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Abstract 
Kyma is an ‘object-oriented environment for music 
composition written in Smalltalk-80. which, in conjunction 
with a microprogrammable digital signal processor called 
the Platypus, provides the composer with a means for 
creating and manipulating Sound objects graphically with 
real-time sonic feedback via software synthesis. Kyma 
draws no distinctions between the materials and the 
structure of a composition: both are Sound objects. When a 
Sound object receives a message to play, it tran.$orms itself 
into a microSound object, i.e. an object representation of 
itself in the microcode of the Platypus. Thus an object 
paradigm is used not only in the representation of Sound 
objects in Smalltalk- but also in the microcode 
representation of those Sound objects on the Platypus. 
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1. Sound Objects 

1.1 The Problem of Sound Synthesis 
Soundcanbedescribeddigitallyasastreamofinstantaneous 
amplitude values called samples. A digital-to-analog 
converter translates this stream of numbers into a 
continuously varying voltage which, if used to drive a 
loudspeaker, is translated into a continuous variation in air 
pressure - sound. Recording or synthesizing frequencies 
of up to 10 kHz necessitates a sampling rate of 20 kHz. At 
this sample rate, 1 million 16-bit samples are required to 
represent less than a minute of sound, for stereo sound the 
requisite number of samples doubles. The considerable 
quantity of data required for digital sound synthesis 
presents problems with regard to both speed and 
manageability. 

f.1.1 speed 

Much of the early work in digital sound synthesis was based 
on Max Mathews’ “acoustic compilers”, Music1 - Music5 
by85]. These “Music N” languages generate sound by 
means of software synthesis, that is, the stream of samples 
representing the waveform of the &sired sound is specified 
exclusively in software. While software synthesis is an 
extremely flexible technique, most of the Music N 
languages were designed to run on general putpose 

computers in a noninteractive way; turnaround times 
measured in hours or even days can be frustrating for 
composers trying to experiment with new sounds. 

One way around this problem is to implement the sound 
synthesis algorithms in hardware, a technique employed in 
the ubiquitous MIDI synthesizers. These synthesizers 
provide composers and performers with digitally 
synthesized sound in real time. A price is paid, however, in 
terms of flexibility; a hardwired algorithm is extremely 
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difficult to modify, limiting the capabilities of each 
synthesizer to its fixed set of algorithms. 

More recently, Digital Signal Processors (DSPs) have been 
used to solve the speed problem in digital sound synthesis. 
Since DSPs are programmable and are designed specifically 
for samples generation, they can do software synthesis in 
real rime. allowing composers to explore new sounds 
interactively. 

1.13 Manageability 
The Music N languages provide composes with a familiar 
model to assist them in specifying the sample stream - the 
model of a “score” performed on an “instrument”. A Music 
N “instrument” is designed by connecting unit-generators, 
software modules which simulate familiar analog circuits 
such as oscillators or filters. In a totally separate activity, a 
Music N “score” is specified as a sequence of instructions for 
turning instruments on or off at prescribed times. (Most of 
the languages for controlling MIDI synthesizers also 
employ this model of instrument and score vjith obvious 
popular success.) 

‘Ike is, however, a disadvantage to using this model; while 
these languages make it easy to do a “middle-level” 
orgztnization at the granularity of notes, it can be awkward, 
in some cases impossible, to to use these same languages to 
organize higher level structures (e.g. phrases or sections) or 
lower level structures (since the “timbre” of a sound is dealt 
with separately as “instrument design”). What these 
instrument/score languages seem to lack is an abstract 
structure which, can be applied uniformly at all levels of 
organization. 

It is not possible to individually compose each of the 
ntillions of samples comprising a piece of music, nor do 
individual samples mean much in isolation. Some means is 
needed by which to organize these samples, group them 
toge?ha into meaningful chunks, enclose all the details in a 
package, give it a name, and refer to it thereafter as a single 
entity. In Kyma such an entity is referred to as a Sound 
object. Everything in Kyma, from a single timbre to the 
slructure of an entire composition, is a Sound object. These 
Sound objects can be manipulated, transformed and 
combined into new Sound objects. Furthermore, Sound 
objects can be continuously redefined as work on a 
composition progresses; objects which were once 
encapsulated in other objects can be brought to the top level, 
top level objects can be combined and hidden within a yet 
higher level object. 

Otha music languages that acknowledge this need for a 
utlifam structural entity include FORMES with its 
“proms” lRodet841 [CointdVJ, HMSL with its “morph” 

pohn&y85,87], the SSSP project with its “musical event” 
~uxton85]. and Herbert Brun’s language, Sawdust, with its 
“link” [Grossman87]. 

1.2 Sound objects vs. Standard Music Notation 

Why adopt this strange idea of a Sound object when music 
aheady comes equipped with traditional smlctures 
specified in terms of staves, measures and notes? In order to 
answer this question, it is first necessary to differentiate 
between the use of the word rmcsic in reference to an acoustic 
event and rmm’c in reference to written notation. Music 
notation is a highly contextual list of shorthand instructions 
to a performer; it does not fully specify the acoustic event. 
Evidence of this can be seen in the fact that trained musicians 
wilI perform a score with the name “Bach” at the top quite 
differently Corn their performance of a score bearing the 
name “Chopin”. 

Composition environments based on music notation, while 
they do provide a structure for the composer, do not provide 
a flexible and redefinable structure. Furthermore, they tend 
to limit the specfication of sound structures to those which 
could be performed on traditional instruments by human 
performers. This sort of self-imposed limitation is 
analogous to the long takes in front of a static camera typical 
of early films - they were using the camera to passively 
record the performance of a play, not yet realizing the full 
potential of film as a new medium distinct from the medium 
of live theater. 

Soundobjectsformasupersetofthesetofnotes,i.e.thereare 
Sound objects which can be described in Kyma which could 
not be expresd using standard music notation. These are 
not just bizane sound effects or outlandish examples (e.g. it 
would be difficult to record ordinary speech using musical 
notation) but include examples which fall squarely in the 
domain of traditional music. For example, musicians can 
find it difficult to notate even their own improvizations. 

1.3 Kyma Definition 
13.1 Defmition of Sound 
A Sound in Kyma is either a Sound Atom or a Transform of 
one or sevedal sub!Jounds. 

A!3omdiadefmaIas: 

i) SatndAtan 
ii) UnaryTriinsfom~, T(c) where a is a Sand 
iii) N-my Tmsform. T(s,. s2, . . . . Q whrc sy. s2, . . . . sn are sounds 

A transform is the result of applying a function to its 
subSounds. In this sense, a transform is something like a 
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prism: when viewing physical objects through a prism, the 
structure of the prism is made apparent by the manner in 
which it distorts the appearance of the viewed objects; 
however the prism doesn’t actually alter the viewed objects, 
and the prism is an object distinct from the viewed objects. 

1.33 Currently Implemented Sound Classes 
Figure 1 shows the hiemrchy of all Sound classes currently 
implemented in Kyma. (It should be emphasized, however, 
that Kyma is an open system, and that the composer can add 
to and modify this class hierarchy.) 

1.33 N-ary Transfurms 
Each N-ary Transform has an instance variable, subSounds, 
which contains an O&&Collection of Sounds. 

Mixer and Concatenation are the primary temporal 
operat.orsofKyma. ‘lhesubSoundsofaMixerareplayedin 
parallel; those of a Concatenation are played serially. A 
Mixer is defined to be the sum of its subSounds, a Multiplier 
their product, and a Concatenation as a sequence of its 
SUhSOMdS. 

1.3.4 Unary Transforms 
Each UnaryTmnsform has an instance variable, subSound, 
containingasingleSound tobetransformed. Forexample, 
a Delayed is defined as a Sound which waits a specified 
amount of time before playing. 

1.35 Sound Atoms 
A SoundAtom has no subSounds, and, as could be inferred 
fkom itsname,cannotbebrokendownintoconsti~entparts. 
For instance, a L.&Sound is defined as the input from the 
analog-to-digital converter, if a microphcme is co~ected to 

the input, the LiveSound’s samples will come from that 
microphone. 

In a LookupFunction. a periodic signal is obtained by 
retrieving samples from a lookup table. A single cycle of 
the desired waveform is precomputedand stored in the table; 
by incrementing an index into this table module the length 
of the table, this cycle can be repeated any number of times. 
Different frequencies, i.e. numbws of cycles per second, are 
achieved by using different sized increments for stepping 
through the table. 

1.3.6 Potential Sounds 
A Potential Sound is one which does not respond directly to Figurel. Thchi~yofSotmdc~rs~impkmcnted 

the play message; instead when such a Sound receives a inKyma. Whereoneclusisthesubc1sssofPlothezrwhichoaxn-s 

message to play, it creates a new Sound and then sends ir the 
bcforeitinthelist,thisisiniicatalbyindatUti0n. 

play message. For example, when a F%lindrome gets a play 
message, it first creates a Concatenation of its s&Sound and 
the Reverse of its subSound, and it then tells the 
Concatenation to play. 
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Play replay help duplioate oollrot selectAll oleanUp remova 

Figure2. TheMainKymaView. ~consr~~~gsOundclassesappearinthelistonthelefticonsrepresentingSoundiTlstances(called 
SoundPoints) appear in a Soundmane (the large area to the right of the class list). 

?$- 9 30&b 
al ‘id * a75 OA conoatanatlon52203 Flaplaoementsolmd7o 

t-s<* 9 Q 
l?aDkoemant conoatana- Replad 

X 
murtiplia I 
i In * * 
LeduIpFunetier 
This is a table lookup algorithm. Sampler are obtained by indexing into a 

preoomputrd wavetable stored in the memory of the signal prooessor. 

The amount by whioh the wavetable index is inorrmentrd l aoh sample is 

computed as tablelength * frequency * l.O/SampleRate, i.e. 

ramplrs/oyole * oyolrs/sro l seo/samplr. 

For mbrc detail on each parameter of a LookupFunotion, press on the 

parameter name in the creation view, 
Hdp 1 1 Click rnywhcrswhcn finished, 1 I 

b 
I 

\ 
r rrmovc 

Figure 3. By pressing the Help button below the list of classes: the composer can see a brief description of the selected chss. 
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Figure 4. The Creation View for a LookuPFunction. Parameters 
canbetypedinorsuppliedby&aggingwotherSo~~ointintathe 
pfmmeter fieid. 

A FrequencyTransform is an interesting potential Sound 
which can have a time-varying effect on its subSound Each 
FrequencyTransform contains, as an instance variable, a 
function of time. frequency, and the duration of its 
subSound. (See Webe for a detailed description of 
Functions as ArithmeticObjects in Smalltalk-80.) Should 
the FrequencyTransform have an N-aryTransform as its 
subSound, this function will be reevahrated at each of the 
constituent Sounds’ startTiies; it is a timevarying 
~SformationdowntothegranularityofindividualSounds, 
not individual samples. 

1.4 Using Kyma 

Kyma’s user interface can be characterixed as a direct 
manipulation system. The composer can create new sound 
instances, group them into collections, extract parameter 
information from them, and examine/change their structure 
by clicking or dragging with the mouse. 

1.4.1 The Main Kyma View 
By selecting KYMA from the list of options in Smalltalk’s 
background menu, the composer obtains a main Kyma view 
like that shown in Figure 2. The icons (called So~ndPoint~) 
represent Sound objects; SoundPoints can be selected, 
dragged, or grouped together into SoundCollectionPoints. 
(The appearance of these operations was modelled after that 
of the Macintosh Finder). 

The strip along the left edge of the main Kyma view is a list 
of Sound classes. Pressing the help button opens a short 
description of the currently selected Sound class (Figure 3). 

Hgure5. Pressinganaparameternameinacmationviewpovi&s 
a txief des4xQtion of that perameta on the diqlay. 

Ressing the create button opens a cmatiat view such as that 
shown in Figure 4, the creation view for a LookupFunction. 

1.43 Creation Views 
lbecomposercanpressanyparameternameinthecreation 
view for assistance on supplying an appropriate parameter 
value. Figure 5, for example, illustrates the result of pressing 
“Frequency” in the LookupFunction’s creation view. 

Each parameter can be supplied either by typing it in from 
the keyboard or by dragging another SoundPoint into the 
appmp&elynamedpane(asinthesequenceshownin 
Figure a 

‘Ihe creation view for Echo (Figure 7) illustrates several 
different ways for a composer to enter the Sound’s 
pararnetess: the s&Sound is supplied by dragging a 
SoundPoint into the small SoundPlane, the name is supplied 
by typing or dragging another So&Point into the name 
pane, the delay time is specified by typing or dragging into 
the delay pane and then selecting the appropriate units from 
the list to the right of that pane, and the feedback factor is 
supplied by an adjustable slider. A particular delay line is 
selected from the list of all delay lines on the right. 

1.43 Opening SoundPoints 
Any of the SoundPoints or SoundCol.lectionPoints can be 
examined or altered by double-clicking their icons; this 
“‘opens up” the SoundPoint or SoundCollection to reveal its 
structure. The process of opening up a SoundPoint is 
essentially the reversal of the process used to create that 
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I. 

II. 

III. 

--------- 

Frequrnoy 

pitoh 
--------- 

delayline 
drlayline 
drlaylinr 
delayline 
drlaylinr 
delaylint 
delayLinr 
daIryLine 
delayLine 

I drl&Linr 

1 play 1 replay 1 help 1 save \rpl.o~~IlR~pla~ 

oube 
delrylinr 
delayline 

HI -1 I drlryLinr 

I Frrqur---* I I-,.- delayline 

Figure 6. Dragging Between Vie&. I. A Soundlbint is selected, II. It is dragged across to the meation view, III. It is dropped into & 
LookupFmctiods duration pane where it “spills its guts”‘, yielding up its duration. 
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Figure 7. Echo Creation View. Fkamm can be supplied !bm 
slider pots, selection from a lis& typing, oc dragJ?jng another 
soundPoint into the pane. 

SoundPoint. For example, consider a SoundPoint 
representing a Mixer with two TwoFormantVoiceElements 
as its subSounds. Double-clicking that SoundPoint would 
cause a creation window to appear with the Mixer’s 
parameters already filed in. Double-clicking on either of 
the subdound’s SoundPoints would open a 
TwoFormantVoiceElement creation view with the 
appqniate parameters filled in as shown in Figure 8. 

SoundPoints are opened in order to examine a Sound as sl-s4 (Figure 9). 

Figure 8. Opening up a Mixer reveals its subsounds. Any 
paramettzofthesubSolmdscanbealtcrcdmdthcncwmlbSound 
Can replacetllCOld. 

structure,tochangesomeaspectofaSound,ortoclonea 
new Sound from an existing one. 

1.4.4 Code Views 
Analtemativec~onview,obtainedbypressingtbecreate 
button with the shift key down, is a CodeView containing a 
template instance creation method for the selected Sound 
class. Pammete-rscanbefiledinbyhand,andSouncB~ts 
intheboxesbelowcanbereferredtointheSmalltaDrcode 

Figure9. ACodeSoundC.31 km View. The template parameters are replaced with actual pammeters after which the 
code can be selected and evalu$ed. SouxuPoints placed in the boxes below can be referred to in the code as sl-~4. 
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2. The Implementation of Kyma 
The current implementation of Kyma was written using 
ParcPlace Systems Smalltalk- running on a Macintosh II. 

2.1 The Representation of Sounds in Kyma 

A Sound in Kyma is rqrescntcd as a directed acyclic graph 
(DAG); a subsound node can be shared among several 
superSounds. A Sound DAG is similar to an expression tree 
in that the evaluation of the higher nodes depends on results 
of evaluating the lower nodes. 

Figure IO is an example showing an NaryTransform - a 
Mixer with three subSounds: a FrequencyTransform and 
two Delays. Each of the Delays has a FrequencyTransform 
as its subSout@, and so on. There is only one SoundAtom in 
this example, a LookupFunction. This LookupFunction is 
shared by three different superSounds. 

From this example it’s easy to set how traditional note- 
oriented music can be described in Kyma. The single Sound 
at the terminal node corresponds to the “instrument 
deftition” of a synthesizer. FrequencyTransforms and 
DurationTransforms are used to obtain the different pitch 
and duration of each note and the delay times supplied to the 
Delayed nodes phe the notes relative to one another either 
sequeutially or as chords. At the CEXL Music Project, tl-& 
method is used to translate pieces composed on the IMS 
synthesizer into Sounds so that they could be played by 
KymaonthePlatypus.(TheIntemctiveMusicSystem,IMS, 
is a digital-synthesizer-based system developed at CERL 
prior to the development of the Platypus lHaken841, 
[ScalettW].) 

2.2 Samples Generation 
12.1 Generating Samples in Smalltalk- 
Recall that a Sound can be described as a stream of samples; 
thus one could implement samples generation in Smalltalk 

Figure 10. A Simple N-my Transform Structure in Kyma 

by defining each synthesis algorithm as a Stream which 
responds to the message, nextSample. In genera4 a 

superSound would ask each of its subSounds for the 
subSound’s next sample before returning its own next 
sample. In the case of a Mixer, for example, thenextSample 
method would be something like: 

A ~LsSouadr injea: 0 into: [ :sample :sub I sample + sub nextSmple]. 

Thiswas,infact,thewaysamplesgeneration wasdoneinthe 
first version of Kyma. However, Kyma was not capable of 
generating samples at a continuous rate of 20,000 samples 
per second. In fact, for even moderately interesting Sounds, 
it could take a minute or longer to compute each second of 
sound (i.e. 3 milliseconds or longer per sample). 

2.23 Generating Samples on the Platypus 
For this project, the speed problem was solved by moving 
that one crucial method, the nextsample method, onto a 
specialized piece of hardware - a microprogrammable 
digital signal processor called the Platypus lHaken87]. The 
Platypus is a sig~2 processor, not a MIDI synthesizer, a 
signal processor has the distinct advantage of being 
programmable. thus allowing for the addition of new 
synthesis algorithms and the improvement of existing 
algorithms. 

Designed by Lippold Haken and Kurt Hebel of the CRRL 
Music Project, the Platypus can execute 20 million 
instructions per second (20 MIPS). To put that in some 
perspective, consider that the 68020 processor in the 
Macintosh II has a 3 MIPS peak and averages around 1.5 
MIPS. For this reason the responsibilities have been 
factored between the two machines, giving each the job it 
can do the best The abstract structure of the Sounds is 
handled by Smalltalk on the Macintosh, and the low-level 
samples generation is handled by the Platypus, 

2.23 Assembly Language and Platypus Microcode 
How does the speed of the nextSample methods written in 
Platypus microcode compare with the speed of those same 
methods implemented as 68020 assembly language 
primitives? For comparison, we used the Mixer algorithm 
givenin2.2.1. Assumingaclockspeedof 16megahert2,the 
assembly language implementation requires, in the best 
-, 

l.l=+ ~.9375*IlUmber OfNtY.%Un&) mi aoseccmds per simple 

and in the worst case, 

2.25 + ( 5.8125 * numbM of Nbsamdr) miB pa -Ph. 
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The implementation in Platypus microcode requires 

-55 + (.5 l tlUOhr at NbhltldS) Ads per sample, 

nearly an order of magnitude faster than the 68020 assembly 
language implementation. 

Consider a concrete example: At a sample rate of 20000 
samples per second, a maximum of 50 microseconds can be 
used to compute each sample. Gn the 68020, a Mixer with 
10 subSounds implemented in assembly language would 
require, on average, about 50 microseconds per sample - 
just within the time constraint however this leaves no time 
to compute the subSounds’ samples, so a Mixer of 10 
subSounds could not be computed in real time. Gn the 
Platypus, the Mixer would require less than 6 microseconds 
per sample, leaving more than 44 microseconds left over for 
the computation of 10 subsound samples. Since a 
LookupFunction requires fewer than 1.5 mi~seconds 
computation time per sample, a sample for a Mixer of 10 
LookupFuncti~scouldbecomputedinrealtimewithabout 
30 microseconds to spare. In fact, Mixers of up to 32 
LookupFunctions have been played using the Kyma/ 
Platypus system with its rather conservatively written 
microcode, optimization of the microcode would allow us to 
squeeze out even more simultaneous Sounds. 

lbisspeeddifferenceconvincedus tbatthePlatypuswasthe 
best means for providing interactive playback for 
compositions of nontrivial complexity. Nevertheless, with 
the addition of a hard disk for storing samples, a version of 
Kyma with assembly language primitives could be used to 
generate samples for delayed playback (with some simple 
Sounds computable in real time), and this alternate solution 
may be implemented at some time in the future. 

2.3 Sound objects on the Platypus 
The Platypus solves the speed problem whib introducing yet 
a different problem - how to get from the abstmct DAG 
representation of a Sound in Kyma to a microcode 
representation of that same sound on the Platypus. ‘Ibe 
solution to this problem is to use an object-oriented 
microcode program on the Platypus. 

2.3.1 The Platypus Hardware 
The Platypus consists of: 

*Three l&by-16 multiplier-aaxmulatars 
l 1 megaword (16&t words) of slow memory (250 Us a-SS titlleS) 
m 1024 32-bit registers (50 ns access times) 
l 2048 80-bit words for the micxocode p’ogmm 

Each Platypus instruction takes 50 nanoseconds, thus at a 
sample rate of 20 kH2. up to 1000 instructions can he used 

ISb 16Y 

SSEZEL 

Figure 11. The PIatypus Signal Pmcessor [Hakezi873. 

to compute each sample. Input and output of sound is 
accomplished using stereo 16bit analog-to-digital and 
digital-to-analog convm. 

2.32 The Structure of Sounds and MicroSounds 
Just as a Sound object in Smalltalk- is a structure 
containing instance variables and a pointer to its class and 
methods,thatSound’srepresentationonthePlatypus(called 
a microSound) is a collection of values in regisfers with a 
pointer to its microcode class and method. Since there is, in 
fact, only one method, the nextsample method, associated 
with each class, a microSound is simply a coIlection of 
registers with a pointer to its nextSample me&d in the 
microcode. In a sense, then, the Platypus microcode is an 
object-oriented program in which there is only one message 
ever sent (an implicit nextSample message) and only one 
value ever retumed (the next sample in that microSound’s 
slream). 

‘Ibis object-oriented program could be implemented by 
storing the Sound DAG in the registers of thePMypus and 
storingthethemicrocodemethodsandthecontro 
microcxxie memory. However, on any particular sample, 
many of the nodes of a Sound DAG are inactive; that is, each 
subsound has a finite duration, and not alI of them are 
playing at once. Ideally then, the Platypus registers should 
contain not a sturic DAG, but a DAG that is growing and 
shrinking with time depending on how many of its Sounds 
are active on the current sample. This optimization speeds 
things up by decreasing the length of the microcode loop, 
and it it allows more complex microSounds to be stored in 
the Platypus’ limited register memory. 

In order to create a dynamic version of the DAG, it’s 
necessary to how when Sounds mm on, when they turn off, 
and when there is a change in the number of a Sound’s active 
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subsounds. This information is contained in an event list, a 
time-tagged list of changes to be made to the dynamic 
microsound DAG. Such a list is easy enough to obtain when 
each Sound knows its duration, its relative startTime, and all 
of its superSounds. 

2.33 A Sound’s Representation on the Platypus 
Figure 12 illustrates the function of each part of the Platypus 
when it is running the Kyma microcode. The active 
microSounds are arranged in a circular linked list in the 
registers; changes to the microSound list are specified by the 
event list which is stored in memory. Each event consists of 
inserting a new microSound into the list or deleting a 
microsound whose “time is up”. 

A control loop in the microcode traverses the list of 
microSounds once per sample. For each microSound it does 
the following: 

-Plus the addlur of the mi-d’s first register into the base address 
rcgilter. 

-Follows this microsound’s pointer to its n&Sample method in the 
micmcodc. 

l ontputa the natSllnpk for ti cl~s of Sound using this 
miuoSound’s valua for any variables in the nextSample microcode and 
obrhing any s&Sound valuu fran the wmple sta&. 

l Pulha thil plicmSouna’1 next sunpk am the sample stack. 
l aungerthe baseaddress tothecontext ofthtnextmicroSoundintheliat. 

L mJcroSound List I 
F nextSound microcode ptr 1 

subCount 
initial values 

. . . 

nextsound microcode ptr 
SubCount 

initial values 
. . . 

Last-Sound 
nextSound microcode ptr ’ 

Memory 

Waveform Tables 
mine 
CO8iRC 
rlmp 
square 
. . . 

On the completion of each traversal of the microSound list, 
the microcode does the following: 

l Outputa the sample at the top of the sta& 
l Rccc.ivcs IIIY data being written fmm Smalltalk 
l Jtixccuter my cvuus scldukd for this sample. 

2.3.4 The Translation from Sound to MicroSound 
When a Kyma Sound receives the play message, it extracts 
a chronological event list from the DAG in the form of time- 
ragged Platypus register operations. This event list is then 
downloaded to thePlatypusmemory. Once the event list has 
been downloaded, the Platypus is given a start signal; the 
Platypus then loops through the microcode, generating a 
sample each time through the loop and stopping itself when 
the event list has been exhausted. 

2.35 Assembling the Platypus Microcode Program 
Each Sound class which is not defined purely in terms of 
existing Sound classes implements an assembleusing: 
method. This method contains the register definitions and 
the microcode assembly language implementation of the 
Sound’s nextSample algorithm. Each time the machine is 
turnedonorachangehasbeenmadetothemicrocode,anew 
microcode program is assembled by piecing together the 
fixed potions of the microcode (e.g. in.iWons, the 
control loop, some register definitions, etc.) with the 

Microcode 

Initirlir8tionr 

topofLoop: 
Smallt8lk input/output 
Audio input/output 

Check I plryiag :ound 
if NO. output ailence 8nd 

80 lo toporLoop. 

Executo current event8 
b8reAddr (- L8&OUod 8ddrer8 

controlLoop: 

b8WAddr c- nextSound l b8reAddr 
Gfia to microcode ptr l b8sOAddr 

* JterLoop: 
OUtPUt SOmPk 8t top of rteck 
Go to toporLoop 

Class Methods 

+- 8SOUndCless definition: 

Define loc81 regirtere 
Compute next rrmple 
Go to controlloop 

. 

Fii 12 A Block Diagram of the Platypus Running the Kyma Micxoah. 
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Greenberg outlines his Object LOGO music environment. 
potions of microcode supplied by each Sound class in its 
assembleusing: method. This assembled microcode is then 
downloaded to the Platypus where it runs until the machine 
is turned off (unless, of course, the user decides to change the 
microcode program and reassemble it). 

3.3 Future Plans 

2.4 Microcode vs MicroSounds 
In contrast to the microcode, which is downloaded only 
once, a new microSound is downloaded each time a Kyma 
Sound receives the play message. The time between telling 
a Sound to play and actually hearing that Sound is spent in 
Smalltalk generating the event list; once the event list has 
been downloaded to the Platypus, the samples generation 
takes place in real time. (For this reason, repkrying a Sound 
is virtually instantaneous; the Platypus is simply sent the 
start signal and it replays whatever event list it has currently 
in memory). 

Kyma was intended for use by composers of experimental 
music, but it is general enough to have other applications as 
well; it could, for instance, be used as part of a audio signal- 
processing workstation or in the design of psycho-acoustic 
kStS. 

The size of the microcode is relatively fixed, changing only 
when a Sound class is added or modified, the size of the 
microSound DAG in the registers is related to the 
complexity of the Sound as it was defmed in Kyma. In this 
context, complexity is related to the number of on/off events 
and not to the duration of the Sound in real time, i.e. a sine 
wave lasting for 2 hours is less complex than a 2 second 
flurry of several sine waves turning on and off at different 
times. 

The next large step in the development of Kyma depends on 
another Smalltalk-80 application which is currently under 
development Ihe Javelina envimnment l3kbel87] can 
generate microcode for any of several signal processors 
fkom a mathematical function specification. At some point, 
each of Kyma’s nextSample algorithms will be replaced by 
an equivalent mathematical function. Javelina will be used 
to generate the microcode for whatever signal processor is 
being used. In fact, given a model of the 68020, Javelina 
could also be used to generate assembly language &mitives 
in those cases where no signal processor is available. 

ItishclpedthatKymawillneveaactuallybe’%~pleted”bur 
will serve as a continuously evoking set of tools for the 
author’s experiments in music and structure. 

4. Acknowledgments 

In some sense, the microcode n&Sample methods on the 
Playpus can be thought of as the instructions of a language, 
and the particular sequence of these instructions (inherent in 
the structure of each Sound object) as a program. thus in 
Kyma. a music composition is a program. 

3. Conclusions 

3.1 Smalltalk as a Music Language 
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ofcomputermusic researchattheCERLMuskProjectsince 
1974. Innumerable discussions with Kurt Hebel wete both 
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Kyma 
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OneofthegoalsofKymaistoprovideaunifoamandfl~ble 
structure which does not impose stylistic assumptions upon 
the composer. The uniformity of objects in Smalltalk has 
made it an ideal environment for the development of such a 
flexible structure. 

3.2 Other Object-oriented Music Languages 
Smalltalk seems to have a disproportionately large number 
of adherents in the computer music community. For details 
on other music-related work in Smalltalk, the reader is 
referred to the articles by Krasner, Pope, and Lentcner 
listed in the references. The paper by Cointe et al describes 
FORMES, a music language in use at IRCAM which was 
developed in VLisp, the paper by Polansky et al is a 
discussion of the HMSL Language written in an object- 
oriented FORTH environment, and the paper by Gary 
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