An Interactive Environment for Object-oriented Music
Composition and Sound Synthesis

C.A. Scaletti *
CERL Music Project
University of Illinois at Urbana-Champaign

R. E. Johnson
Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract

Kyma is an object-oriented environment for music
composition written in Smalltalk-80, which, in conjunction
with a microprogrammable digital signal processor called
the Platypus, provides the composer with a means for
creating and manipulating Sound objects graphically with
real-time sonic feedback via software synthesis. Kyma
draws no distinctions between the materials and the
structure of a composition; both are Sound objects. When a
Sound object receives a message to play, it transforms itself
into a microSound object, i.e. an object representation of
itself in the microcode of the Platypus. Thus an object
paradigm is used not only in the representation of Sound
objects in Smalltalk-80 but also in the microcode
representation of those Sound objects on the Platypus.
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1. Sound Objects

1.1 The Problem of Sound Synthesis

Sound can be described digitally as a stream of instantaneous
amplitude values called samples. A digital-to-analog
converter translates this stream of numbers into a
continuously varying voltage which, if used to drive a
loudspeaker, is translated into a continuous variation in air
pressure — sound. Recording or synthesizing frequencies
of up to 10 kHz necessitates a sampling rate of 20 kHz. At
this sample rate, 1 million 16-bit samples are required to
represent less than a minute of sound; for stereo sound the
requisite number of samples doubles. The considerable
quantity of data required for digital sound synthesis
presents problems with regard to both speed and
manageability.

1.1.1 Speed

Much of the early work in digital sound synthesis was based
on Max Mathews’ “acoustic compilers”, Musicl - Music5
[Loy85). These “Music N” languages generate sound by
means of software synthesis, that is, the stream of samples
representing the waveform of the desired sound is specified
exclusively in software. While software synthesis is an
extremely flexible technique, most of the Music N
languages were designed to run on general purpose
computers in a noninteractive way; turnarcund times
measured in hours or even days can be frustrating for
composers trying to experiment with new sounds.

One way around this problem is to implement the sound
synthesis algorithms in hardware, a technique employed in
the ubiquitous MIDI synthesizers. These synthesizers
provide composers and performers with digitally
synthesized sound in real time. A price is paid, however, in
terms of flexibility; a hardwired algorithm is extremely
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difficult to modify, limiting the capabilities of each
synthesizer to its fixed set of algorithms.

More recently, Digital Signal Processors (DSPs) have been
used to solve the speed problem in digital sound synthesis.
Since DSPs are programmable and are designed specifically
for samples generation, they can do software synthesis in
real time, allowing composers to explore new sounds
interactively.

1.1.2 Manageability

The Music N languages provide composers with a familiar
model to assist them in specifying the sample stream — the
model of a “score” performed on an “instrument”. A Music
N “instrument” is designed by connecting unit-generators,
software modules which simulate familiar analog circuits
such as oscillators or filters. In a totally separate activity, a
Music N “score” is specified as a sequence of instructions for
turning instruments on or off at prescribed times. (Most of
the languages for controlling MIDI synthesizers also
employ this model of instrument and score with obvious
popular success.)

There is, however, a disadvantage to using this model; while
these languages make it easy to do a “middle-level”
organization at the granularity of notes, it can be awkward,
in some cases impossible, to to use these same languages to
organize higher level structures (e.g. phrases or sections) or
lower level structures (since the “timbre” of a sound is dealt
with separately as “instrument design”). What these
instrument/score languages seem to lack is an abstract
structure which can be applied uniformly at all levels of
organization.

It is not possible to individually compose each of the
miillions of samples comprising a piece of music, nor do
individual samples mean much in isolation. Some means is
needed by which to organize these samples, group them
together into meaningful chunks, enclose all the details in a
package, give it a name, and refer to it thereafter as a single
entity. In Kyma such an entity is referred to as a Sound
object. Everything in Kyma, from a single timbre to the
structure of an entire composition, isa Sound object. These
Sound objects can be manipulated, transformed and
combined into new Sound objects. Furthermore, Sound
objects can be continuously redefined as work on a
composition progresses; objects which were once
encapsulated in other objects can be brought to the top level,
top level objects can be combined and hidden within a yet
higher level object.

Other music languages that acknowledge this need for a

uniform structural entity include FORMES with its
“process” [Rodet84] [Cointe87], HMSL with its “morph”
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[Polansky85,87], the SSSP project with its “musical event”
[Buxton85], and Herbert Brun’s language, Sawdust, with its
“link” [Grossman87].

1.2 Sound objects vs. Standard Music Notation

Why adopt this strange idea of a Sound object when music
alrcady comes equipped with traditional structures
specified in terms of staves, measures and notes? In order to
answer this question, it is first necessary to differentiate
between the use of the word music inreference to an acoustic
event and music in reference to written notation. Music
notation is a highly contextual list of shorthand instructions
1o a performer; it does not fully specify the acoustic event.
Evidence of this can be scen in the fact that trained musicians
will perform a score with the name “Bach” at the top quite
differently from their performance of a score bearing the
name “Chopin”.

Composition environments based on music notation, while
they do provide a structure for the composer, do not provide
aflexible and redefinable structure. Furthermore, they tend
to limit the specification of sound structures to those which
could be performed on traditional instruments by human
performers. This sort of self-imposed limitation is
analogous to the long takes in front of a static camera typical
of early films — they were using the camera to passively
record the performance of a play, not yet realizing the full
potential of film as a new medium distinct from the medium
of live theater.

Sound objects form a superset of the set of notes, i.e. there are
Sound objects which can be described in Kyma which could
not be expressed using standard music notation. These are
not just bizarre sound effects or outlandish examples (e.g. it
would be difficult to record ordinary speech using musical
notation) but include examples which fall squarely in the
domain of traditional music. For example, musicians can
find it difficult to notate even their own improvizations.

1.3 Kyma Definition

1.3.1 Definition of Sound
A Sound in Kyma is either a Sound Atom or a Transform of
one or several subSounds.

A Sound is defined as:

i) SoundAtom
ii) UnaryTransform, T(s) where 3 is a Sound
iii) N-ary Transform, T(s,, s,, ., §) where $;: 35, .-, 8, are Sounds

A transform is the result of applying a function to its
subSounds. In this sense, a transform is something like a
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prism: when viewing physical objects thfough a prism, the
structure of the prism is made apparent by the manner in
which it distorts the appearance of the viewed objects;
however the prism doesn’t actually alter the viewed objects,
and the prism is an object distinct from the viewed objects.

1.3.2 Currently Implemented Sound Classes

Figure 1 shows the hierarchy of all Sound classes currently
implemented in Kyma. (It should be emphasized, however,
that Kyma is an open system, and that the composer can add
to and modify this class hierarchy.)

1.3.3 N-ary Transforms
Each N-ary Transform has an instance variable, subSounds,
which contains an OrderedCollection of Sounds.

Mixer and Concatenation are the primary temporal
operators of Kyma. The subSounds of a Mixer are played in
parallel; those of a Concatenation are played serially. A
Mixer is defined to be the sum of its subSounds, a Multiplier
their product, and a Concatenation as a sequence of its
subSounds.

1.3.4 Unary Transforms

Each UnaryTransform has an instance variable, subSound,
containing a single Sound to be transformed. For example,
a Delayed is defined as a Sound which waits a specified
amount of time before playing.

1.3.5 Sound Atoms

A SoundAtom has no subSounds, and, as could be inferred
from its name, cannot be broken down into constituent parts.
For instance, a LiveSound is defined as the input from the
analog-to-digital converter; if a microphone is connected to
the input, the LiveSound's samples will come from that
microphone.

In a LookupFunction, a periodic signal is obtained by
retrieving samples from a lookup table. A single cycle of
the desired waveform is precomputed and stored in the table;
by incrementing an index into this table modulo the length
of the table, this cycle can be repeated any number of times.
Different frequencies, i.e. numbers of cycles per second, are
achieved by using different sized increments for stepping
through the table.

1.3.6 Potential Sounds

A Potential Sound is one which does not respond directly to
the play message; instead when such a Sound receives a
message to play, it creates a new Sound and then sends it the
play message. Forexample, when a Palindrome getsa play
message, it first creates a Concatenation of its subSound and
the Reverse of its subSound, and it then tells the
Concatenation to play.
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ConstantScund
PeriodicSound
LookupFunction
OneShot
LiveSound
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SoundTransform
NaryTransform
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Mixer
Multinli
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Recording
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‘WaveShaper

Figure 1. The hierarchy of Sound classes as currently implemented
in Kyma. Where one class is the subclass of another which occurs
before it in the list, this is indicated by indentation.
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Figure 3. By pressing the Help button below the list of classes, the composer can see a brief description of the selected class.
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Figure 4. The Creation View for a LookupFunction. Parameters
canbetypedinor supplied by dragging another SoundPointinto the
parameter field.

A FrequencyTransform is an interesting potential Sound
which can have a time-varying effect on its subSound. Each
FrequencyTransform contains, as an instance variable, a
function of time, frequency, and the duration of its
subSound. (See [Hebel88] for a detailed description of
Functions as ArithmeticObjects in Smalltalk-80.) Should
the FrequencyTransform have an N-aryTransform as its
subSound, this function will be reevaluated at each of the
constituent Sounds’ startTimes; it is a time-varying
transformation down to the granularity of individual Sounds,
not individual samples.

1.4 Using Kyma

Kyma’s user interface can be characterized as a direct
manipulation system. The composer can create new sound
instances, group them into collections, extract parameter
information from them, and examine/change their structure
by clicking or dragging with the mouse.

1.4.1 The Main Kyma View

By selecting KYMA from the list of options in Smalltalk’s
background menu, the composer obtains a main Kyma view
like that shown in Figure 2. The icons (called SoundPoints)
represent Sound objects; SoundPoints can be selected,
dragged, or grouped together into SoundCollectionPoints.
(The appearance of these operations was modelled after that
of the Macintosh Finder).

The strip along the left edge of the main Kyma view is a list
of Sound classes. Pressing the help button opens a short
description of the currently selected Sound class (Figure 3).
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Figure 5. Pressing on a parameter name in acreation view provides
a brief description of that parameter on the display.

Pressing the create button opens a creation view such as that
shown in Figure 4, the creation view for a LookupFunction.

1.4.2 Creation Views

The composer can press any parameter name in the creation
view for assistance on supplying an appropriate parameter
value. Figure 5, for example, illustrates the result of pressing
“Frequency” in the LookupFunction’s creation view.

Each parameter can be supplied either by typing it in from
the keyboard or by dragging another SoundPoint into the
appropriately named pane (as in the sequence shown in
Figure 6).

The creation view for Echo (Figure 7) illustrates several
different ways for a composer to enter the Sound’s
parameters: the subSound is supplied by dragging a
SoundPoint into the small SoundPlane, the name is supplied
by typing or dragging another SoundPoint into the name
pane, the delay time is specified by typing or dragging into
the delay pane and then selecting the appropriate units from
the list to the right of that pane, and the feedback factor is
supplied by an adjustable slider. A particular delay line is
selected from the list of all delay lines on the right.

1.43 Opening SoundPoints

Any of the SoundPoints or SoundCollectionPoints can be
examined or altered by double-clicking their icons; this
“opens up” the SoundPoint or SoundCollection to reveal its
structure. The process of opening up a SoundPoint is
essentially the reversal of the process used to create that
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LookupFunction's duration pane where it “spills its guts”, yielding up its duration.
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Figure 7. Echo Creation View. Psrameters can be supplied from
slider pots, selection from a list, typing, or dragging another
SoundPoint into the pane.

SoundPoint. For example, consider a SoundPoint
representing a Mixer with two TwoFormantVoiceElements
as its subSounds. Double-clicking that SoundPoint would
cause a creation window to appear with the Mixer’s
parameters already filled in. Double-clicking on either of
the subSound's SoundPoints would open a
TwoFormantVoiceElement creation view with the
appropriate parameters filled in as shown in Figure 8.

SoundPoints are opened in order to examine a Sound

Figure 8. Opening up a Mixer reveals its subSounds. Any
parameter of the subSounds can be altered and the new subSound
can replace the old.

structure, to change some aspect of a Sound, or to clone a
new Sound from an existing one.

1.4.4 Code Views

An alternative creation view, obtained by pressing the create
button with the shift key down, is a CodeView containing a
template instance creation method for the selected Sound
class. Parameters can be filled in by hand, and SoundPoints
in the boxes below can be referred to in the Smalltalk code
as s1-s4 (Figure 9).
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Figure 9. A CodeSound Creation View. The template parameters are replaced with actual parameters after which the
code can be selected and evaluated. SoundPoints placed in the boxes below can be referred to in the code as s1-s4.
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2. The Implementation of Kyma

The current implementation of Kyma was written using
ParcPlace Systems Smalltalk-80 running on a Macintosh II.

2.1 The Representation of Sounds in Kyma

A Sound in Kyma is represented as a directed acyclic graph
(DAG); a subSound node can be shared among several
superSounds. A Sound DAG is similar to an expression tree
in that the evaluation of the higher nodes depends on results
of evaluating the lower nodes.

Figure 10 is an example showing an N-aryTransform — a
Mixer with three subSounds: a FrequencyTransform and
two Delays. Each of the Delays has a FrequencyTransform
asits subSound, and so on. There is only one SoundAtom in
this example, a LookupFunction. This LookupFunction is
shared by three different superSounds.

From this example it’s easy to see how traditional note-
oriented music can be described in Kyma. The single Sound
at the terminal node corresponds to the “instrument
definition” of a synthesizer. FrequencyTransforms and
DurationTransforms are used to obtain the different pitch
and duration of each note and the delay times supplied to the
Delayed nodes place the notes relative to one another either
sequentially or as chords. At the CERL Music Project, tiis
method is used to translate pieces composed on the IMS
synthesizer into Sounds so that they could be played by
Kyma on the Platypus. (The Interactive Music System, IMS,
is a digital-synthesizer-based system developed at CERL
prior to the development of the Platypus [Haken84],
[Scaleiti84].)

2.2 Samples Generation

2.2.1 Generating Samples in Smalltalk-80
Recall that a Sound can be described as a stream of samples;
thus one could implement samples generation in Smalltalk

Figure 10. A Simple N-ary Transform Structure in Kyma.
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by defining each synthesis algorithm as a Stream which
responds to the message, nextSample. In general, a
superSound would ask each of its subSounds for the
subSound’s next sample before returning its own next
sample. Inthe case of a Mixer, for example, themextSample
method would be something like:

A subSounds inject: 0 into: [ :sample :sub | sample + sub nextSample].

This was, in fact, the way samples generation was done in the
first version of Kyma. However, Kyma was not capable of
generating samples at a continuous rate of 20,000 samples
per second. In fact, for even moderately interesting Sounds,
it could take a minute or longer to compute each second of
sound (i.e. 3 milliseconds or longer per sample).

2.2.2 Generating Samples on the Platypus

For this project, the speed problem was solved by moving
that one crucial method, the nextSample method, onto a
specialized piece of hardware — a microprogrammable
digital signal processor called the Platypus [Haken87]. The
Platypus is a signal processor, not a MIDI synthesizer; a
signal processor has the distinct advantage of being
programmable, thus allowing for the addition of new
synthesis algorithms and the improvement of existing
algorithms.

Designed by Lippold Haken and Kurt Hebel of the CERL
Music Project, the Platypus can execute 20 million
instructions per second (20 MIPS). To put that in some
perspective, consider that the 68020 processor in the
Macintosh II has a 3 MIPS peak and averages around 1.5
MIPS. For this reason the responsibilities have been
factored between the two machines, giving each the job it
can do the best. The abstract structure of the Sounds is
handled by Smalltalk on the Macintosh, and the low-level
samples generation is handled by the Platypus.

2.2.3 Assembly Language and Platypus Microcode
How does the speed of the nextSample methods written in
Platypus microcode compare with the speed of those same
methods implemented as 68020 assembly language
primitives? For comparison, we used the Mixer algorithm
givenin2.2.1. Assuming aclock speed of 16 megahertz, the
assembly language implementation requires, in the best
camv

1.125 + (3.9375 * number of subSounds) microseconds per sample

and in the worst case,

2.25 + (5.8125 * number of subSounds) microseconds per sample.
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The implementation in Platypus microcode requires
.55 + (.5 * number of subSounds) microcoseconds per sample,

nearly an order of magnitude faster than the 68020 assembly
language implementation.

Consider a concrete example: At a sample rate of 20000
samples per second, a maximum of 50 microseconds can be
used to compute each sample. On the 68020, a Mixer with
10 subSounds implemented in assembly language would
require, on average, about 50 microseconds per sample —
just within the time constraint; however this leaves no time
to compute the subSounds’ samples, so a Mixer of 10
subSounds could not be computed in real time. On the
Platypus, the Mixer would require less than 6 microseconds
per sample, leaving more than 44 microseconds left over for
the computation of 10 subSound samples. Since a
LookupFunction requires fewer than 1.5 microseconds
computation time per sample, a sample for a Mixer of 10
LookupFunctions could be computed in real time with about
30 microseconds to spare. In fact, Mixers of up to 32
LookupFunctions have been played using the Kyma/
Platypus system with its rather conservatively written

" microcode; optimization of the microcode would allow us to
squeeze out even more simultaneous Sounds.

This speed difference convinced us that the Platypus was the
best means for providing interactive playback for
compositions of nontrivial complexity. Nevertheless, with
the addition of a hard disk for storing samples, a version of
Kyma with assembly language primitives could be used to
generate samples for delayed playback (with some simple
Sounds computable in real time), and this alternate solution
may be implemented at some time in the future.

2.3 Sound objects on the Platypus

The Platypus solves the speed problem while introducing yet
a different problem — how to get from the abstract DAG
representation of a Sound in Kyma to a microcode
representation of that same sound on the Platypus. The
solution to this problem is to use an object-oriented
microcode program on the Platypus.

2.3.1 The Platypus Hardware
The Platypus consists of:

*Three 16-by-16 multiplier-accumulators

+»1 megaword (16-bit words) of siow memory (250 ns access times)
1024 32-bit registers (50 ns access times)

« 2048 80-bit words for the microcode program

Each Platypus instruction takes 50 nanoseconds; thus at a
sample rate of 20 kHz, up to 1000 instructions can be used
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Figure 11. The Platypus Signal Processor [Haken87].

to compute each sample. Input and output of sound is
accomplished using stereo 16-bit analog-to-digital and
digital-to-analog converters.

2.32 The Structure of Sounds and MicroSounds

Just as a Sound object in Smalltalk-80 is a structure
containing instance variables and a pointer 10 its class and
methods, that Sound’s representation on the Platypus (called
a microSound) is a collection of values in registers with a
pointer to its microcode class and method. Since there is, in
fact, only one method, the nextSample method, associated
with each class, a microSound is simply a collection of
registers with a pointer to its nextSample method in the
microcode. In a sense, then, the Platypus microcode is an
object-oriented program in which there is only one message
ever sent (an implicit nextSample message) and only one
value ever returned (the next sample in that microSound’s
stream).

This object-oriented program could be implemented by
storing the Sound DAG in the registers of the Platypus and
storing the the microcode methodsand the control loopin the
microcode memory. However, on any particular sample,
many of the nodes of a Sound DAG are inactive; that is, each
subSound has a finite duration, and not all of them are
playing at once. Ideally then, the Platypus registers should
contain not a static DAG, but a DAG that is growing and
shrinking with time depending on how many of its Sounds
are active on the current sample. This optimization speeds
things up by decreasing the length of the microcode loop,
and it it allows more complex microSounds to be stored in
the Platypus' limited register memory.

In order to create a dynamic version of the DAG, it’s
necessary to know when Sounds turn on, when they turn off,
and when there is a change in the number of a Sound’s active
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subSounds. This information is contained in an event list, a
time-tagged list of changes to be made to the dynamic
microSound DAG. Such alist is easy enough to obtain when
each Sound knows its duration, its relative startTime, and all
of its superSounds.

2.3.3 A Sound’s Representation on the Platypus

Figure 12 illustrates the function of each part of the Platypus
when it is running the Kyma microcode. The active
microSounds are arranged in a circular linked list in the
registers; changes to the microSound list are specified by the
event list which is stored in memory. Each event consists of
inserting a new microSound into the list or deleting a
microSound whose “time is up”.

A control loop in the microcode traverses the list of
microSounds once per sample. Foreach microSound it does
the following:

«Puts the address of the microSound’s first register into the base address
register.

*Follows this microSound's pointer to its nextSample method in the
microcode.

*Computes the nextSample for this class of Sound wusing this
microSound’s values for any variables in the nextSample microcode and
obtaining any subSound values from the sample stack.

«Pushes this microSound’s next sample onto the sample stack.

«Changes the base address 10 the context of the next microSound in the list.

Registers

( Global Registers

Current Sample Stack

microSound List

f- nextSound microcode ptr
subCount
initial values

% nextSound microcode ptr
subCount

initial values

LastSound
nextSound microcode ptr

L y

Memory

[ Event List

Waveform Tables

sine
cosine
ramp

L :'QUII’. J

On the completion of each traversal of the microSound list,
the microcode does the following:

» Outputs the sample at the top of the stack.
« Receives any data being written from Smallialk
« Executes any cvents scheduled for this sample.

2.3.4 The Translation from Sound to MicroSound
When a Kyma Sound receives the play message, it extracts
achronological event list from the DAG in the form of time-
tagged Platypus register operations. This event list is then
downloaded to the Platypus memory. Once the event list has
been downloaded, the Platypus is given a start signal; the
Platypus then loops through the microcode, generating a
sample each time through the loop and stopping itself when
the event list has been exhausted.

2.3.5 Assembling the Platypus Microcode Program

Each Sound class which is not defined purely in terms of
existing Sound classes implements an assembleUsing:
method. This method contains the register definitions and
the microcode assembly language implementation of the
Sound’s nextSample algorithm. Each time the machine is
turned on or achange has becn made to the microcode, anew
microcode program is assembled by piecing together the
fixed portions of the microcode (e.g. initializations, the
control loop, some register definitions, etc.) with the

Microcode
( )

Initializations

topOfLoop:
Smalltalk input/output
Audio input/output

Check if playing sound

if NO, output silence and
80 to topOfLoop.

Execute current events
baseAddr < LastSound address

controlLoop:

baseAddr <- pextSound e baseAddr
Go to microcode ptr e baseAddr

afterLoop:

Output sample at top of stack
Go to topOfLoop

Class Methods

B> 3SoundClass delinition:

Define local registers
Compute next sample
Go to controiloop

- J

Figure 12. A Block Diagram of the Platypus Running the Kyma Microcode.
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portions of microcode supplied by each Sound class in its
assembleUsing: method. This assembled microcode is then
downloaded to the Platypus where it runs until the machine
istumed off (unless, of course, the user decides to change the
microcode program and reassemble it).

2.4 Microcode vs MicroSounds

In contrast to the microcode, which is downloaded only
once, a new microSound is downloaded each time a Kyma
Sound receives the play message. The time between telling
a Sound to play and actually hearing that Sound is spent in
Smalltalk generating the event list; once the event list has
been downloaded to the Platypus, the samples generation
takes place in real time. (For this reason, replaying a Sound
is virtnally instantaneous; the Platypus is simply sent the
start signal and it replays whatever event list it has currently
in memory).

The size of the microcode is relatively fixed, changing only
when a Sound class is added or modified; the size of the
microSound DAG in the registers is related to the
complexity of the Sound as it was defined in Kyma. In this
context, complexity is related to the number of on/off events
and not to the duration of the Sound in real time, i.c. a sine
wave lasting for 2 hours is less complex than a 2 second
flurry of several sine waves turning on and off at different
times.

In some sense, the microcode nextSample methods on the
Playpus can be thought of as the instructions of a language,
and the particular sequence of these instructions (inherent in
the structure of each Sound object) as a program. Thus in
Kyma, a music composition is a program.

3. Conclusions

3.1 Smalltalk as a Music Language

One of the goals of Kymais to provide a uniform and flexible
structure which does not impose stylistic assumptions upon
the composer. The uniformity of objects in Smalltalk has
made it an ideal environment for the development of such a
flexible structure.

3.2 Other Object-oriented Music Languages

Smalltalk seems to have a disproportionately large number
of adherents in the computer music commurity. For details
on other music-related work in Smalltalk, the reader is
referred to the articles by Krasner, Pope, and Lentczner
listed in the references, The paper by Cointe et al describes
FORMES, a music language in use at IRCAM which was
developed in VLisp, the paper by Polansky et al is a
discussion of the HMSL language written in an object-
oriented FORTH environment, and the paper by Gary
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Greenberg outlines his Object LOGO music environment.

3.3 Future Plans

Kyma was intended for use by composers of experimental
music, but it is general enough to have other applications as
well; it could, for instance, be used as part of a audio signal-
processing workstation or in the design of psycho-acoustic
tests.

The next large step in the development of Kyma depends on
another Smalltalk-80 application which is currently under
development. The Javelina environment [Hebel87] can
generate microcode for any of several signal processors
from a mathematical function specification. At some point,
each of Kyma’s nextSample algorithms will be replaced by
an equivalent mathematical function. Javelina will be used
to generate the microcode for whatever signal processor is
being used. In fact, given a model of the 68020, Javelina

-could also be used to generate assembly language primitives

in those cases where no signal processor is available.

Itis hoped that Kyma will never actually be “completed” but
will serve as a continuously evolving set of tools for the
author’s experiments in music and structure,
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