
An Interactive Environment for Object-oriented Music
Composition and Sound Synthesis

C.A. Scaletti l
CERL Music Project

University of Illinois at Urbana-Champaign

R. E. Johnson
Department of Computer Science

University of Illinois at Urbana-Champaign

Abstract
Kyma is an ‘object-oriented environment for music
composition written in Smalltalk-80. which, in conjunction
with a microprogrammable digital signal processor called
the Platypus, provides the composer with a means for
creating and manipulating Sound objects graphically with
real-time sonic feedback via software synthesis. Kyma
draws no distinctions between the materials and the
structure of a composition: both are Sound objects. When a
Sound object receives a message to play, it tran.$orms itself
into a microSound object, i.e. an object representation of
itself in the microcode of the Platypus. Thus an object
paradigm is used not only in the representation of Sound
objects in Smalltalk- but also in the microcode
representation of those Sound objects on the Platypus.

‘The author’s current address is: Kymatics. P-0. Box 2530. Station
A, Champaign, IL 61820; telephone: (217) 328-6645.

Smalltalk- is a trademark of ParcPlace Systems, Inc.
Macintosh is a trademark of Apple Computer, Inc.

Permwon to cop) without fee all or pan of this material is granted provided

that the copxs are not made or distributed for direct commercial advantage.

thr AC&l copynghr notre and the title of the publication and its date appear.

and notice IS given that copying is by permission of the Association for

Computmg Machrnery. To copy otherwise. or to republish. requires a fee and/

or SpeCltiC permlsslon.

C 1988 ACM O-89791-284-5/88/0009/0222 $1.50

1. Sound Objects

1.1 The Problem of Sound Synthesis
Soundcanbedescribeddigitallyasastreamofinstantaneous
amplitude values called samples. A digital-to-analog
converter translates this stream of numbers into a
continuously varying voltage which, if used to drive a
loudspeaker, is translated into a continuous variation in air
pressure - sound. Recording or synthesizing frequencies
of up to 10 kHz necessitates a sampling rate of 20 kHz. At
this sample rate, 1 million 16-bit samples are required to
represent less than a minute of sound, for stereo sound the
requisite number of samples doubles. The considerable
quantity of data required for digital sound synthesis
presents problems with regard to both speed and
manageability.

f.1.1 speed

Much of the early work in digital sound synthesis was based
on Max Mathews’ “acoustic compilers”, Music1 - Music5
by85]. These “Music N” languages generate sound by
means of software synthesis, that is, the stream of samples
representing the waveform of the &sired sound is specified
exclusively in software. While software synthesis is an
extremely flexible technique, most of the Music N
languages were designed to run on general putpose

computers in a noninteractive way; turnaround times
measured in hours or even days can be frustrating for
composers trying to experiment with new sounds.

One way around this problem is to implement the sound
synthesis algorithms in hardware, a technique employed in
the ubiquitous MIDI synthesizers. These synthesizers
provide composers and performers with digitally
synthesized sound in real time. A price is paid, however, in
terms of flexibility; a hardwired algorithm is extremely

222 OOPSLA ‘88 Proceedings September 2530,1988

difficult to modify, limiting the capabilities of each
synthesizer to its fixed set of algorithms.

More recently, Digital Signal Processors (DSPs) have been
used to solve the speed problem in digital sound synthesis.
Since DSPs are programmable and are designed specifically
for samples generation, they can do software synthesis in
real rime. allowing composers to explore new sounds
interactively.

1.13 Manageability
The Music N languages provide composes with a familiar
model to assist them in specifying the sample stream - the
model of a “score” performed on an “instrument”. A Music
N “instrument” is designed by connecting unit-generators,
software modules which simulate familiar analog circuits
such as oscillators or filters. In a totally separate activity, a
Music N “score” is specified as a sequence of instructions for
turning instruments on or off at prescribed times. (Most of
the languages for controlling MIDI synthesizers also
employ this model of instrument and score vjith obvious
popular success.)

‘Ike is, however, a disadvantage to using this model; while
these languages make it easy to do a “middle-level”
orgztnization at the granularity of notes, it can be awkward,
in some cases impossible, to to use these same languages to
organize higher level structures (e.g. phrases or sections) or
lower level structures (since the “timbre” of a sound is dealt
with separately as “instrument design”). What these
instrument/score languages seem to lack is an abstract
structure which, can be applied uniformly at all levels of
organization.

It is not possible to individually compose each of the
ntillions of samples comprising a piece of music, nor do
individual samples mean much in isolation. Some means is
needed by which to organize these samples, group them
toge?ha into meaningful chunks, enclose all the details in a
package, give it a name, and refer to it thereafter as a single
entity. In Kyma such an entity is referred to as a Sound
object. Everything in Kyma, from a single timbre to the
slructure of an entire composition, is a Sound object. These
Sound objects can be manipulated, transformed and
combined into new Sound objects. Furthermore, Sound
objects can be continuously redefined as work on a
composition progresses; objects which were once
encapsulated in other objects can be brought to the top level,
top level objects can be combined and hidden within a yet
higher level object.

Otha music languages that acknowledge this need for a
utlifam structural entity include FORMES with its
“proms” lRodet841 [CointdVJ, HMSL with its “morph”

pohn&y85,87], the SSSP project with its “musical event”
~uxton85]. and Herbert Brun’s language, Sawdust, with its
“link” [Grossman87].

1.2 Sound objects vs. Standard Music Notation

Why adopt this strange idea of a Sound object when music
aheady comes equipped with traditional smlctures
specified in terms of staves, measures and notes? In order to
answer this question, it is first necessary to differentiate
between the use of the word rmcsic in reference to an acoustic
event and rmm’c in reference to written notation. Music
notation is a highly contextual list of shorthand instructions
to a performer; it does not fully specify the acoustic event.
Evidence of this can be seen in the fact that trained musicians
wilI perform a score with the name “Bach” at the top quite
differently Corn their performance of a score bearing the
name “Chopin”.

Composition environments based on music notation, while
they do provide a structure for the composer, do not provide
a flexible and redefinable structure. Furthermore, they tend
to limit the specfication of sound structures to those which
could be performed on traditional instruments by human
performers. This sort of self-imposed limitation is
analogous to the long takes in front of a static camera typical
of early films - they were using the camera to passively
record the performance of a play, not yet realizing the full
potential of film as a new medium distinct from the medium
of live theater.

Soundobjectsformasupersetofthesetofnotes,i.e.thereare
Sound objects which can be described in Kyma which could
not be expresd using standard music notation. These are
not just bizane sound effects or outlandish examples (e.g. it
would be difficult to record ordinary speech using musical
notation) but include examples which fall squarely in the
domain of traditional music. For example, musicians can
find it difficult to notate even their own improvizations.

1.3 Kyma Definition
13.1 Defmition of Sound
A Sound in Kyma is either a Sound Atom or a Transform of
one or sevedal sub!Jounds.

A!3omdiadefmaIas:

i) SatndAtan
ii) UnaryTriinsfom~, T(c) where a is a Sand
iii) N-my Tmsform. T(s,. s2, Q whrc sy. s2, sn are sounds

A transform is the result of applying a function to its
subSounds. In this sense, a transform is something like a

September 25-30,1988 OOPSLA ‘88 Proceedings 223

prism: when viewing physical objects through a prism, the
structure of the prism is made apparent by the manner in
which it distorts the appearance of the viewed objects;
however the prism doesn’t actually alter the viewed objects,
and the prism is an object distinct from the viewed objects.

1.33 Currently Implemented Sound Classes
Figure 1 shows the hiemrchy of all Sound classes currently
implemented in Kyma. (It should be emphasized, however,
that Kyma is an open system, and that the composer can add
to and modify this class hierarchy.)

1.33 N-ary Transfurms
Each N-ary Transform has an instance variable, subSounds,
which contains an O&&Collection of Sounds.

Mixer and Concatenation are the primary temporal
operat.orsofKyma. ‘lhesubSoundsofaMixerareplayedin
parallel; those of a Concatenation are played serially. A
Mixer is defined to be the sum of its subSounds, a Multiplier
their product, and a Concatenation as a sequence of its
SUhSOMdS.

1.3.4 Unary Transforms
Each UnaryTmnsform has an instance variable, subSound,
containingasingleSound tobetransformed. Forexample,
a Delayed is defined as a Sound which waits a specified
amount of time before playing.

1.35 Sound Atoms
A SoundAtom has no subSounds, and, as could be inferred
fkom itsname,cannotbebrokendownintoconsti~entparts.
For instance, a L.&Sound is defined as the input from the
analog-to-digital converter, if a microphcme is co~ected to

the input, the LiveSound’s samples will come from that
microphone.

In a LookupFunction. a periodic signal is obtained by
retrieving samples from a lookup table. A single cycle of
the desired waveform is precomputedand stored in the table;
by incrementing an index into this table module the length
of the table, this cycle can be repeated any number of times.
Different frequencies, i.e. numbws of cycles per second, are
achieved by using different sized increments for stepping
through the table.

1.3.6 Potential Sounds
A Potential Sound is one which does not respond directly to Figurel. Thchi~yofSotmdc~rs~impkmcnted

the play message; instead when such a Sound receives a inKyma. Whereoneclusisthesubc1sssofPlothezrwhichoaxn-s

message to play, it creates a new Sound and then sends ir the
bcforeitinthelist,thisisiniicatalbyindatUti0n.

play message. For example, when a F%lindrome gets a play
message, it first creates a Concatenation of its s&Sound and
the Reverse of its subSound, and it then tells the
Concatenation to play.

224 OOPSLA ‘88 Proaeedblgs

Play replay help duplioate oollrot selectAll oleanUp remova

Figure2. TheMainKymaView. ~consr~~~gsOundclassesappearinthelistonthelefticonsrepresentingSoundiTlstances(called
SoundPoints) appear in a Soundmane (the large area to the right of the class list).

?$- 9 30&b
al ‘id * a75 OA conoatanatlon52203 Flaplaoementsolmd7o

t-s<* 9 Q
l?aDkoemant conoatana- Replad

X
murtiplia I
i In * *
LeduIpFunetier
This is a table lookup algorithm. Sampler are obtained by indexing into a

preoomputrd wavetable stored in the memory of the signal prooessor.

The amount by whioh the wavetable index is inorrmentrd l aoh sample is

computed as tablelength * frequency * l.O/SampleRate, i.e.

ramplrs/oyole * oyolrs/sro l seo/samplr.

For mbrc detail on each parameter of a LookupFunotion, press on the

parameter name in the creation view,
Hdp 1 1 Click rnywhcrswhcn finished, 1 I

b
I

\
r rrmovc

Figure 3. By pressing the Help button below the list of classes: the composer can see a brief description of the selected chss.

September 25-3O,T988 OOPSLA ‘88 Proceedings 22s

Figure 4. The Creation View for a LookuPFunction. Parameters
canbetypedinorsuppliedby&aggingwotherSo~~ointintathe
pfmmeter fieid.

A FrequencyTransform is an interesting potential Sound
which can have a time-varying effect on its subSound Each
FrequencyTransform contains, as an instance variable, a
function of time. frequency, and the duration of its
subSound. (See Webe for a detailed description of
Functions as ArithmeticObjects in Smalltalk-80.) Should
the FrequencyTransform have an N-aryTransform as its
subSound, this function will be reevahrated at each of the
constituent Sounds’ startTiies; it is a timevarying
~SformationdowntothegranularityofindividualSounds,
not individual samples.

1.4 Using Kyma

Kyma’s user interface can be characterixed as a direct
manipulation system. The composer can create new sound
instances, group them into collections, extract parameter
information from them, and examine/change their structure
by clicking or dragging with the mouse.

1.4.1 The Main Kyma View
By selecting KYMA from the list of options in Smalltalk’s
background menu, the composer obtains a main Kyma view
like that shown in Figure 2. The icons (called So~ndPoint~)
represent Sound objects; SoundPoints can be selected,
dragged, or grouped together into SoundCollectionPoints.
(The appearance of these operations was modelled after that
of the Macintosh Finder).

The strip along the left edge of the main Kyma view is a list
of Sound classes. Pressing the help button opens a short
description of the currently selected Sound class (Figure 3).

Hgure5. Pressinganaparameternameinacmationviewpovi&s
a txief des4xQtion of that perameta on the diqlay.

Ressing the create button opens a cmatiat view such as that
shown in Figure 4, the creation view for a LookupFunction.

1.43 Creation Views
lbecomposercanpressanyparameternameinthecreation
view for assistance on supplying an appropriate parameter
value. Figure 5, for example, illustrates the result of pressing
“Frequency” in the LookupFunction’s creation view.

Each parameter can be supplied either by typing it in from
the keyboard or by dragging another SoundPoint into the
appmp&elynamedpane(asinthesequenceshownin
Figure a

‘Ihe creation view for Echo (Figure 7) illustrates several
different ways for a composer to enter the Sound’s
pararnetess: the s&Sound is supplied by dragging a
SoundPoint into the small SoundPlane, the name is supplied
by typing or dragging another So&Point into the name
pane, the delay time is specified by typing or dragging into
the delay pane and then selecting the appropriate units from
the list to the right of that pane, and the feedback factor is
supplied by an adjustable slider. A particular delay line is
selected from the list of all delay lines on the right.

1.43 Opening SoundPoints
Any of the SoundPoints or SoundCol.lectionPoints can be
examined or altered by double-clicking their icons; this
“‘opens up” the SoundPoint or SoundCollection to reveal its
structure. The process of opening up a SoundPoint is
essentially the reversal of the process used to create that

228 OOPSLA ‘88 Proceedings September 2530,1988

I.

II.

III.

Frequrnoy

pitoh

delayline
drlayline
drlaylinr
delayline
drlaylinr
delaylint
delayLinr
daIryLine
delayLine

I drl&Linr

1 play 1 replay 1 help 1 save \rpl.o~~IlR~pla~

oube
delrylinr
delayline

HI -1 I drlryLinr

I Frrqur---* I I-,.- delayline

Figure 6. Dragging Between Vie&. I. A Soundlbint is selected, II. It is dragged across to the meation view, III. It is dropped into &
LookupFmctiods duration pane where it “spills its guts”‘, yielding up its duration.

Seplerrber2530.1988 OOPSLA ‘88 Proceedings 227

Figure 7. Echo Creation View. Fkamm can be supplied !bm
slider pots, selection from a lis& typing, oc dragJ?jng another
soundPoint into the pane.

SoundPoint. For example, consider a SoundPoint
representing a Mixer with two TwoFormantVoiceElements
as its subSounds. Double-clicking that SoundPoint would
cause a creation window to appear with the Mixer’s
parameters already filed in. Double-clicking on either of
the subdound’s SoundPoints would open a
TwoFormantVoiceElement creation view with the
appqniate parameters filled in as shown in Figure 8.

SoundPoints are opened in order to examine a Sound as sl-s4 (Figure 9).

Figure 8. Opening up a Mixer reveals its subsounds. Any
paramettzofthesubSolmdscanbealtcrcdmdthcncwmlbSound
Can replacetllCOld.

structure,tochangesomeaspectofaSound,ortoclonea
new Sound from an existing one.

1.4.4 Code Views
Analtemativec~onview,obtainedbypressingtbecreate
button with the shift key down, is a CodeView containing a
template instance creation method for the selected Sound
class. Pammete-rscanbefiledinbyhand,andSouncB~ts
intheboxesbelowcanbereferredtointheSmalltaDrcode

Figure9. ACodeSoundC.31 km View. The template parameters are replaced with actual pammeters after which the
code can be selected and evalu$ed. SouxuPoints placed in the boxes below can be referred to in the code as sl-~4.

OOPStA ‘88 Proceedings SepttlrnberM, 1988

2. The Implementation of Kyma
The current implementation of Kyma was written using
ParcPlace Systems Smalltalk- running on a Macintosh II.

2.1 The Representation of Sounds in Kyma

A Sound in Kyma is rqrescntcd as a directed acyclic graph
(DAG); a subsound node can be shared among several
superSounds. A Sound DAG is similar to an expression tree
in that the evaluation of the higher nodes depends on results
of evaluating the lower nodes.

Figure IO is an example showing an NaryTransform - a
Mixer with three subSounds: a FrequencyTransform and
two Delays. Each of the Delays has a FrequencyTransform
as its subSout@, and so on. There is only one SoundAtom in
this example, a LookupFunction. This LookupFunction is
shared by three different superSounds.

From this example it’s easy to set how traditional note-
oriented music can be described in Kyma. The single Sound
at the terminal node corresponds to the “instrument
deftition” of a synthesizer. FrequencyTransforms and
DurationTransforms are used to obtain the different pitch
and duration of each note and the delay times supplied to the
Delayed nodes phe the notes relative to one another either
sequeutially or as chords. At the CEXL Music Project, tl-&
method is used to translate pieces composed on the IMS
synthesizer into Sounds so that they could be played by
KymaonthePlatypus.(TheIntemctiveMusicSystem,IMS,
is a digital-synthesizer-based system developed at CERL
prior to the development of the Platypus lHaken841,
[ScalettW].)

2.2 Samples Generation
12.1 Generating Samples in Smalltalk-
Recall that a Sound can be described as a stream of samples;
thus one could implement samples generation in Smalltalk

Figure 10. A Simple N-my Transform Structure in Kyma

by defining each synthesis algorithm as a Stream which
responds to the message, nextSample. In genera4 a

superSound would ask each of its subSounds for the
subSound’s next sample before returning its own next
sample. In the case of a Mixer, for example, thenextSample
method would be something like:

A ~LsSouadr injea: 0 into: [:sample :sub I sample + sub nextSmple].

Thiswas,infact,thewaysamplesgeneration wasdoneinthe
first version of Kyma. However, Kyma was not capable of
generating samples at a continuous rate of 20,000 samples
per second. In fact, for even moderately interesting Sounds,
it could take a minute or longer to compute each second of
sound (i.e. 3 milliseconds or longer per sample).

2.23 Generating Samples on the Platypus
For this project, the speed problem was solved by moving
that one crucial method, the nextsample method, onto a
specialized piece of hardware - a microprogrammable
digital signal processor called the Platypus lHaken87]. The
Platypus is a sig~2 processor, not a MIDI synthesizer, a
signal processor has the distinct advantage of being
programmable. thus allowing for the addition of new
synthesis algorithms and the improvement of existing
algorithms.

Designed by Lippold Haken and Kurt Hebel of the CRRL
Music Project, the Platypus can execute 20 million
instructions per second (20 MIPS). To put that in some
perspective, consider that the 68020 processor in the
Macintosh II has a 3 MIPS peak and averages around 1.5
MIPS. For this reason the responsibilities have been
factored between the two machines, giving each the job it
can do the best The abstract structure of the Sounds is
handled by Smalltalk on the Macintosh, and the low-level
samples generation is handled by the Platypus,

2.23 Assembly Language and Platypus Microcode
How does the speed of the nextSample methods written in
Platypus microcode compare with the speed of those same
methods implemented as 68020 assembly language
primitives? For comparison, we used the Mixer algorithm
givenin2.2.1. Assumingaclockspeedof 16megahert2,the
assembly language implementation requires, in the best
-,

l.l=+ ~.9375*IlUmber OfNtY.%Un&) mi aoseccmds per simple

and in the worst case,

2.25 + (5.8125 * numbM of Nbsamdr) miB pa -Ph.

!$eptember 25-30.1988 OOPSIA ‘88 Proceedings 229

The implementation in Platypus microcode requires

-55 + (.5 l tlUOhr at NbhltldS) Ads per sample,

nearly an order of magnitude faster than the 68020 assembly
language implementation.

Consider a concrete example: At a sample rate of 20000
samples per second, a maximum of 50 microseconds can be
used to compute each sample. Gn the 68020, a Mixer with
10 subSounds implemented in assembly language would
require, on average, about 50 microseconds per sample -
just within the time constraint however this leaves no time
to compute the subSounds’ samples, so a Mixer of 10
subSounds could not be computed in real time. Gn the
Platypus, the Mixer would require less than 6 microseconds
per sample, leaving more than 44 microseconds left over for
the computation of 10 subsound samples. Since a
LookupFunction requires fewer than 1.5 mi~seconds
computation time per sample, a sample for a Mixer of 10
LookupFuncti~scouldbecomputedinrealtimewithabout
30 microseconds to spare. In fact, Mixers of up to 32
LookupFunctions have been played using the Kyma/
Platypus system with its rather conservatively written
microcode, optimization of the microcode would allow us to
squeeze out even more simultaneous Sounds.

lbisspeeddifferenceconvincedus tbatthePlatypuswasthe
best means for providing interactive playback for
compositions of nontrivial complexity. Nevertheless, with
the addition of a hard disk for storing samples, a version of
Kyma with assembly language primitives could be used to
generate samples for delayed playback (with some simple
Sounds computable in real time), and this alternate solution
may be implemented at some time in the future.

2.3 Sound objects on the Platypus
The Platypus solves the speed problem whib introducing yet
a different problem - how to get from the abstmct DAG
representation of a Sound in Kyma to a microcode
representation of that same sound on the Platypus. ‘Ibe
solution to this problem is to use an object-oriented
microcode program on the Platypus.

2.3.1 The Platypus Hardware
The Platypus consists of:

*Three l&by-16 multiplier-aaxmulatars
l 1 megaword (16&t words) of slow memory (250 Us a-SS titlleS)
m 1024 32-bit registers (50 ns access times)
l 2048 80-bit words for the micxocode p’ogmm

Each Platypus instruction takes 50 nanoseconds, thus at a
sample rate of 20 kH2. up to 1000 instructions can he used

ISb 16Y

SSEZEL

Figure 11. The PIatypus Signal Pmcessor [Hakezi873.

to compute each sample. Input and output of sound is
accomplished using stereo 16bit analog-to-digital and
digital-to-analog convm.

2.32 The Structure of Sounds and MicroSounds
Just as a Sound object in Smalltalk- is a structure
containing instance variables and a pointer to its class and
methods,thatSound’srepresentationonthePlatypus(called
a microSound) is a collection of values in regisfers with a
pointer to its microcode class and method. Since there is, in
fact, only one method, the nextsample method, associated
with each class, a microSound is simply a coIlection of
registers with a pointer to its nextSample me&d in the
microcode. In a sense, then, the Platypus microcode is an
object-oriented program in which there is only one message
ever sent (an implicit nextSample message) and only one
value ever retumed (the next sample in that microSound’s
slream).

‘Ibis object-oriented program could be implemented by
storing the Sound DAG in the registers of thePMypus and
storingthethemicrocodemethodsandthecontro
microcxxie memory. However, on any particular sample,
many of the nodes of a Sound DAG are inactive; that is, each
subsound has a finite duration, and not alI of them are
playing at once. Ideally then, the Platypus registers should
contain not a sturic DAG, but a DAG that is growing and
shrinking with time depending on how many of its Sounds
are active on the current sample. This optimization speeds
things up by decreasing the length of the microcode loop,
and it it allows more complex microSounds to be stored in
the Platypus’ limited register memory.

In order to create a dynamic version of the DAG, it’s
necessary to how when Sounds mm on, when they turn off,
and when there is a change in the number of a Sound’s active

233 OOPSLA ‘88 Proceedings September 25-30,1988

subsounds. This information is contained in an event list, a
time-tagged list of changes to be made to the dynamic
microsound DAG. Such a list is easy enough to obtain when
each Sound knows its duration, its relative startTime, and all
of its superSounds.

2.33 A Sound’s Representation on the Platypus
Figure 12 illustrates the function of each part of the Platypus
when it is running the Kyma microcode. The active
microSounds are arranged in a circular linked list in the
registers; changes to the microSound list are specified by the
event list which is stored in memory. Each event consists of
inserting a new microSound into the list or deleting a
microsound whose “time is up”.

A control loop in the microcode traverses the list of
microSounds once per sample. For each microSound it does
the following:

-Plus the addlur of the mi-d’s first register into the base address
rcgilter.

-Follows this microsound’s pointer to its n&Sample method in the
micmcodc.

l ontputa the natSllnpk for ti cl~s of Sound using this
miuoSound’s valua for any variables in the nextSample microcode and
obrhing any s&Sound valuu fran the wmple sta&.

l Pulha thil plicmSouna’1 next sunpk am the sample stack.
l aungerthe baseaddress tothecontext ofthtnextmicroSoundintheliat.

L mJcroSound List I
F nextSound microcode ptr 1

subCount
initial values

. . .

nextsound microcode ptr
SubCount

initial values
. . .

Last-Sound
nextSound microcode ptr ’

Memory

Waveform Tables
mine
CO8iRC
rlmp
square
. . .

On the completion of each traversal of the microSound list,
the microcode does the following:

l Outputa the sample at the top of the sta&
l Rccc.ivcs IIIY data being written fmm Smalltalk
l Jtixccuter my cvuus scldukd for this sample.

2.3.4 The Translation from Sound to MicroSound
When a Kyma Sound receives the play message, it extracts
a chronological event list from the DAG in the form of time-
ragged Platypus register operations. This event list is then
downloaded to thePlatypusmemory. Once the event list has
been downloaded, the Platypus is given a start signal; the
Platypus then loops through the microcode, generating a
sample each time through the loop and stopping itself when
the event list has been exhausted.

2.35 Assembling the Platypus Microcode Program
Each Sound class which is not defined purely in terms of
existing Sound classes implements an assembleusing:
method. This method contains the register definitions and
the microcode assembly language implementation of the
Sound’s nextSample algorithm. Each time the machine is
turnedonorachangehasbeenmadetothemicrocode,anew
microcode program is assembled by piecing together the
fixed potions of the microcode (e.g. in.iWons, the
control loop, some register definitions, etc.) with the

Microcode

Initirlir8tionr

topofLoop:
Smallt8lk input/output
Audio input/output

Check I plryiag :ound
if NO. output ailence 8nd

80 lo toporLoop.

Executo current event8
b8reAddr (- L8&OUod 8ddrer8

controlLoop:

b8WAddr c- nextSound l b8reAddr
Gfia to microcode ptr l b8sOAddr

* JterLoop:
OUtPUt SOmPk 8t top of rteck
Go to toporLoop

Class Methods

+- 8SOUndCless definition:

Define loc81 regirtere
Compute next rrmple
Go to controlloop

.

Fii 12 A Block Diagram of the Platypus Running the Kyma Micxoah.

!Septembef 2530,1986 OOPSLA ‘88 Proceedings

Greenberg outlines his Object LOGO music environment.
potions of microcode supplied by each Sound class in its
assembleusing: method. This assembled microcode is then
downloaded to the Platypus where it runs until the machine
is turned off (unless, of course, the user decides to change the
microcode program and reassemble it).

3.3 Future Plans

2.4 Microcode vs MicroSounds
In contrast to the microcode, which is downloaded only
once, a new microSound is downloaded each time a Kyma
Sound receives the play message. The time between telling
a Sound to play and actually hearing that Sound is spent in
Smalltalk generating the event list; once the event list has
been downloaded to the Platypus, the samples generation
takes place in real time. (For this reason, repkrying a Sound
is virtually instantaneous; the Platypus is simply sent the
start signal and it replays whatever event list it has currently
in memory).

Kyma was intended for use by composers of experimental
music, but it is general enough to have other applications as
well; it could, for instance, be used as part of a audio signal-
processing workstation or in the design of psycho-acoustic
kStS.

The size of the microcode is relatively fixed, changing only
when a Sound class is added or modified, the size of the
microSound DAG in the registers is related to the
complexity of the Sound as it was defmed in Kyma. In this
context, complexity is related to the number of on/off events
and not to the duration of the Sound in real time, i.e. a sine
wave lasting for 2 hours is less complex than a 2 second
flurry of several sine waves turning on and off at different
times.

The next large step in the development of Kyma depends on
another Smalltalk-80 application which is currently under
development Ihe Javelina envimnment l3kbel87] can
generate microcode for any of several signal processors
fkom a mathematical function specification. At some point,
each of Kyma’s nextSample algorithms will be replaced by
an equivalent mathematical function. Javelina will be used
to generate the microcode for whatever signal processor is
being used. In fact, given a model of the 68020, Javelina
could also be used to generate assembly language &mitives
in those cases where no signal processor is available.

ItishclpedthatKymawillneveaactuallybe’%~pleted”bur
will serve as a continuously evoking set of tools for the
author’s experiments in music and structure.

4. Acknowledgments

In some sense, the microcode n&Sample methods on the
Playpus can be thought of as the instructions of a language,
and the particular sequence of these instructions (inherent in
the structure of each Sound object) as a program. thus in
Kyma. a music composition is a program.

3. Conclusions

3.1 Smalltalk as a Music Language

232

l%is wcxk received generous support in tire form of a
fellowship from Apple Computer and the InterUniversity
Consoxtium on Educational Computing. The Computer-
based Education Research Laboratcq at the University of
Illinois should be &nowledged for its continuous support
ofcomputermusic researchattheCERLMuskProjectsince
1974. Innumerable discussions with Kurt Hebel wete both
entertaining and higNy infhrential in the development of
Kyma

OOPSLA ‘88 Procmdings

OneofthegoalsofKymaistoprovideaunifoamandfl~ble
structure which does not impose stylistic assumptions upon
the composer. The uniformity of objects in Smalltalk has
made it an ideal environment for the development of such a
flexible structure.

3.2 Other Object-oriented Music Languages
Smalltalk seems to have a disproportionately large number
of adherents in the computer music community. For details
on other music-related work in Smalltalk, the reader is
referred to the articles by Krasner, Pope, and Lentcner
listed in the references. The paper by Cointe et al describes
FORMES, a music language in use at IRCAM which was
developed in VLisp, the paper by Polansky et al is a
discussion of the HMSL Language written in an object-
oriented FORTH environment, and the paper by Gary

5. References
Buxton, W., W. Reeves, R. Baecker, L. Mezei. 1985. ‘The Use of

Hierarchy and Instance in a Data Structure for Com~ter
Music.” In C. Roads and I. Strawn, ed. Fowdutiom of
Computer Music. MlT Press: 443466.

Coin&P.. J.I? Briot, B. Seqette. 1987. ‘The FORMES Language:
a Musical Application of Object Oriented Conment
Programming.” In A. Yonezawa and M. Tokoro. ed.
Object-Oriented Concurrent Programming, h!lT %SS:
221-258.

G&herg, A. and D. Robson. 1983. Smulltalk-80: the Language
and Its InlpL?tnentation. Reading, Massachusetts:
Addison-Wesley.

Gmman, G. 1987. %struments. Cybemetics. and Computer
Music.” J.n J. Beauchamp, ed. Proceedings of the 1987
Intel Cquter Music Conference. Computer
Music Association: 212-219.

Greenberg, G. 1987. “procedural Composition.% J. Beauchamp,
ed. Proceedings of the 1987 Internotional Cottqtter
Music Conference, Computer Music Association: 25-
32.

Haken, L. and K. HebeL 1987 ‘The platypus Programmers’
Referaxe Manual” Technical Report. Urbana:
University of Illinois Computer-based Education
ResearchLabolaroIy.

Haken, L. 1984. “A Digital Music Synthesizer.” M.S. thesis.
Urbanaz University of lllinoii. Department of Eleotrical
lkgin&g.

Hebel, K. 1987. “Javelinaz An Environment for the Development
of Software for Digital Signal Processing.” In J.
Beau&, ed. Proceedings ofthe I987 htemati~
Computer Music Conference, Computer Music
Association: 104-107.

Hebel, K. mul R.E. Johnson. 1988 “Arithmetic and Double-
Dispatching in Smalltalk-SO”, in prepararion.

Kxasner, G. 1980. “Machine Tongues MI: The Design of a
Smalltalk Music System.” C-u&r MI& Journal (4)
4: 4-14.

Lentczner, M. 1985. “Sound Kit: a Sound Manipulator.” In B.
Truax, ed Prmeedings of tk 1985 Intee
Compvter MKF~C Conference, Computer Music
Associatiox 237-242.

by, G., C. Abbott. 1985. “‘Programming Languages for Computa
Music Synthesis, Performance. and Composition.”
ccmputing sutveys (17) 2: 235-265.

Polanksy, L., D. Rosenboom, P. Burk. 1987. “Overview (Version
3.1) and Notes on Intelligent Instrument Design.” In J.
Beauchamp, ed. Proceedings Q the 1987 International
Computer Music Conference, Computer Music
Association: 220-227.

Polanksy, L, D. Rosenboom. 1985. “HMSL (Hierarchical Music
Specification Language) A Real-Time Environment for
Formal. Perceptual and Compositional
Expeaimea~tation.” In B. Trua~, ed. Proceedings of the
1985 International Compvter Music Conference,
Computer Music Association: 243-250.

Pope!, S. 1986. ‘The Development of an Intelligent Composer’s
Assistant Interactive Grqhics Tools and Knowledge
Representation for Music.” In P. Berg, cd. proceedings
of the 1986 International Cqufer MK& Conference,
Compute? Music Association: 131-144.

Pope, S. 1987. “A Smalltalk-SO-based Music Toolkikit” In J.
Beauchamp, ed. Proceedings qfthe 1987 In&z-
Computer Music Conference, Computer Music
Association: 166-173.

Pope, S. 1988. ‘The Hype&ore ToolKit and Software Tools for
Computer Music.” HoopW (1) 2: 27-29.

Pope, S. 1988. “‘Building Smalltalk-80~based Camplta Music
Tools.” Journal ofobject Oriented Programming (1) 1:
6-11.

Rodet, X. and P. Cointe. 1984. “*FORME& Composition and
Scheduling of Processes.” Computu Music Jouma48)
3: 3248.

!bletti, C. 1987 “Kymzc an Object-oriented Language for Music
Composition”In J. Beauchamp, ed. Proceedings of the
1987 Intel Computer Music Conference,
thnputer Music Associatim 49-56.

Scaletti, C. 1984 ‘The CERL Music Project at the University of
Illinois.” Computer Music Journal(g) 1: 45-58.

September 25-30,1988 OOPSIA ‘88 Proceedings 233

