
Towards Communities of Practice for Mashups
Leif Singer

Leibniz Universität Hannover
Welfengarten 1

30171 Hannover, Germany
+49 (0) 511 762 - 4793

leif.singer@inf.uni-hannover.de

ABSTRACT
Many integration projects in enterprises are too small to warrant
their own implementation by IT. This leaves a “long tail of
enterprise integration” unaccounted for. To exploit this potential,
this position paper proposes a Community of Practice for end user
development whose members will be able to solve their
integration needs on their own. In particular, we want to combine
a spreadsheet-oriented, browser-based mashup tool with a social
network site designed as a company-internal collaboration
platform. This should permit many small local integration projects
to be performed by end users. Employee needs that were too
expensive to consider before would then be satisfiable.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Computer-
supported cooperative work

General Terms
Design, Experimentation, Human Factors.

Keywords
End User Development, Services, Integration, Mashups, Social
Software.

1. INTRODUCTION
The phenomenon called “Web 2.0” [1] is strongly associated with
user-generated content. Several social networking sites (SNS)
came into existence, allowing users to not only create content,
such as photos, videos or music. They also permit users to share
content with contacts from their social networks as represented on
the site and find new interesting content from others through that
network.

Subsequently, McAfee coined the term “Enterprise 2.0” for the
application of Web 2.0 technologies and principles to enterprises
[2]. While this may also imply the use of public social network
sites by companies for public relations, this paper focuses on
company-internal social network sites that are deployed to

improve communication and collaboration in an enterprise. More
concretely, common applications are expert search and
knowledge management.

A mashup is an application that combines data and other
functionality from external sources, such as Web services, to
create new functionality. A popular example is the visualization
of data from a Web service on a map. Being closely associated
with the Web 2.0, mashups are also present in the Enterprise 2.0.
These enterprise mashups do not only use publicly available
services, but also resources that are internal to the company.

Hoyer et al. identified a “long tail of enterprise integration” [3]:
small integration projects that do not warrant a dedicated project
from the IT department because they’d be too expensive and
would only be of use to a small number of employees. But if
those end users were able to create these integrations themselves
using a mashup tool, the potential of the long tail could be
exploited more effectively. In this scenario, the creation of a
mashup is a form of end user development (EUD).

There are several approaches to mashup editors that are suitable
for end users. Most use widgets that users may configure and then
connect with each other, creating workflow-like structures. But as
Halbert argues, end users not capable of or interested in
programming need an environment that continuously reflects their
changes in concrete data. Keeping an abstract model of the flow
of a program in their minds seems to be too demanding to non-
programmers [4].

A programming model that removes this burden is that of
spreadsheets. All data is visible all the time, and a change in one
place gets reflected immediately throughout the whole document.
While for example Halbert [4], Nardi [5] and Ko [6] accept the
creation of spreadsheets as a form of end user development, Jones
et al. even consider them a kind of functional programming.
There have already been several successful attempts at applying
the spreadsheet approach to mashup creation (e.g. [7], [8], [9]).

But as Nardi observed, actual end user programmer communities
work because their tools support a layered approach that makes
them accessible to users of different levels of programming
knowledge [5]. She describes a spectrum that begins with end
users without any programming experience and ends with
professionally trained software developers. Between these
extremes, Nardi identifies “local developers”, also called
“gardeners” or “tinkerers” – domain experts, possibly without any
programming training, but with interest in programming. These
would often become helpful advisors for their non-programming
colleagues.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mashups 2010, December 1, 2010; Ayia Napa, Cyprus.
Copyright 2010 ACM 978-1-4503-0418-4/10/12…$10.00.

Considering these kinds of users, Nardi sees a need to support
“pure” end users as well as local developers in EUD
environments. In spreadsheets, formulas are accessible by all,
while macros were only used by the local developers. Between all
of these users, Nardi found a significant amount of collaboration,
either by copying solutions by peers or by actual personal help in
problem solving.

Additionally, Fischer et al. stress spontaneous and opportunistic
traits they observe in EUD: users will work together when finding
out they are working on similar problems. Similarly, collaborators
may pull out as quickly when they consider their own problem
solved [10].

This position paper proposes an approach to EUD of mashups
incorporating these characteristics. It is a work in progress that
will deploy a spreadsheet-based mashup editor in a company-
internal social network site. The company’s resources will be
available to the mashup tool through a series of adapters.
Appropriate mechanisms from social software will be used to
build and support a community of practice for mashups. Figure 1
illustrates the components that would be needed for such an
environment.

Figure 1. The components of the proposed approach.

This paper is structured as follows: the next section will explain
the proposed vision in more detail. Section 3 will present related
work by others, and section 4 will close with conclusions and an
outlook on our future work.

2. A MASHUP SOCIAL NETWORK SITE
To create a community of practice for the creation of mashups by
end users, the first mandatory element is a mashup editor. We
have a prototypical implementation that recreates the user
interface known from spreadsheets in a web browser. It can
import XML data from HTTP URLs – e.g., newsfeeds – and
displays them in nested tables reflecting the structure of the data.
Some formulas are available to transform and aggregate values.
To assist in collaboration, we chose to use mechanisms from
social software. For this, we developed a social network site that
supports easy extension. This allows us to quickly integrate new
document types – such as mashups – as well as new social
mechanisms. Users have a profile, can connect to each other, may
post short messages and have an activity stream that syndicates all
their contacts’ status messages. Documents may post messages as
well, e.g. to indicate changes.
Beginning with these essential components, we are now planning
to add the following mechanisms.

2.1 Adapters for Integration
To be useful for enterprise users, the mashup tool must have
access not only to services available anyway, but also to as many
of the company’s other resources as well. This may include web
applications from the intranet, ERP systems, file servers, source
control systems and others. As a first exploratory step, we have
created an adapter for Subversion repositories that creates a
newsfeed from the latest commit messages.
But a feed-like view makes sense only for a few applications.
Therefore, we are now working on a classification scheme for
applications. The following list gives examples and is inspired by
Rosen [11].

- Task Services provide small business functions, such as
the conversion from coordinates to an address or the
verification of a credit card.

- Entity Services access data sets, e.g. a customer
database with associated addresses and past orders,
possibly with parameters for search.

- Process Services implement potentially long-running
business processes, such as customer orders.

- Feed Services provide time-based updates, such as
change notifications in a repository or file system, or
simple news feeds.

We plan to develop a list of service types that is more complete
and, if possible, for each type provide patterns for mapping it to
each of the other service types. An obvious example is the
conversion of an entity service to a feed service: instead of
returning all matching items, the service would only provide a list
of recent changes to the database.

2.2 Extensions to the Mashup Tool
For now, our mashup tool supports only basic formulas. To
provide an additional level of expressiveness for the “local
developer” users identified by Nardi [5], we want to create a
macro-language for mashups.
Since the tool is web-based, an API based on a subset of
JavaScript seems like a good choice. This would provide access to
the mashup’s data and meta data as well as additional functions,
such as forms and buttons for interaction. By attaching event
listeners to the spreadsheet’s DOM elements, even a macro
recorder can be implemented. Google Docs Spreadsheets1 already
provide a JavaScript API for accessing and updating spreadsheet
data, as well as making calls to Web services and sending emails.
This seems to be geared towards professional programmers,
though, as the functionality and documentation is rather technical.
To encourage the combination not only of services and
applications, but also of mashups, the mashup editor should
provide a mechanism for marking a set of cells as results. Other
mashups could then import these results just like any other
service’s data, permitting the creation of cascades of mashups.
Finally, a set of visualizations for the created mashups would
surely be useful, as these are present in almost all spreadsheet
applications and are therefore a commodity to most spreadsheet

1 https://docs.google.com

users. Also, many mashups are created for the sole purpose of
visualizing data, e.g., on a map. Additionally, the tool could
provide means to export the contents of a mashup to other
document types, such as text files, actual spreadsheet files or
pages in a Wiki.

2.3 Social Mechanisms
Software engineering both as a practice and a science aims at
improving the process of software creation. Even though social
software has been in use for a few decades now, building social
mechanisms into software is still one of the less controllable
aspects of software development. But as can be seen in the Web
2.0 phenomenon, connecting people creates enormous
advantages.
Since software development and end user development are
inherently social activities, it makes sense to support these aspects
with the experience that is at our disposal right now. Some
initiatives are trying to create for social software what software
engineering does for software in general: create processes and
patterns that are repeatable and produce consistent results. To
create productive mashup communities in enterprises, we want to
apply these experiences to the platform we are proposing in this
paper.

- The “Community Lab” project has produced some such
results. Rashid et al. present a study in which users of a
social network site were shown the respective values of
their contributions. They compare different methods of
calculating that value and their effects on participation
levels [12]. Similar studies were documented by Beenen
et al. [13] and Ludford et al. [14].

- Ren et al. examine the differences between communities
based on common bonds and those based on common
identity [15]. Among other things, they show how these
types of communities react on the loss of members:
while this weakens those based on interpersonal bonds
(e.g. a circle of friends), it is less problematic for those
based on a common group identity (e.g. a community of
movie fans).

These and similar results are interesting and valuable, but depend
on many variables that may not be controllable. We will therefore
need to select a subset from existing approaches and evaluate
those for their fitness in our project.
We recognize that social mechanisms that work will not
necessarily have been published yet, therefore we will evaluate
some of those as well: for example, an activity stream that
syndicates all activities of a user’s contacts. We will evaluate a
low-effort mechanism for the distribution of information across a
user’s contacts, of which Facebook’s2 “Like” and Twitter’s3
“Retweet” features are examples. Also, we will compare different
connection models, e.g. the synchronous (Facebook’s “Friends”)
and the asynchronous (Twitter’s “Followers”) models.
Another common feature of social network sites are contact
recommendations. As our goal is to support a community of end

2 https://facebook.com
3 https://twitter.com

user developers, we will evaluate approaches that allow us to
identify the role of users in their community – whether they are
novices, regulars, or expert users.
The observation of usage patterns will also help in finding out
whether those known from traditional spreadsheet software apply
– if that was the case, many existing ideas that support the quality
and ease of spreadsheet creation could be reused in this new
environment.
The following section describes a possible scenario to illustrate
some of the components and mechanisms mentioned above.

2.4 Scenario
Mrs. Miller from the London sales department for electrical
appliances sends personal letters to her best customers each
month to keep in touch and to inform them about current
offerings. In the past, she copied the newest sales numbers from
the ERP system and matched those with customer data from the
customer database. Meanwhile she has created a spreadsheet
mashup that creates these matches automatically for her.
Mr. Slater, who works in the same department, is a contact of
Mrs. Miller in the company-internal social network site. Because
of this, his activity stream includes the activities of Mrs. Miller.
Therefore, as she edits her mashup one day, Mr. Slater notices
this. Even though he has no use for the mashup, he’s finds it
interesting. He clicks a link labeled “Interesting!” next to Mrs.
Miller’s activity and by this creates a new activity himself, for all
his contacts to see.
Mr. Smith cares for the Birmingham customers. He is an old
friend of Mr. Slater and is one of his contacts in the social
network site. As he sees Mr. Slater’s activity – marking Mrs.
Miller’s mashup as interesting – he takes a look at the mashup. He
immediately recognizes that he could make good use of that as
well. He writes a message to Mrs. Miller, who explains to him
how she keeps in touch with customers using her personalized
mailings. Mr. Smith likes the idea and thus makes a copy of Mr.
Miller’s mashup. He customizes it for his own region.
In this fashion, the mashup, along with Mrs. Miller’s mailing
practice, spreads in the enterprise. Users create their own
personalized copies of the mashup and get notified of changes
made to the original one that they copied from. Using a version
control mechanism, they can pull those changes into their own
copies if they wish. One user even creates a macro that creates
drafts for the mailings from a template.
After some time, the IT department notices this cluster of similar
mashups from the analysis of access logs. They figure there is
significant need for a proper integration of these systems and
consider a new project to implement it.

3. RELATED WORK
The “EzWeb” project is a result of the “FAST” EU project. The
“FAST” platform lets developers create “gadgets”. End users can
then combine these into mashups in the “EzWeb” platform [16].
EzWeb provides a central registry, in which users may register
their mashups so they may be found later by other users searching
for matching terms. The task of wrapping legacy software in
services accessible by the platform seems to be completely left to
the respective enterprise. In contrast, we strive to at least provide
common mapping patterns, if not generalized implementations.

The actual support for collaboration seems to be limited to the
central mashup and gadget registries.
A similar system, the Rooftop Marketplace by SAP Research,
explicitly supports social mechanisms: the roles and phases
typically encountered in marketplace situations [17]. Notably,
they differentiate the roles of the end user, the consultant and the
developer. These seem to correspond to the roles identified by
Nardi mentioned in the first section of this paper. Insights gained
from the project were applied to the aforementioned EzWeb
project.

4. CONLUSIONS & OUTLOOK
To create a community of practice among mashup users and
creators in an enterprise, we propose a platform that is based on
the user roles and their needs from end user development
research. To support the role of Nardi’s local developer – an end
user with interest in programming, but lacking any training in it –
we propose adding a macro language to our browser-based
mashup tool. We want to improve the collaboration amongst end
users by evaluating experiences and mechanisms from community
design and public social websites.
The basic elements of the proposed platform are already available
to us. Currently, we are integrating the mashup editor with the
social network site and evaluate existing and new integration
patterns for services and applications. Our next steps are the
extension of the mashup tool and preliminary, informal
evaluations of the platform amongst students. Once these tasks
have been completed, we want to evaluate our approach in the
industry.

5. REFERENCES
[1] O’Reilly, T. 2007. What Is Web 2.0: Design Patterns and

Business Models for the Next Generation of Software.
International Journal of Digital Economics 65, 17-37.

[2] McAfee, A.P. 2006. Enterprise 2.0: The Dawn of Emergent
Collaboration. MIT Sloan Management Review 47, 3, 21-28.

[3] Hoyer, V., Stanoesvka-Slabeva, K., Janner, T., and Schroth,
C. 2008. Enterprise Mashups: Design Principles towards the
Long Tail of User Needs. In IEEE International Conference
on Services Computing 2008 (SCC'08), IEEE, New York,
NY, 601-602.

[4] Halbert, D. C. 1984. Programming by Example. Doctoral
Thesis. Department of Electrical Engineering and Computer
Sciences, Computer Science Division, University of
California, Berkeley, CA, USA.

[5] Nardi, B.A. 1993. A small matter of programming:
perspectives on end user computing. The MIT Press,
Cambridge, MA, USA.

[6] Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett,
M., Erwig, M., Scaffidi, C., Lawrance, J., Lieberman, H.,
Myers, B., Rosson, M.B., Rothermel, G., Shaw, M., and
Wiedenbeck, S. (in press). The State of the Art in End-User
Software Engineering. Accepted for publication in ACM
Computing Surveys, ACM, New York, NY, USA.

[7] Tuchinda, R. 2008. Building Mashups by Example. Doctoral
Thesis. Department of Computer Science, University of
Southern California, CA, USA.

[8] Kongdenfha, W., Benatallah, B., Saint-Paul, R., and Casati,
F. 2008. Spreadmash: A spreadsheet-based interactive
browsing and analysis tool for data services. Advanced
Information Systems Engineering, Springer, Heidelberg,
Germany, 343-358.

[9] Wang, G., Yang, S., and Han, Y. 2009. Mashroom: end-user
mashup programming using nested tables. In Proceedings of
the 18th International Conference on World Wide Web,
ACM, New York, NY, USA, 861-870.

[10] Fischer, G., Nakakoji, K., and Ye, Y. 2009. Metadesign:
Guidelines for supporting domain experts in software
development. IEEE Software, IEEE Computer Society, 37-
44.

[11] Rosen, M. 2007. SOA Service Usage Types. Business
Process Trends (online), URL:
http://www.bptrends.com/deliver_file.cfm?fileType=publicat
ion&fileName=12%2D07%20SOA%20Service%20Usage%
20Types%2DRosen%2Dfinal%2Epdf

[12] Rashid, A.M., Ling, K., Tassone, R.D., Resnick, P., Kraut,
R., and Riedl, J. 2006. Motivating Participation by
Displaying the Value of Contribution. In: Proceedings of the
SIGCHI conference on Human Factors in computing
systems, ACM, New York, NY, 955-958.

[13] Beenen, G., Ling, K., Wang, X., Chang, K., Frankowski, D.,
Resnick, P., and Kraut, R.E. 2004. Using Social Psychology
to Motivate Contributions to Online Communities. In:
Proceedings of the 2004 ACM conference on Computer
supported cooperative work, ACM, New York, NY, USA,
212-221.

[14] Ludford, P.J., Cosley, D., Frankowski, D., and Terveen, L.
2004. Think Different: Increasing Online Community
Participation Using Uniqueness and Group Dissimilarity. In:
Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM, New York, NY, USA, 631-638.

[15] Ren, Y., Kraut, R., and Kiesler, S. 2007. Applying Common
Identity and Bond Theory to Design of Online Communities.
In: Organization Studies, 28, 3, SAGE, Thousand Oaks, CA,
USA, 377-408.

[16] Lizcano, D., Soriano, J., Reyes, M., and Hierro, J.J. 2008.
EzWeb/FAST: Reporting on a Successful Mashup-Based
Solution for Developing and Deploying Composite
Applications in the Upcoming “Ubiquitous SOA”. The
Second International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies, IEEE, 488-
495.

[17] Hoyer, V., and Stanoevska-Slabeva, K. 2009. Towards a
reference model for grassroots enterprise mashup
environments. In (Newell, S.; Whitley, E.; Pouloudi, N.;
Wareham, J.; Mathias-sen, L. Eds.) Proceedings of the 17th
European Conference on Information Systems, Verona, Italy

