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Abstract

In this paper we present a compiler that translates arithmetic

expressions containing matrices to efficient sequences of calls

to basic linear algebra kernels.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors—Compilers

Keywords Linear Algebra Compiler

1. The Problem

Linear algebra problems appear in fields as diverse as compu-

tational biology, finite element methods and control theory.

Finding the best way to evaluate a linear algebra expression is

by no means a trivial task. Our goal is to develop a compiler

that automatically solves this problem. As a first example,

consider the assignment x := AB−1c, where A and B are

matrices, and c and x are vectors. Even for such a simple ex-

pression, x can be computed in many different ways, which,

while all equivalent in exact arithmetic, can differ greatly in

terms of performance and numerical accuracy. We refer to

such alternatives as algorithms, and discuss some aspects of

how to obtain them in the following.

The first challenge one faces is the inverse operator. In

general, the explicit inversion of a matrix (Y := A−1) should

be avoided, because it is slower and numerically less stable

than solving a linear system (see [8, Sec. 13.1.]). A major

difference between linear algebra and scalars is the concept of

properties of the operands. While they are rarely relevant for

scalar operations, they are of particular importance for solv-

ing linear systems. For instance, if B is triangular, the linear

system can be directly solved. Otherwise, a matrix factoriza-

tion has to be used. The choice of the most suitable factoriza-

tion again depends on the properties of B. If B is symmetric

and positive definite, the Cholesky factorization can be used.

In that case, B is decomposed into the product LLT , where

L is lower triangular. Substituting B in x := AB−1c and,

with the help of linear algebra knowledge, symbolically dis-

tributing the inverse, x := AL−TL−1c is obtained. No actual

computations are performed during this step. The value of x
can now be computed by solving two linear systems. Then,

another question concerns the parenthesization of the result-

ing expression. Since the multiplication is associative, for

example (AL−T )(L−1c) and A(L−T (L−1c)) are possible.

When working with scalars, the influence of different paren-

thesizations is often negligible. With matrices, the story is

entirely different: In this example, the two parenthesizations

require O(n3) and O(n2) scalar operations, respectively.

It should already be apparent that even for seemingly

simple expressions, there are many different algorithms,

and some are significantly better than others. For more

complex expressions that occur in practice, as for example

x :=
(

A−TBTBA−1 +RT [Λ(Rz)]R
)

−1

A−TBTBA−1y,

[4], where matrices have several different properties, the

number of possible algorithms grows exponentially.

At the moment, when presented with the task of comput-

ing such expressions, one has two contrasting options: (1)

High-level programming languages and environments such

as Matlab and Julia. Since these languages allow to almost di-

rectly describe the mathematical problem, working code can

be generated within minutes, with little or no knowledge of

numerical linear algebra. However, the resulting code (which

is possibly numerically unstable) usually achieves suboptimal

performance. (2) Low-level programming languages such as

C or Fortran. In that case, it is advisable to use libraries like

BLAS [5] and LAPACK [2], which offer highly optimized

kernels to compute basic linear algebra operations. However,

the translation of a linear algebra expression to an efficient se-

quence of kernel invocations is a lengthy, error-prone process

that requires a deep understanding of both numerical linear

algebra and high-performance computing.

We are developing a compiler that aims to offer both: The

simplicity, and thus, productivity, of a language like Matlab,

paired with performance that comes close to what a human

expert achieves.

2. Related Work

High-level languages such as Matlab allow to directly de-

scribe linear algebra problems. However, this does not in-
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clude matrix properties. Only a small number of functions

consider properties, in some cases even by inspecting matrix

elements.Furthermore, in Matlab, if the inverse operator is

used, the inverse is computed explicitly, even if the faster and

numerically more stable solution is to solve a linear system;

it is up to the user to rewrite the inverse in terms of the slash

(/) or backslash (\) operators that solve linear systems [1].

An alternative approach consists in the use of (smart)

expression templates in C++, as employed by libraries such

as Eigen [7]. The main idea is to improve performance

by eliminating temporary operands and provide a domain-

specific language integrated within C++. Both in Matlab and

Eigen, expressions are evaluated according to fairly simple

rules, frequently leading to suboptimal code.

The search-based linear algebra compiler CLAK [6] ex-

clusively uses pattern matching to identify which kernels can

be applied. To reduce the size of the search space, kernels are

selected according to static priorities; this approach does not

guarantee efficient solutions.

3. The Compiler

Our compiler takes as input linear algebra expressions, an-

notated with properties, and maps them onto sequences of

kernels as offered by libraries. To this end, the compiler

utilizes knowledge from linear algebra (for example about

properties), numerical linear algebra (e.g. stability), as well

as high-performance computing (e.g. performance). Here, we

discuss four aspects of the problem.

Properties Many linear algebra operations can be sped up

by taking advantage of the properties of the involved matrices.

For example, the multiplication of two lower triangular

matrices requires n3/3 scalar operations, as opposed to 2n3

operations for two full matrices. The most important insight

is that one has to track not only the properties of the input

operands, but especially the properties of the outputs of the

intermediate operations. For this, we developed an engine

which uses an algebra of properties to symbolically infer the

properties of the outputs. Furthermore, those properties are

used to symbolically rewrite and simplify expressions.

Matrix chain problem The problem of finding the parenthe-

sization of a product of matrices that minimizes the number

of operations is called matrix chain problem, and efficient

algorithms exist [9]. To deal with more practical problems,

e.g. X := ABTC−1D, we generalized the O(n3) dynamic

programming matrix chain algorithm [3], such that it takes

into account additional operators, properties and arbitrary

cost functions.

Common subexpression elimination Modern compilers

handle the elimination of scalar common subexpressions very

well. Unfortunately, the known approaches do not apply to

linear algebra, due to the properties of operators such as trans-

position and inversion: The terms A−1B and BTA−T can—

and should—be considered as one common subexpression,

since BTA−T = (A−1B)T . Our compiler incorporates an

algorithm to detect such common subexpressions of arbitrary

length.

Inversion and factorizations In our input language, users

express the problem in a way that directly matches the mathe-

matical description. Most important, this includes the inverse

operator: Users are not expected to identify linear systems.

Instead, the compiler automatically computes expressions

containing the inverse by solving linear systems and applying

suitable matrix factorizations if necessary.

4. Results and Future Work

We have implemented a prototype of the compiler in Python.

As an example for how the compiler proceeds, consider

b := (XTX)−1XT y. To deal with the inverse operator, in

addition to computing XTX directly, different factorizations

are applied to X . One of those is the QR factorization, that

is, X is replaced by QR, where Q is orthogonal and R
is triangular. After symbolically distributing the transpose

operator, b := (RTQTQR)−1RTQT y is obtained. Then,

linear algebra knowledge is used to simplify the expression:

Since Q is orthogonal, it holds that QTQ = I . Further

simplifications eventually result in b := R−1QT y, for which

the matrix chain algorithm finds the best parenthesization.

This derivation takes about 0.1 seconds on a modern laptop.

For a more complicated generalized least squares problem

(b := (XTM−1X)−1XTM−1y), dozens of (pseudocode)

algorithms are generated in about 0.8 seconds.

As next steps, we will implement a code generator for C

and extend the set of allowed operations, as well as the set of

transformations that can be used.
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