must establish a strict ordering among all dis- 

positions defined for a queue type. Disposition 

action blocks contain program statements 

(expressions without side-effects’ ’ involving object 

instance variables, message and band manipulations, 

lo Whenever more than one transition is enabled by E from 

S, they are considered in a priority sequence established by 

the implementer. 

’ ‘At the very least side-effects must not modify the value of 

guards within the statechart. 



etc.) that define and implement the disposition 

semantics. 

2 inStanCeS Of queue type C w/ 3 bands 

Event 
Okpatcher 

StateChart 

I 

Euent Management layer 

II 1 2- 

Instance of 
queue type A 
w/2 bands 

5 
H 4 Instance of queue type B w/3 bands 

Figure 4: Computational Framework -- the state- 

chart is surrounded by an active 

event layer that manages the delivery of events 

arriving at its queues. 

According to the method of dispositions, every 

queue is endowed with a set of dispositions that 

describes the full range of generic responses the 

statechart may exhibit to any events associated with 

the queue. A software designer is free to define the 

set of dispositions and disposition semantics as 

appropriate for each queue. Nevertheless, each such 

set must include the reserved ACCEPT disposition, 

the significance of which will become apparent 

shortly. 

The following dispositions, listed by decreasing 

priority, might be defined for a queue acting as a 

service interface to a protocol object: 

FATAL-PROTOCOL-ERROR 

> DEFER 

> ACCEPT 

> PASS-ON 

>WEAK-DEFER 

>DISCARD-SILENTLY 

>NAK-OUTOFSTATE 

The ACCEPT disposition arises for a given event E 

and state S whenever E enables at least one transition 

originating in S, i.e., the event is expected. 

Dispositions other than ACCEPT become relevant 

when event E is not expected in state S, or when 

there is a state event guard for E in S. 

The reserved NEUTRAL disposition (which is 

discussed further below) serves to desensitize a state- 

chart to an event in a given state. It must always be 

assigned the lowest priority whenever it is used. 

The default disposition is the disposition with the 

lowest assigned priority, with one exception: in those 

cases where the NEUTRAL disposition is employed, 

the disposition assigned the next higher priority 

serves as the default disposition. Whenever ACCEPT 

is not appropriate (as determined by the statechart 

topology) the default disposition is used, unless 

otherwise coerced by a software designer, using 

disposition rules to shape event scheduling in the 

desired fashion. 

Within the set of dispositions listed above, DEFER 

and WEAK-DEFER share the same action block yet 

differ by their assigned priorities: the first is stronger 

than ACCEPT, whereas the second is weaker than 

ACCEPT but stronger than DISCARD-SILENTLY 

and the default disposition, NAK-OUTOFSTATE. 

Had the NEUTRAL disposition be appended to the 

bottom, NAK-OUTOFSTATE would still serve as 

the default disposition. 

8 



4.3 Guarded Dispositions 

As previously discussed, the ACCEPT disposition 

arises for a given event E and state S whenever E is 

expected in S. By default, the disposition for an 

event E expected in state S is ACCEPT regardless of 

the value of the state event guard -- the event is 

announced, and if all guards evaluates to false it has 

no effect and is forgotten. This is not always the 

desired behavior. A guarded disposition is one that 

pertains in lieu of ACCEPT whenever the event state 

guard is false. If this disposition involves event 

deferral, the event will be queued and automatically 

resubmitted when the state event guard later evalu- 

ates to true. 

4.4 Disposition Rules 

A disposition rule is a statement that specifies use of 

a disposition other than ACCEPT or the default 

disposition. For instance: 

“on all events in bands x, y when in states z, c 

disposition is DEFER” 

‘on events z, d for any state disposition is 

PASS-ON” 

“‘on all events except t, c when in state e disposition 

is DISCARD-SILENTLY” 

Guarded dispositions can be specified in the same 

fashion. For example the statement: 

“on events x, y when in states z, c guarded 

disposition is DEFER” 

disposition = 

priority-to-disposition(queue-type, 

disposition-matrix[queue_type,event,state]) 

As a practical matter, the contents of the disposition 

matrix, which can grow quite large’ 3 (50x50 

matrices are not uncommon) can be filled in auto- 

matically by a code generator based on an analysis 

of the state machine topology and the disposition 

rules specified by a programmer. Unless a disposi- 

tion rule specifies otherwise, all matrix entries for 

which ACCEPT does not apply receive the default 

priority value. Guarded dispositions require the 

evaluation of a disposition function14 that returns a 

disposition priority value according to the statechart 

state and the values of any object instance variables 

used in guard expressions. 

4.6 Disposition Map 

At any given time a statechart may have a number of 

active states, each exhibiting its own disposition to a 

proposed event E. The ultimate disposition of the 

entire statechart must be obtained by a process of 

resolution. 

The method of resolution is very simple and 

proceeds as follows: for each active state, obtain its 

disposition priority to event E; the disposition with 

the highest priority prevails15. This algorithm is 

implemented within the Disposition Map which, 

given an object reference, and a proposed event and 

queue type, returns the event disposition. 

4.5 Disposition Priority Matrix 

The Disposition Priority Matrix is used to determine 

the disposition of a protocol object to a proposed 

event while in a given state. Specifically, the matrix 

cell value given by disposition-matrix[queue-type, 

event, state] is the priority of that disposition relative 

to other dispositions defined for the queue of the 

event’s origin. The actual disposition value can be 

obtained by function compositiont2, as follows: 

t2Each disposition is assigned a unique priority relative to a 

queue. 

’ 3Despite their potentially large dimensionality, disposi- 

tion matrices are quite compact, requiring at most one byte 

per cell. 

t4A disposition function associated with the disposition 

matrix can be derived automatically from the corresponding 

state event guard. which itself can be derived automatically 

from the statechart topology. As a practtcal matter, the 

disposition matrix cells governed by guarded dispositions 

can hold small indices into a table of disposition functions. 

I5 This procedure can be applied to event hierarchies (see 

[Rumbaugh91]) by considering the disposition of the 

statechart to E as well as the abstract events from which E 

is derived. 
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In light of this explanation, we are now in position to 

show how the NEUTRAL disposition can be used to 

desensitize a statechart to a given event in a given 

state. This disposition should be employed (as it will 

be in our example) whenever there is a need to 

observe or track events submitted to the statechart 

non-intrusively. One application of this facility is 

concurrent protocol verification. 

First, recall that the NEUTRAL disposition is always 

assigned the lowest priority. Given an event, let us 

assume that there are, at all times, one or more one 

active states that exhibit dispositions other than 

NEUTRAL to this event. This assumption is easily 

met in a statechart, such as our example in Figure 3, 

that has two or more concurrent state machines. 

Within such a setting, the NEUTRAL disposition will 

never be decisive, since any other disposition, quite 

possibly the default disposition, is guaranteed to 

prevail during resolution. 

4.7 Event Dispatching 

Event dispatching and disposition behavior is shaped 

using a list of declarative disposition rules involving 

a set of prioritized generic responses. In this section 

we describe how this procedure is carried out at run- 

time. 

A band can be in one four possible states: Enabled, 

Scheduled, Guarded and Declined.,The default state 

-- Enabled-- is entered when a band is first initial- 

ized. This is the state of rest when a band is empty 

and eligible to submit new events as they are 

received, at which point the band enters the sched- 

uled state, and is placed in the priority band queue. 

The Event Dispatcher is entered by a thread of exe- 

cution bearing a new event object to a queue. It 

services all scheduled bands in its priority band 

queue until none remain. Events within a given band 

are serviced one at a time in FIFO order, until the 

band is empty (it returns to the Enabled state) or 

enters one of two possible states of deferral. 

The event dispatcher proposes for disposition the 

first event in the foremost band in the banded 

queue. The disposition map yields a disposition 

value for the event. This value and the queue type 

are used to identify and invoke an associated generic 

response embodied within the associated disposition 

action block. Ultimately, a response procedure must 

either accept or decline an event proposal. 

Acceptance of an event causes the event object to be 

removed from the band that holds it. If the band is 

empty it enters the Enabled state; otherwise it 

remains in the Scheduled state. Whenever an event 

proposal is declined, the band to which it still 

belongs enters one of two possible states: the 

Guarded state is entered when the disposition is 

guarded by a state event guard16; otherwise the 

Declined state is entered. 

Whenever an event has been accepted, the generic 

response procedure must, upon completion, indicate 

to the dispatcher whether to 1) proceed with the 

event to the statechart17 (as shown in figure 5), or 2) 

solicit another event proposal from the foremost 

scheduled band’ 8. 

Once activated the event dispatcher drives the state- 

chart until no more eligible events can be found. 

Deferred bands are re-appraised as appropriate 

during this process: deferred and guarded bands are 

re-scheduled on every state change. Guarded bands 

are re-scheduled also if the associated guard evalu- 

ates to true. 

5.0 Example Revisited 

We take up once again the example introduced in 

section 2, by first defining dispositionsI and their 

relative priorities for each queue, followed by a 

16A state event guard may involve event attribute values. 

17By construction the ACCEPT generic response must 

always accept the proposed event and request its submission 

to the statechart. 

L 8 An event proposal might be accepted only to be 

discarded, for example to implement the DISCARD- 

SILENTLY disposition. In such cases step 2 is appropriate. 

19We omit a definition of the procedures that implement the 

disposition semantics: their intended generic purpose should 

be self-evident, and their implementation within a target run- 

time environment should be entirely straightforward. 
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series of disposition rules used to populate the 

disposition matrices for each queue. 

tlisposition 
priority 
matrim 

/ misc. operations 

disposition 
action blocks 

Figure 5: Once entered, the event dispatcher 

drives the statechart until no more eligible events 

can be found. Deferred bands are re-appraised as 

appropriate during the process. 

5.1 Queue Descriptions 
ADMINISTRATIVE QUEUE: 

Bands: 

ADMIN-BAND (priority 1) with events: 

HEADER-BUFFER-READY, 

RESP-BUFFER-READY, 

XMIT-TIMEOUT, 

ACK-BUFFER-READY 

Dispositions: ACCEPT (priority 1) 

DISCARD-SILENTLY (priority 2) 

INDICATION QUEUE: 

Bands: 

REPLY-BAND (priority 2) with events: 

BIND-ACK, 

BIND-NAK, 

UNBIND-ACK 

INDICATION-BAND (priority 3) with 

events 

RECV-DATA-IND, 

XMIT-DATA-ACK 

Dispositions: ACCEPT (priority 1) 

DISCARD-SILENTLY (priority 2) 

DEFER (priority 3) 

REQUEST QUEUE: 

Bands: 

REQUEST-BAND (priority 4) with events: 

BIND-REQ, 

UNBIND-REQ, 

XMIT-DATA-REQ, 

NAK-REQ 

Dispositions: DEFER (priority 1) 

ACCEPT (priority 2) 

NAK-OUT-OF-STATE (priority 3) 

NEUTRAL (priority 4) 

5.2 Disposition Rules 

/I Incoming indications and acknowledgements are 

I/ discarded when the object is unbound. 

on events RECV-DATA-IND and 

XMIT-DATA-ACK, when in state UNBOUND 

disposition is DISCARD-SILENTLY; 

/t Incoming acknowledgements are discarded when 

/I there is a token mismatch. 

on event XMIT-DATA-ACK, when in state 

AWAIT-XMIT-AM guarded disposition is 

DISCARD-SILENTLY; 

I/ Incoming acknowledgements are discarded when 

// not expected. 

on event XMIT-DATA-ACK when in state 

AWAIT-XMIT-ACK, AWAIT-HEADER-BUFFER 

disposition is DISCARD-SILENTLY; 

/I New interface requests are deferred until the 

I/ present one is fully processed 

on any event in band REQBAND when in state 

A WAIT-RESP-READY, A WAIT-RESP-BUFFER 

disposition is DEFER. 

11 



// We desensitize the interface state machine to 

// interface request events (all but NAK-REQ) the 

// timeliness and disposition of which is determined 

// elsewhere within the statechart. For instance, the 

// acceptance of event XMIT-DATA-REQUEST 

// should be determined by transition 5 and the 

// previous rule, not transition 2 (see figure 3). 

011 events BIND-REP and UNBIND-REQ and 

XMIT-DATA-REQ, when in state A WAIT-REQ 

disposition is NEUTRAL. 

The contents of the disposition matrices and the 

associated disposition functions and guards implied 

by these statements are produced automatically by a 

code generator, and have been omitted. 

We note that event closure and scheduling is 

achieved non-procedurally, without need of any 

changes to the base statechart, which thus retains its 

original purposeful simplicity. 

6 Related Work 

In a recent paper [Hare194+], Hare] et al. propose an 

event management scheme for statecharts that bears 

some resemblance to the one proposed in this paper. 

Under their scheme, every object is endowed with 

one or more event queues. Unexpected events that 

arrive from a given service direction are automati- 

cally subject to deferral within the queue associated 

with that service. An event thus deferred is automati- 

cally resubmitted when it enables at least one transi- 

tion for which the condition (guard), if any, evalu- 

ates to true. Internal broadcast events are handled 

separately, and are always given precedence over 

external events, which are considered only when the 

chain reaction of broadcast events have run their 

course, and the statechart has reached a quiescent 

state. 

In effect, this scheme can be implemented easily 

using the method of dispositions with a single 

disposition (DEFER) defined as the default disposi- 

tion, and with guarded disposition rules. We submit 

that the proposed scheme still imposes unnecessary 

work on the statechart of a generic nature, for 

instance to discard events that may arrive “too late” 

rather than early. Moreover it fails to address the 

potential need for synchrony between multiple state 

machines relative to a given event or, more gener- 

ally, to provide a vehicle for conflict resolution 

between differing dispositions manifested by 

concurrently active states. 

7 A Behavioral Desian Pattern 

Within the appendix we submit a contribution to the 

growing catalog of design patterns, the along the 

lines set forth in [Gamma94+]. The presentation is 

somewhat compressed owing to limitations on space. 

Our design pattern applies to objects with state 

characterized by state complexity, and multi-faceted 

event-driven interactions with other objects. 

8 Final Remarks 

Finite state machines are often criticized for their 

tendency towards combinatorial explosion as the 

number of states, events and state transitions grows 

large. Harel’s statecharts are the traditional solution 

to this problem. However, we have observed that 

even statecharts are insufficient to deal with the 

inherent complexities of event driven objects subject 

to “faulty” stimuli or asynchronous, overlapped 

stimuli from a number of other objects. A major 

source of trouble is the systematic treatment of 

unexpected, out-of-sequence or partially expected 

events -- these are events that cannot be handled 

immediately (and thus require re-scheduling), or for 

which an immediate generic response is appropriate. 

We have described the method of dispositions that 

deals with these problems. According to this method, 

event scheduling, disposition and closure is shaped 

using a list of declarative disposition rules, involving 

a set of prioritized generic responses carried out 

within an active event management layer surround- 

ing a basic statechart. The full expressive power of 

the statechart can now be focused exclusively on 

expressing event and state sensitive behavior in 

response to idealized or anticipated event stimuli, 

resulting in statecharts of greater clarity and reduced 

complexity. 

This method is quite general, and can be adapted to 

a broad class of statechart-like methods, of either 

Moore or Mealy type, that allow transitions to be 



enabled by events in an explicit manner. 

[Firesmith surveys several methods that should 

lend themselves to such an adaptation. 

We have constructed a development tool, Statecraft, 

that comprises a C code generator, document writer, 

and run-time library. Support for C++ is expected in 

the near future. The selection of C as our initial 

target language was necessitated by our application 

domain, namely object-oriented development of 

kernel-level protocol software. The Statecraft facil- 

ity has been used successfully in the implementation, 

for commercial purposes, of a number of significant 

communication protocols (e.g. point-to-point proto- 

col, IS0 Transport layer class 0) and application 

programming interfaces (e.g. TLI and sockets). 

Rough comparisons suggest that the performance 

and code size of software generated using this tool is 

on par with implementations done “by hand”, but 

required far less effort to develop, and are arguably 

easier to understand and maintain. 

Continuing research efforts include a study of the 

implications of this new method relative to single 

and multiple inheritance of behavior, and develop- 

ment of a drag and drop visual interface for the 

Statecraft tool. 
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DISPOSITION Object Behavioral 

Intent 

Given a complex object that incorporates a 

statechart, provide an event (command20 ) 

management object that assumes responsi- 

bility for command queueing, disposition 

and dispatching to the statechart, according 

to the method of dispositions. 

Motivation 

See section 1: Introduction. 

Structure 

+ multi-faceted command-driven interac- 

tions with other objects, where the inter- 

actions may be unpredictably sequenced, 

prioritized, concurrent, error-prone or 

asynchronous. 

Participants 

, I 1 

Disposition accesse5 currency Stat&hart 
-. Yailables Of 

state vector 

put(command_ld) 
slate_eventLguards() 

state_chan~walker(commandld) 

Applicability 

This method applies in connection with 

objects that are characterized by 

+ state complexity, modelled by two or 

more concurrent automata, and nested 

automata as needed, 

Object-with-state 

+ contains instances of the associated 

Disposition and StateChart classes. 

+ forwards incoming commands to 

the Disposition object. 

Disposition 

+ defines the ptrtO command invo- 

ked by Object-with-state to for- 

ward commands. 

+ performs event recognition, 

queuing, disposition and dispatch- 

ing. 

+ within a concurrent execution 

environment, serializes access to 

the statechart object. 

StateChart 

+ implements the required statechart 

behavior in response to events 

announced one at a time by the 

Disposition object. 

+ implements internal event broad- 

casting. 

Disposition Matrix 

+ specifies, in matrix form, the 

disposition priority, and the 

disposition, for each event in each 

state. 

+ implements the disposition map 

that yields the disposition of the 

entire statechart (in a given state) 

to a given event. 

Collaborations 

+ Object-with-state forwards all incoming 

messages to the Disposition object. 

20 [Gamma94+] refers to events as we understand them as 

Commands. 
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+ Disposition delegates all event process- 

ing to the StateChart object, and 
Known Uses 

invokes the disposition map method of This pattern has been used to implement a 

the Disposition Matrix object. variety of command-driven reactive objects, 

+ StateChart maintains a reference to the 
most notably in the domain of communica- 

Disposition object, thereby providing 
tion protocols. 

access to Disposition attributes (e.g. Related Patterns 
misc. currency variables such as current- 

event, current-queue, current- band, and 
Command, State, StateChart, Adaptor. 

so forth). 

+ The Disposition Matrix consults the state 

of the statechart object while evaluating 

the disposition map. 

Consequences 

By entrusting event scheduling and disposi- 

tion to a specialized event management 

object, through which all incoming com- 

mands must pass, use of this design pattern 

+ insures event (command) closure. 

+ simplifies the design of objects that 

incorporate complex automata. 

+ can result in improved software 

reliability. 

Implementation 

We can expect a code generator to produce 

an implementation of the Disposition, 

Disposition Matrix and StateChart object 

classes, for a specific design captured in a 

suitable high level description language. 

Within such a linguistic framework, we 

would expect low level procedural detail, 

pertaining to guard expressions, action 

routines, disposition action blocks, and so 

forth, to be expressed directly in the targeted 

language (e.g. C++) within structured proce- 

dure blocks. Here again, the code generator 

can be expected to encapsulate these code 

blocks within private or public class 

methods, and associated data structures, so as 

insure their subsequent activation at run 

time. 
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