

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

SIGPLAN’05 June 12–15, 2005, Location, State, Country.

Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

DesignScript:

A Domain Specific Language for Architectural Computing

Robert Aish

Bartlett School of Architecture, UCL, UK

robert.aish@ucl.ac.uk

Emmanuel Mendoza

ARM Ltd, UK

jun.mendoza@arm.com

Abstract

DesignScript is a multi-paradigm domain-specific end-user

language and modelling environment for architectural and

engineering computation. DesignScript implements both

visual data flow programming and imperative programming.

The novice user initially develops his data flow program

through the familiar visual programming environment. This

environment is effectively an intuitive user interface mask-

ing the underlying DesignScript language. The DesignScript

language and its related user interface addresses three issues:

the domain specific requirements of architectural and engi-

neering computing, the scalability issues encountered when

visual data flow programming is applied to complex design

scenarios and the abstraction barriers encountered when us-

ers transition from data flow to imperative programming.

Categories and Subject Descriptors D.1.7 [Programming

Techniques]: Visual Programming,

D.2.6 [Software Engineering]: Graphical Environments,

D.2.11 [Software Architectures]: Domain-specific architec-

tures, D.3.2 [Language Classifications]: Data-flow lan-

guages, Multiparadigm languages, D.3.4 [Processors]: De-

buggers, J.5 [ARTS AND HUMANITIES]: Architecture,

J.6 [COMPUTER-AIDED ENGINEERING]: Computer-

aided design (CAD)

Keywords exploratory design; scalability; extensibility;

learning to program; end-user programing; abstraction bar-

riers, abstraction gradient.

1. Introduction

In this paper the term ‘architecture’ is used both in its origi-

nal sense referring to the design of buildings and in the more

general sense as the schematic design of engineering sys-

tems. DesignScript sits firmly within a branch of domain

specific computing broadly referred to as Computer Aided

Design (CAD). The earliest example of CAD is SketchPad

developed in 1963 by Ivan Sutherland [1]. Since then there

has been a proliferation of CAD systems for different appli-

cation domains. It is possible to generally describe CAD sys-

tems and their use with three characteristic dimensions:

1.1 ‘Domain Specific to General Purpose’ Dimension

At one extreme there are ultra-domain specific CAD systems

where the user is presented with a predefined schema of do-

main specific components which can be assembled into

models using pre-defined inter-component relationships.

This schema typically represents a physical ‘kit of parts’,

such as a pre-fabricated building system. These systems are

intended for users who are domain experts. These systems

represent the constraints and conventions of established en-

gineering and construction practice.

At the other extreme there are completely general purpose

systems with programming and geometry libraries which are

intended for users who are both domain experts and accom-

plished software developers.

In between these two extremes there are hybrid systems

which combine predefined domain specific components

with more general purpose programming and geometry

tools. These tools can be used by more proficient users to

customise and extend the CAD system by defining new com-

ponents. These hybrid CAD systems are used in more open-

end application domains, such as advanced building archi-

tecture, where innovation beyond current conventions (and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

DSM’16, October 30, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4894-2/16/10...$15.00
http://dx.doi.org/10.1145/3023147.3023150

15

beyond a fixed schema) is important. For example, it is

entirely feasible for a ‘one-off’ building to be based on a

unique architectural form, custom components and special-

ised fabrication techniques.

The architecture of buildings is not a single application

domain. Buildings are essentially the integration of a number

of sub-systems (for example, structure, services, cladding,

etc.) which are the responsibility of different design and en-

gineering disciplines. Often each discipline uses separate de-

sign and engineering computer applications in what are ef-

fectively separate ‘vertical silos’.

To create a truly integrated building requires that the con-

tribution of each of these disciplines is integrated. This in

turn requires that the different modelling tools are integrated.

Ideally the different domain specific applications should

be based on a common set of computing abstractions and

these abstractions should be exposed to the users so that in-

ter-domain integration can be created to suit the needs of

each new building project. These ‘building system integra-

tion’ issues are discussed by Rush [2].

1.2 Scaling from Exploratory Design to Detail Design

It is essential that an effective domain specific system sup-

ports a scale of use from simple exploratory model to com-

plex detailed models. Architectural design often starts with

exploratory sketch models, involving just a few abstract ge-

ometric elements and relationships. At the exploratory stage

the architectural user may only be representing some specu-

lative design intent without committing to particular dimen-

sions, materials or construction processes.

During the course of the design process this model will

be expanded to potentially hundreds of thousands compo-

nents and the model will be developed from an initial ab-

stract geometry to an assembly of highly specific construc-

tion components. While domain specific application based

on visual data flow programming attract an initial use with

small scale exploratory design models, this technique do not

scale to complex real world design projects [3].

1.3 ‘Skills’ Dimension

Domain specific data flow applications have enabled pro-

gramming to be accessible to architectural users without any

prior computing experience. However these applications are

limited because they present a restricted subset of computing

concepts. The paradox of domain specific computing is that

it can help the user develop certain programming skills but

the familiarity with these skills may trap the user within a

simplified version of programming.

Scalability and usability issues arise when data flow pro-

gramming has to be applied to more complex computational

tasks found in architectural design. While regular program-

ming and scripting languages offer a more complete set of

computational concepts, learning these languages often pre-

sents abstraction barriers to novice end-user programmers

such as architects [Figure 1][4].

In this sense the aim of a domain specific application as

an educational tool is not to avoid abstractions, but to avoid

abstractions becoming a barrier.

It is important to recognise that a domain specific compu-

ting system should not be designed around a fixed definition

of the task or to anticipate a fixed set of user skills. The use

of the system will change the user and in turn change how

the system is used.

In practice all these dimensions (domain specific to ab-

stract, scalability and skills) interact. It is not possible to ad-

dress the scalability, extensibility and integration issues

without first addressing the skills issue. More generally a do-

main specific computing system will only be successful if it

is more than domain specific and introduces the user to more

general purpose computing ideas and their application.

Figure 1. The sequence of increasing programming

complexity. Abstraction barriers and consequential

discontinuity may be encountered with existing domain

specific applications when transitioning from visual data

flow programming to text based programming.

Figure 2. The objective of DesignScript is help the user to

harness computing abstractions, but without these becom-

ing abstraction barriers. This is achieved by creating an

abstraction gradient of easily assimilated intermediate steps

between visual data flow and text imperative programming.

16

2. DesignScript

DesignScript implements a series of intermediate program-

ming techniques between visual data flow programming and

regular text based programming [Figure. 2]. This provides

an abstraction gradient which allows the gradual introduc-

tion of more advanced computing abstractions and notation:

Visual Data Flow Programming: This uses the familiar

visual ‘graph-node-arc’ programming UI. It is an ideal entry

point where the user can develop the fundamental program-

ming skill that of expressing ideas in a logical and executable

form. The visual graph-node-arc convention surreptitiously

introduces the user to the concept of ‘type’ by requiring him

to match the ‘type’ of the output of an upstream node with

the ‘type’ expected as input to a downstream node. However,

visual programming can become extremely verbose and

does not scale to more complex programing tasks. [Figure 4]

Node-to-Code: Effectively the visual programing environ-

ment is a graphical UI where each node is represented by

compiled DesignScript source code. The ‘node-to-code’ pro-

cess merely exposes this underlying code in the selected

nodes as a single ‘code block’ node. This dramatically re-

duces the visual complexity of the graph and ‘seeds’ the

user’s code with the visual logic previously developed.

Text Based Data Flow Language: This uses conventional

C style syntax but is simplified because there are no explicit

flow control statements. Flow control is determined by the

data flow dependencies between the variables. [Figure 5]

Replication: This allows the user to create and operate on

collections without initially needing to understand iteration

[Figures 3, 4 and 5]. This is a domain specific functionality

of partcular importance in the design of buildings, which

are composed of collections such as floor, columns, beams,

façade elements, etc. As the architect explores design

options these collections may vary in size and in rank. In

the example in Figures 4 and 5 we show a single point

[the controlPoint] created using single values for the

X, Y and Z coordinates and then the use of ‘replication’

where a 2D collection of points [the pointArray] is created

as the cartesian product of a set of X and Y coordinates.

Essentially ‘replication’ blurrs the distinction between the

‘type’ of a single variable and the ‘type ’ of a collection.

Imperative language: This uses the familiar C style pro-

graming syntax. It is a more powerful and precise program-

ing paradigm where standard control flow constructs such as

"if", "for" and "while" statements can be utilised [Figure 6]

IDE: DesignScript includes a conventional IDE to support

the development of iterative and recursive functions and pro-

grams which are text based and cannot be debugged by ‘trac-

ing through’ a visual data flow program. [Figure 7].

Liveness: DesignScript is a dynamic language and supports

‘liveness’ which is essential for exploratory programming.

Liveness includes directly responding to user actions such as

changes in program logic, dynamic interaction using

‘sliders’ to changes in the value of variables and the direct

manipulation of control points in the graphical model.

Liveness is synonymous with REPL [Read–eval–print

loop] with live interaction between the user and the program

[5]. Liveness/REPL behaviour is only applicable when De-

signScript is continuously running in Automatic Mode in a

visual programming environment such as Dynamo.

Typing: DesignScript supports optional typing. When vari-

ables are declared with a type, it aids the compiler to stati-

cally enforce type-safety. For variables with no assigned

type, the compiler and the virtual machine will perform both

static and dynamic type inferencing to determine the best

type to assign to a variable.

Domain Specific Syntax: DesignScript avoids adding com-

plex domain specific syntax. The text based data flow lan-

guage combined with replication actually represents a sim-

plification compared to the equivalent imperative language.

The only additional syntax are replication guides [Figure 3].

Tutorial and reference documentation is available. [6] [7]

Scaling: DesignScript can scale from simple exploratory

data flow models [Figures 4, 5, 6 and 7] to the full complex-

ity of a completed building. [Figures 8, 9 and 10]

From Abstract to Domain Specific: DesignScript can also

be used as a completely general purpose programming tool

to build other domain specific modelling applications. Fig-

ure 8 illustrates one such application which models the

design and behaviour of the MIPS microprocessor pipeline

[8]. In this application each codebock node represents the

identifiable regions of the processor and the data flow

represents communication between these regions.

Figure 3. Replication in DesignScript enables the user to

operate directly on collections. “Replication guides” use

the syntax <n> where n controls the order in which the in-

put collections are used to build the output collection.

17

Figure 4. Visual Data Flow programing: here a set of curves is drawn through a 2D array of points, where

the height of the points is based on the inverse distance to a control point.

Figure 6. The equivalent program in the DesignScript Imperative language using familiar ‘C’ style syntax

and flow control statements which allow the explicitly iteration through collections.

Figure 5. Text based data flow programming in DesignScript. Flow control is based on the graph dependen-

cies of the original data flow program. Notice the ability to directly operate on collections without iteration,

18

3. Design and Implementation

The intention when creating the DesignScript language was

to overcome the barriers which novice programmers

encounter when transitioning from visual data flow

programming to text based programming. These barriers

were mainly a consequence of previous applications using

different syntax for data flow and imperative programming.

This made it difficult for users to transfer or re-use

programming logic between the two programming

paradigms. DesignScript unifies data flow and imperative

programming by providing a common set of syntax and

semantics based on established programming conventions.

 DesignScript also provides different syntax for data

flow and imperative programming tailored to the unique

execution methods of these different paradigms, as follows:

Figure 7. DesignScript supports a conventional IDE. In Data flow programming the program logic can be ‘traced through’

using the visual representation so there is no need for an IDE. However with Imperative programing where there is iterative

and recursive logic, then it is important that the user can delve into the program execution.

Figure 8. Using the hybrid visual and text based programing to model the MIPS microprocessor pipeline.

19

Common functionality:

Typing: optional typing, if undefined then by inference

OO syntax: instance = class.static_method(arg1,.. argn);

 instance = instance.method(arg1 ,.. argn);

 value = instance.property;

 instance.property = value;

collections: merger of list, array and sets concepts with

appropriate methods to build, query, access

collection = {val1, .. valn};

indexing: value = collection[n];

 value = collection[-n]; -ve indexing from end

replication: collections can be used as inputs where single

values are expected. Replication guides <n>

control the way cartesian products are created

when multiple collections are used as input

nested language blocks using [Imperative] or [Associative]

keywords

DataFlow functionality:

Flow control: There are no flow control statements. Instead

flow control is via the dependency graph.

Imperative functionality:

Flow control: There are explicit flow control statements:

iteration [for, while] and conditional [if, else]

In visual data flow programing each node is represented by

compiled DesignScript source code. Imperative code blocks

are treated as nodes in the data flow graph. The DesignScript

compiler then performs standard optimization to the input

source code and emits an executable format that contains the

following: (1) Symbolic information (2) Executable

bytecode (3) Dependency graph nodes. A virtual machine

loads this data and performs runtime execution while

Figure 10. Data flow programming used in the design of

the 'Oceanwide' high rise building. © Foster+Partners.

Figure 9. Façade geometry created using data flow pro-

gramming, including the automatic creation of curtain wall

gridlines based on the planning grid geometry and façade

panel analysis colour coded based on fabrication criteria.

© Foster + Partners

Image courtesy of Foster + Partners,

20

enforcing dataflow semantics. The virtual machine is driven

by the data flow dependency graph where each node points

to a set of bytecode to be interpreted in sequence.

 Only modified nodes and those that depend on the

modified nodes are re-compiled and re-executed, thus giving

highly efficient dynamic execution. Other DesignScript

nodes/source code can include calls to C#, thereby giving

access to extensive external libraries.

4. Conclusions

In his 2002 presentation ‘Making Programming Easier by

Making it More Natural’ [9] Brad Myer suggested that pro-

gramming languages and tools should provide a ‘gentle

slope’ [slide 9]. He also proposed some ‘Implications for

New Languages’ [slide 29]. Essentially DesignScript has

implemented this ‘gentle slope’ [Figure 2.] and most of the

suggested ‘implications’. These are presented below with the

features of DesignScript in parenthesis, below:

Use event-based style for dynamic events

[DesignScript as a dynamic language supports this]

Provide operations on groups of objects

[Supported by DesignScript “replication”]

Work to minimize the need for control structures and vari-

ables

[DesignScript as a data flow language has no explicit flow

control statement: Visual data flow nodes can be unnamed]

Data structures that combine the capabilities of lists + ar-

rays + sets

[DesignScript generalised collection concept supports this]

Support simple arithmetic in natural language style (“add

1 to score”)

[In visual programming there could be a node performing

such an action]

Using mathematical notation such as > < rather than

words achieves better accuracy

[Supported by DesignScript]

The data flow aspects of DesignScript demonstrates that it is

possible to create a more ‘natural’ end-user domain specific

programming language. However in reality users who learn

this language may find that it is not possible to operate in

isolation from other establish programming language con-

ventions. To this end DesignScript addresses a particular

form of domain specific computing which is required to pro-

vide immediate benefits to novice users while also acting as

a learning environment for established but possibly less nat-

ural programming language conventions.

 DesignScript illustrates the maxim that an effective

domain specific application has to be more than domain

specific. More generally, we have found that a hybrid

approach combining textual and visual programming and

combining data flow and imperative programming allows

the user to model the overall process as a visual diagram,

while the logic of the individual processes can be

programmed using the text based language.

Acknowledgements

The authors would like to acknowledge the contribution of

the DesignScript development team at the Autodesk

Singapore Research and Development Centre.

DesignScript is an open source project and is the core com-

putational engine within the ‘Dynamo Studio’ application.

The authors would like to thank Foster+Partners for permis-

sion to use of the illustrations in Figures 9 and 10.

The authors would like to thank Alan Blackwell for his com-

ment and suggestions.

References

[1] Ivan Sutherland “Sketchpad” MIT (1963).

[2] Richard Rush “The Building Systems Integration Handbook”

AIA (1986)

[3] Margaret M. Burnett et al., “Scaling Up Visual Programming

Languages,” in Computer 28 no. 3 (1995): 45

[ftp://ftp.cs.orst.edu/pub/burnett/Computer-scalingUp-

1995.pdf]

[4] Thomas Green and Alan Blackwell “Cognitive Dimensions of

Information Artefacts”: a tutorial, Version 1.2 (1998)

[www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtuto-

rial.pdf]

[5] REPL_[https://en.wikipe-

dia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop]

[6] DesignScript summary user manual: [http://aucache.auto-

desk.com/au2012/ses-

sionsFiles/3286/5471/handout_3286_DesignScript_sum-

mary_user_manual.pdf]

[7] DesignScript tutorial as implemented with the Dynamo UI

[http://dynamoprimer.com/en/07_Code-Block/7_Code-

Blocks-and-Design-Script.html]

[8] John Hennessey, David Patterson “Computer Architecture, a

Qualitative Approach 5th Edition”, Morgan Kaufmann (2014)

[9] Brad Myer “Making Programming Easier by Making it More

Natural” (2002) [http://giove.isti.cnr.it/projects/EUD-

NET/slides-workshop/MyersEUP02Italy.ppt]

21

ftp://ftp.cs.orst.edu/pub/burnett/Computer-scalingUp-1995.pdf
ftp://ftp.cs.orst.edu/pub/burnett/Computer-scalingUp-1995.pdf
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
http://aucache.autodesk.com/au2012/sessionsFiles/3286/5471/handout_3286_DesignScript_summary_user_manual.pdf
http://aucache.autodesk.com/au2012/sessionsFiles/3286/5471/handout_3286_DesignScript_summary_user_manual.pdf
http://aucache.autodesk.com/au2012/sessionsFiles/3286/5471/handout_3286_DesignScript_summary_user_manual.pdf
http://aucache.autodesk.com/au2012/sessionsFiles/3286/5471/handout_3286_DesignScript_summary_user_manual.pdf
http://dynamoprimer.com/en/07_Code-Block/7_Code-Blocks-and-Design-Script.html
http://dynamoprimer.com/en/07_Code-Block/7_Code-Blocks-and-Design-Script.html
http://giove.isti.cnr.it/projects/EUD-NET/slides-workshop/MyersEUP02Italy.ppt
http://giove.isti.cnr.it/projects/EUD-NET/slides-workshop/MyersEUP02Italy.ppt

