

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SPLASH’12 October 19–26, 2012, Tucson, Arizona, USA.
Copyright © 2012 ACM 978-1-4503-1563-0/12/10…$15.00.

MySQL to NoSQL

Data Modeling Challenges in Supporting Scalability

Aaron Schram
Department of Computer Science

University of Colorado
Boulder, Colorado, USA

aaron.schram@colorado.edu

Kenneth M. Anderson
Department of Computer Science

University of Colorado
Boulder, Colorado, USA

kena@cs.colorado.edu

Abstract
Software systems today seldom reside as isolated systems
confined to generating and consuming their own data. Col-
lecting, integrating and storing large amounts of data from
disparate sources has become a need for many software
engineers, as well as for scientists in research settings. This
paper presents the lessons learned when transitioning a
large-scale data collection infrastructure from a relational
database to a hybrid persistence architecture that makes use
of both relational and NoSQL technologies. Our examples
are drawn from the software infrastructure we built to col-
lect, store, and analyze vast numbers of status updates from
the Twitter micro-blogging service in support of a large
interdisciplinary group performing research in the area of
crisis informatics. We present both the software architec-
ture and data modeling challenges that we encountered dur-
ing the transition as well as the benefits we gained having
migrated to the hybrid persistence architecture.

Categories and Subject Descriptors D.2.11 [Software
Engineering]: Software Architectures; D.2.13 [Software
Engineering]: Reusable Software.

General Terms Design, Reliability.

Keywords crisis informatics; NoSQL; data modeling;
scalability; software architecture; software infrastructure

1. Introduction
Collecting, integrating and storing large amounts of infor-
mation is quickly becoming a necessity among software
engineers in industry, as well as by scientists in research

settings. Crisis informatics [8] is one research area in which
this need has never been greater. Crisis informatics studies
how information and communication technology are used
in emergency and hazard response. An emerging branch of
this discipline investigates how members of the public
make use of social media and other forms of computer-
mediated communication to aid one another during times of
mass emergency [7]. The analysis of this type of data relies
heavily on a robust and scalable data collection infrastruc-
ture. The ephemeral nature of the data (e.g. Twitter status
updates) requires collection to be done in real-time and
with uncompromising reliability. Since Fall 2009, we have
been engaged in the design and development of this type of
data collection infrastructure via our work in Project EPIC
(Empowering the Public with Information in Crisis) [7].

We have designed and developed this infrastructure in
an iterative fashion, implementing it initially using a stand-
ard, three-tier web architecture. We then expanded the sys-
tem to expose layers of services that could be leveraged by
other research groups—as well as within our own team—to
isolate the complexities of interacting with our data model
and permit reuse of our collection tools. We also exposed a
layer of web services to allow geographically distributed
mobile clients better access to our services and data. While
these are modern software engineering practices, we were
eventually faced with the challenge of scaling our persis-
tence tier due to the enormous amounts of data produced by
even a single mass emergency event [1], leading to the
need for us to pursue additional techniques and technology.

We report here on the current state and future direction
of the data collection infrastructure we are developing to
support research in crisis informatics. Software engineering
has begun to play an even more critical role than we could
have initially imagined in this domain. The data collected
and stored by our system are vital to the research of our
colleagues in such areas as natural language processing
(NLP), systems and security, internet policy, and human
centered computing (HCC). For these groups to extract

191

representative samples and to make statistically significant
research claims they rely almost entirely on the accurate
and timely collection of social media data by our system.

This dependence puts constraints of scalability and ro-
bustness at the forefront of system design, often receiving
priority over simple feature requests involving our analysis
tools. These constraints put a great deal of pressure on our
software engineering research team because the work they
do on the design and development of the infrastructure is
often concealed from the rest of the research group. Having
accurate and complete data sets are often thought of as a
given by research colleagues, who have become accus-
tomed to working with publicly available data sets such as
the “Brown Corpus” [6]. Our goal is to meet this expecta-
tion and provide them with near real-time access to data
sets of similar quality. In designing a system to support
these highly demanding needs we are tasked with providing
a system that is fault-tolerant in a number of areas involv-
ing highly distributed and scalable systems—characteristics
not typically required when developing software prototypes
in service of software engineering research.

2. Background
Project EPIC’s data collection infrastructure is composed
of multiple services that can be leveraged individually or in
composition. These services abstract away the inherent
complexities present in collecting, storing, and analyzing
status messages from the Twitter micro-blogging platform.
Each service exposes a well-defined set of interfaces that
can be utilized as-is or extended to meet the varying needs
of a particular client. Project EPIC shares these services
across multiple web and command line applications run-
ning on separate machines and in separate Java virtual ma-
chines allowing each application to create, modify, and
query entities in a consistent way on a shared data store [1].

Like many web architectures, our first choice for a stor-
age solution was a traditional relational data store. For our
purposes we chose the open source relational database
management system, MySQL.1 It offered the best set of
features for our project’s needs and is widely used amongst
some of the biggest web companies in existence, including
Facebook and Flickr. We also heavily relied upon the popu-
lar object relational mapping (ORM) framework, Hiber-
nate, which is known to integrate well with MySQL. The
focus at the time of the initial system design was on quickly
providing our colleagues with a set of features that would
be immediately useful in collecting the datasets they need-
ed to conduct their own research. Scalability and reliability

1 Note: All of the specific technologies mentioned in this paper are either
well known or easily found via an Internet search.

were considered but, as with many initial projects, it was
difficult to anticipate the scope of our storage needs.

Although it is well known that traditional relational da-
tabases can be made to scale through techniques such as the
sharding of data amongst a set of machines or the acquisi-
tion of often-expensive hardware, we report here on our
investigation into a class of technologies referred to as
NoSQL. The requirements placed on our infrastructure by
our research colleagues are those where current NoSQL
technologies excel, such as high availability and scalability.
In this paper, we report on the challenges facing our soft-
ware engineering group as we transition from a MySQL-
only persistence architecture to a hybrid model which
makes use of both MySQL and NoSQL.

3. NoSQL
NoSQL is a term used to describe a broad class of technol-
ogies that provide an alternative approach to data storage
compared with traditional relation database management
systems. Often these technologies provide the user with
low-cost solutions to the problems of high availability and
scalability at the loss of a flexible query language, making
ad hoc access of the data generally more difficult. The term
NoSQL was initially meant to make this clear by standing
for “no SQL” but the term has more recently been updated
to mean “not only SQL” as very few production systems
eliminate relational databases altogether.

The current offerings of these technologies are heavily
influenced by Google’s Bigtable [2] and Amazon’s Dyna-
mo [4] systems. Current NoSQL systems include: HBase,
MongoDB, Riak, Voldemort, Cassandra, Memcached, To-
kyo Cabinet, Redis, and CouchDB. Each has its own spe-
cialties and they are often differentiated by how they can
scale to handle extremely large datasets.

In contrast to a relational database, a NoSQL datastore
attempts to group similar data together on disk to limit the
number of seeks required to manipulate data to improve
access times. The data models provided by NoSQL systems
often force the user to structure their data in easily distrib-
utable multidimensional maps (across a cluster of ma-
chines). Access to these key/value maps is provided by
APIs that expose traditional, easily understood map opera-
tions (i.e. get, put, contains, and remove). This approach
has the added benefit of allowing the segments of the data
to be read and processed in parallel using a MapReduce [3]
framework, such as Hadoop. Project EPIC has chosen to
migrate the data collection aspect of its software architec-
ture to the Apache open source project Cassandra [5]. This
decision was driven in part due to the growing popularity
and high development activity on the Cassandra project as
well as the availability of a newly released product from
DataStax, which bundles together Cassandra, Hadoop, and
Hive. Hive offers a SQL-like syntax for analyzing data
stored in Hadoop; it is an attempt to provide a query lan-

192

guage to those projects that prefer the query functionality
provided by relational storage technologies over the
Bigtable-influenced, non-relational APIs of NoSQL.

3.1 Cassandra

Cassandra was originally a project developed at the popular
social media site, Facebook, to serve data to hundreds of
millions of users during peak usage levels [5]. Specifically,
it was designed to fulfill the storage requirements of the
Inbox Search feature, which allowed users to quickly
search all the contents of their message inbox. It was re-
leased to the open source community in July 2008, later
transitioning into an Apache Incubator project in March
2009. It is now in commercial use at a variety of compa-
nies, such as Digg, Reddit, and Twitter.

Cassandra is a mix of techniques taken from Bigtable
and Dynamo, essentially running the Bigtable data model
[2] on top of the Dynamo fully-distributed architecture [4].
It possesses the most favorable traits of both its predeces-
sors resulting in a fault tolerant, decentralized system with
rich data modeling capabilities. It is fully distributed and
even allows for replication to take place between data cen-
ters. Cassandra was an ideal fit for the research goals of
Project EPIC because it directly attacks the complex prob-
lems of data replication, scalability, and 100% uptime
while allowing our existing data models to be represented
(albeit not without significant work in making the transi-
tion—see Section 6).

4. System Architecture
Project EPIC’s existing architecture (see Fig. 1) is a pro-
duction-ready system that includes multiple web and com-
mand line applications. In its two years of deployment it
has collected over 2B disaster-related status messages cov-
ering numerous mass emergency events that occurred in
2010-2012 while maintaining 99% uptime. This reliability
has been achieved through careful design of the infrastruc-
ture’s service tier, which is responsible for abstracting the
inherent complexities involved in data collection, persis-
tence, and aggregation from disparate sources [1].

The service tier relies on the persistence tier to handle
all interactions with the data store. Initially these interac-
tions were limited to MySQL, taking responsibility for iso-
lating and abstracting away the complexities of managing
database create, read, update, and delete (CRUD) opera-
tions, transactions, and queries. These interactions are ac-
complished through the use of a callback that wraps logic
defined in the service tier that will eventually be executed
in the persistence tier, often within the context of a data-
base transaction. The configuration of the persistence tier is
done through the use of property files, allowing clients to
specify, at run-time, such settings as database hosts, ports,
and names. Indeed, it would even be possible for a particu-
lar client to configure services to communicate with com-

pletely separate data stores. This can be easily accom-
plished because all of Project EPIC services are wired at
run-time through the use of the Spring dependency injec-
tion framework. This allows the service consumer to con-
figure each service independently and, in some cases, even
swap out configuration settings during program execution.
The use of the Spring framework also enables a high degree
of modularity, increasing testability through mock objects
frameworks (e.g. JMock), and allowing our team to devel-
op the infrastructure incrementally.

A strong advantage of using Project EPIC’s service tier
is the ability to work with a rich set of domain objects.
These domain objects model many of the commonly en-
countered artifacts of crisis informatics research, providing
getter and setter methods for each available property. An
example domain object is the Tweet object, which exposes
such attributes as the user that generated the tweet, the time
the tweet was created, and the text of the tweet. If used in
conjunction with the appropriate service, all fields are au-
tomatically populated for the consumer of the service re-
gardless of the source of the tweet. Currently a tweet may
be retrieved directly from Twitter over HTTP, or from any
relational database, or a Lucene index. The client requires
no specialized knowledge for how to retrieve a tweet
matching their needs from each potential data source,
which otherwise would require the knowledge of many
different APIs; instead the client is simply returned a fully
populated object graph that fulfills the constraints of the
query issued by the client.

The flexibility of this architecture allows for the addition
of a number of different persistent storage solutions without
changing the client software. As long as the contract pro-
vided by the service to the client remains valid, how the
persistence tier chooses to store the information should be
irrelevant to the client. The Project EPIC architecture then
allows for the addition of a high availability storage solu-
tion, in this case Cassandra, to be introduced incrementally
into the system without breaking current clients. This tran-
sition would not have been possible if our clients had been
interacting directly with our data stores rather than the ab-
stract interfaces of our service and persistence tiers.

5. Data Model
One of the key design changes that must be accomplished
for a successful transition from relational technology to the
use of NoSQL techniques and technology is the transfor-
mation of the system’s existing data model. Indeed, this can
be a challenging task. Software engineering students are
taught to model the world as objects that interact with one
another via messages and to think of relationships between
objects in terms of one-to-one, one-to-many, many-to-one,
and many-to-many. A single object is seldom valuable
without well-defined relationships with other objects. This
style of design is well suited for transferring an object

193

model into a relational database. The relational style allows
a software engineer to model objects as database tables and
the relationships between objects as primary and foreign
keys that link the tables together. These relationships can
then be exploited by issuing queries via SQL.

Today there is a direct, well-traveled path for software
engineers to take requirements and develop complex mod-
els that are easily represented in traditional relational data
stores. Requirements can be read and easily translated into
UML, which is used to model complex relations and ac-
tions. Current UML tools can even generate the source
code for classes from UML diagrams. That code can then
be annotated using frameworks like Hibernate to automati-
cally generate the necessary database tables to persist ob-
jects without requiring the developer to have any
knowledge of the underlying relational database. The tasks

required to take an arbitrary data model from a set of re-
quirements to a fully functioning persistence tier have been
abstracted fantastically well. These are very valuable tools
to have available to modern day software engineers as it
allows a software engineer to focus on the application be-
ing built not on the complex details required to create and
manage a database. It is now standard practice to rely on
ORM frameworks for handling all interactions with the
database, enabling the client to interact only with objects
and their relationships. Indeed, Project EPIC’s persistence
and service tiers and the models they share are based on
these same best practices.

Project EPIC’s data model is a rich set of plain old Java
objects (POJOs). POJOs are often referred to as Java beans,
implying that they conform to the convention that each
object exposes a set of properties that will have similarly

Figure 1. The Project EPIC software architecture before the addition of NoSQL technologies [1]. As a testament to its
flexible, abstract design, the architecture remains largely the same after the transition. Existing services can continue to
access data initially persisted in MySQL and Lucene. In the persistence layer, new infrastructure is added to manage ac-
cess to a Casandra cluster (see Fig. 7). New services can then be created to access the new persistence infrastructure.

MySQL

Administration
Interface

Twitter
Collection &

Search

Twitter Friends
& Followers

Admin
Services

SocialGraph
Services

TwitterStatus
Services

Binders

RequestService

TransactionService

Twitter

Spring
Containers

Applications

JPA/Hibernate

Application

Service

Persistence

Database

Web
Browser

Lucene

194

named getter and setter methods also available. As an ex-
ample a Person object with a name property will, by con-
vention, expose two methods: getName() and setName().
This allows other Java frameworks to make assumptions
about how to interact with this object. Using run-time re-
flection it becomes possible to access or define the value of
any object property easily using the Java bean convention.
The Java Persistence API (JPA), which defines a specifica-
tion for automatically persisting Java objects, makes use of
these POJOs. All of Project EPIC’s domain objects are
marked with Java 5.0 annotations that allow them to be
persisted using the JPA with little effort on behalf of the
development team. This technology allowed our team to
move from whiteboard to a fully functioning persistence
system in a short amount of time simply by following JPA
best practices. However—shortly after initial deployment—
it became clear to the team that although we were able to
develop and deploy a system quickly, we were ignorant of
details that cause performance bottlenecks in these systems.

JPA provides the developer with a simple set of annota-
tions to define how to persist object properties and object
relationships. Objects are often automatically discovered
via the @Entity annotation and database tables, column
names, and column types are often created via reflection of
the object’s properties. Relationships between objects can
be persisted through the use of the @OneToOne,
@OneToMany, @ManyToOne, and @ManyToMany anno-
tations. These annotations are extremely powerful as they
enable a developer to model a variety of complex object
relationships; incredibly, these annotations are able to au-
tomatically generate complex primary keys, foreign keys,
and join tables that are needed to model these relationships
in the underlying database. Although a great and necessary
asset, these annotations can produce a variety of perfor-
mance problems forcing the relational database into ineffi-
cient operations to support an arbitrary model being utilized
in a separate tier of the application.

For example, in Fig. 2, we present a simplified version
of the object model we use when collecting data from Twit-
ter during a disaster event: Users generate tweets; tweets
can be associated with one or more Events. Collecting data
from Twitter during a mass emergency event is the primary
focus of the Project EPIC data collection infrastructure.
Collection must be done in real-time with little to no errors
during the designated event window. Tweets collected dur-
ing an event remain associated with that event. As an ex-

ample, during March of 2011, Project EPIC was monitoring
several events including the Japan earthquake; the continu-
ing conflicts of the “Arab Spring”; the Christchurch, New
Zealand earthquake; and a local wildfire near Boulder,
Colorado. Due to the constraints of the Twitter Streaming
API, our infrastructure returned tweets that match any of up
to 400 distinct search terms. The infrastructure must ana-
lyze each tweet returned by that API and associate it with
its corresponding event(s). Once data collection for an
event ends, the corresponding tweets can be exported to a
variety of formats or moved from production to other ma-
chines to free up storage space for new events.

There is a many-to-many relationship between Event
and Tweet and there is a one-to-many relationship between
User and Tweet. If we annotated the Java objects that rep-
resent Event, Tweet and User with the @ManyToMany and
the @OneToMany annotations, an object-relational manag-
er such as Hibernate would automatically produce the join
tables and foreign keys in a relational data store that would
allow, e.g., a developer to traverse from an Event object to
a collection containing all of that event’s Tweet objects.
The problem is that Hibernate will create that collection
whether it contains 100 Tweets or 75 million (the size of
our Haiti dataset). In the latter case, the client program will
sit blocked as Hibernate pulls back the information needed
to instantiate 75 million instances of the Tweet class and
will eventually crash as the system runs out of memory.

There are other issues that can occur with the use of
ORM technologies at scale but this example illustrates the
essential problem: ORM frameworks can not scale to truly
large datasets as the relationships between objects will
cause the framework to pull information into memory un-
necessarily. For instance, the simple act of collecting a new
tweet from Twitter and adding it to an existing event can
cause an object-relational manger to pull into memory all
of the tweets associated with an event if the system is not
engineered to guard against such automatic behavior. This
automatic behavior is incredibly useful; it unfortunately
just does not scale to large datasets.

Modeling relationships is the most difficult aspect of us-
ing ORM frameworks. As we have just seen, application-
level logical abstractions often do not translate into effi-
cient storage representations. This makes it very difficult to
build a highly available and scalable application using these
technologies, especially when following what are widely
held as good software engineering principles such as ob-
ject-oriented design heuristics and data normalization.
What we have found is that in order to enable scalability
many of these software engineering best practices must be
employed outside of the persistence tier. In the world of
high scalability, data is often replicated and distributed
amongst hundreds or thousands of machines. Normalized,
relational data have no place here, and this in turn leads to
design choices that deal with the complexities associated

Figure 2. Project EPIC’s simplified object model for col-
lecting data from Twitter during a disaster event.

195

with highly scalable and distributed systems that do not
mesh well with the classical software engineering view of
the world. But, these tradeoffs typically enable true and
easy horizontal scalability, something that is difficult to
achieve with a traditional relational database system.

6. Making the Transition
The data collection aspect of Project EPIC’s software infra-
structure was identified as the first piece of the architecture
to be transitioned to NoSQL technology. Now that we have
billions of tweets to store and analyze, the benefits of mak-
ing this transition are many. Data replication, horizontally-
scalable storage, and high availability are characteristics
that are difficult to achieve with our initial design based on
relational databases but are straightforward to achieve with
NoSQL. Additionally, our team was not made up of profes-
sional system administrators yet more and more of our dai-
ly tasks were moving from software engineering research to
monitoring, maintaining, and scaling our existing storage
solution. Moving our events and tweets into a NoSQL data
store fulfills many of our storage needs and promises to
reduce the maintenance tasks that were taking us away
from our research. In addition, the transition presented sev-
eral software engineering and data modeling challenges
with implications for software architecture and the design
of scalable software systems.

To make the transition, we needed to ensure that the ex-
isting services would not break simply because our data
moved from a relational database to a NoSQL platform.
The current service tier allows clients to retrieve all tweets
collected during an event. An example would be a client
asking for all tweets associated with the March 2011 Japan
earthquake. The service tier also allows for the retrieval of
a set of tweets by user regardless of event association. Fi-
nally, our research colleagues require the ability to retrieve
tweets by specifying a date range, since it is often neces-
sary to focus on a subset of the tweets collected during an
event. We will address each one of these concerns individ-
ually and how these requests require a specific approach to
object/data modeling within a NoSQL data store.

6.1 Events and Tweets

As mentioned above, Project EPIC has decided to adopt
Cassandra, a NoSQL technology developed and maintained

by the Apache Software Foundation. Cassandra directly
addresses the need to have our data replicated across multi-
ple machines to enable high availability; in addition, it pro-
vides a flexible mechanism for modeling the objects within
our application domain. Cassandra makes use of a data
model similar to that described in the work on Google’s
Bigtable [2]. In particular, Cassandra provides modeling
concepts similar to Bigtable’s rows, columns, and column
families. Cassandra also exposes another type known as a
super column; however super columns have been shown to
impose a 10-15% performance penalty on reads and writes,
so we have decided not to use them as our current object
modeling tasks do not require their use.

The first step in transitioning our existing relational
model is denormalizing our data. In a relational model, a
many-to-many relationship would require a join table, tying
events to tweets, allowing a single tweet to be associated
with many events. Modeling the same type of relationship
in Cassandra can be done in two ways. First, it is possible
to maintain a join table representation as a column family
(in essence maintaining the data in a relational form). An-
other option, more suited to our purposes, is to simply store
the representation of the tweet in multiple places. Although
this duplication may seem like a poor choice as it goes
against the practices of normalizing (i.e. not duplicating)
data in the relational style, in NoSQL the assumption is that
“storage is cheap” and one should not shy away from stor-
ing duplicate copies of an artifact when necessary.

Cassandra makes use of column families to store its data
(see Fig. 3). A column family consists of rows that point to
many columns. Each column has a column name and a col-
umn value. This structure is essentially a hash table of hash
tables. Note: there is no requirement that each row store the
same columns. One row can have columns x, y, and z stor-
ing a string, an integer and a date while the next row has
columns a, b, and c storing an integer, a float and a string.

We will be using the column family data structure to
model the relationship between Events and Tweets. For our
purposes we will create one column family called Events.
This column family will use event data as its row key and
tweet data for its columns. A row key in Cassandra is a
unique key that allows the client to index into the column
family and retrieve columns. Row keys can be of any num-
ber of types including—but not limited to—strings, dates,
and numbers. With respect to Fig. 2, we would like to re-
trieve tweets based on event names. It would also be possi-
ble to generate unique event ids and maintain the mappings
between the event names and the unique ids somewhere
else. Indeed, this is something that we do in our production
system but for the purposes of illustration we will simply
use a unique event name as our row key. Cassandra can
then use these keys to distribute and/or replicate our data
across a cluster of machines.

Figure 3. Casandra’s Column Family: Each row maps to a
potentially different set of columns.

196

The next step in converting our existing relational model
will be storing the tweets themselves. Each tweet is given a
unique numeric identifier from Twitter. This unique id will
be used as the column name for our event columns. This
decision merits some explanation. Cassandra is a schema-
less data store, which means that it enforces no require-
ments that the rows contain similar columns, as mentioned
above. One example where this would occur would be in
storing a set of users and their attributes. The unique
username would serve as the row key and the associated
columns would store the attributes allowing the retrieval of
attribute values by attribute name. As such, a client could
ask for a user’s date of birth by specifying the row key,
perhaps jsmith, and the attribute of interest, perhaps
date_of_birth. This would return to the client the user’s
date of birth. Our storage of events and tweets will not
work like this since tweets are delivered with a large set of
metadata that changes over time (as Twitter evolves the
services and information it provides to its developers). We
take advantage of Cassandra’s lack of schema enforcement
to store a new tweet in every column of an event row, using
the tweet’s unique id as the column name. Thus, each row
in our Events column family will contain a different num-
ber of columns based on the number of tweets collected for
that event (which can number in the tens of millions or
more). The value for each column will be the raw JSON
object that Twitter delivered to us at the time of collection
(see Fig. 4). A column value can be of any number of
types. In this example JSON can simply be stored as a
string or it may be advantageous to store the JSON as a
series of bytes in a compressed format, requiring compres-
sion and expansion for all writes and reads. These opera-
tions could be isolated within the service or persistence
tiers and may limit the amount of time spent on IO result-
ing in increased performance.

These data modeling choices allow us to map our exist-
ing object model into Cassandra while providing us with
the most flexibility for analyzing the data at a later point in
time. By storing the full JSON object, no information about
the tweet is lost. However, since each tweet contains a
complete copy of its user’s metadata, this approach results
in a large amount of data duplication since rather than stor-
ing the information about a user only once (as we would in
a relational model) we now are storing the entire user ob-
ject for each tweet that a user contributed to the event.

Despite this duplication, this approach to storing the da-
ta is in fact better than our current relational structure be-
cause, as mentioned above, the attributes of a tweet
returned to us by Twitter are often subject to change with-
out notice. With the relational model, you are either forced
to store the tweet as a BLOB or CLOB (thus losing the very
power that the relational approach was trying to provide) or
you must spend time updating your schema to store the new
metadata and then migrate your entire data store to the new
schema. With NoSQL, the promise of relational functional-
ity was never offered in the first place but in exchange it
offers a data store that provides horizontal scalability
(“need more data, just add another machine to your clus-
ter”) and high availability through replication across the
cluster. However, this technique is not without its faults.
Storing the raw JSON data of the tweet as the column value
limits Cassandra’s ability to provide useful results to que-
ries against the column’s values. These concerns are ad-
dressed in the next section.

6.2 Tweets and Attributes

In some situations, our collaborators on Project EPIC may
need to run queries against the attributes of the tweets that
our data collection infrastructure has captured during an
event, across multiple events, or even independent of an
event altogether. A common case—and one our infrastruc-
ture supported before this migration—is retrieving all
tweets that have been collected for a given Twitter user. If a
user then wanted to further limit the results to tweets only
generated during a specific event, they could easily filter
the results by date or some other attribute.

To support this functionality in Cassandra, our Events
column family is not enough. It only implements traversal
of our original many-to-many relationship from events to
tweets; details concerning attributes—such as which user
created a particular tweet—are hidden away in the JSON
object stored as a column value in that column family,
which is an opaque data type from Cassandra’s point of
view. In order to go the other direction—from tweets to
events—or to search tweets directly we will need to define
a new column family in Cassandra.

There are multiple ways to model this column family for
this particular use case. One option would be to follow the
event example set forth in the previous section using the
screen_name of the user as the row key in place of the
event name. Although this would work, it is not as versatile
as we might like. It limits us to searching only on the
screen_name and not via other attributes such as the text of
the tweet, the day it was created, or its latitude and longi-
tude (if it was a geocoded tweet).

To enable this type of search, we make use of the sec-
ondary indexing feature provided by Cassandra. Secondary
indexes allow the client to execute very simple queries
against column values that can be indexed by Cassandra.

Figure 4. Events Column Family.

197

This feature makes it worth our while to model each tweet
as a row (using its unique tweet id as the row key) in which
each column corresponds to an attribute of the tweet that
we care about. We can then ask Cassandra to create a sec-
ondary index on any of the columns that we know will be
used to locate tweets independent of an event; for this use
case, we will index the screen_name column of each row.
The resulting column family can be seen in Fig. 5.

Using this representation a tweet and its attributes can
now be retrieved via a lookup on the tweet’s unique id or
by looking up all tweets that match a given value for a col-
umn that carries a secondary index. Indexing the
screen_name attribute will allow a client to request all
tweets for a given user. As an example all the tweets for a
user with a known screen_name jsmith could be retrieved
by asking for all tweets where “screen_name = ‘jsmith’”.
In addition, in order to implement the other direction of our
many-to-many relationship between Events and Tweets, we
could simply add one (or more) columns that store the
event names (or event ids) of the events each tweet is asso-
ciated with. Then, it would not matter what query brought
us to a particular tweet, since pulling the event information
from the appropriate column(s) will allow us to access in-
formation about that tweet’s events from other column fam-
ilies. However, performance may suffer slightly in this case
because the read operations of the disk may not be sequen-
tial like they will be for the Events column family.

6.3 Time Slicing Events

An important aspect of data collected by Project EPIC is
the matter of temporality: When was a tweet collected?
When did an event start? How active was a particular user
on this day? Many of our research colleagues base their
analysis techniques on time windows and timelines. As
such our data model must support the ability to partition
data by time. The fidelity of these time windows can range
from one day to the full duration of an event. To support
that functionality using NoSQL technology, we will store
the data in the smallest increment required, one day, and
“roll-up” to a desired duration. Doing so will enable a high
degree of flexibility for use by our existing services.

To support time slicing of tweets across events we will
need to segment our data by the day the tweet was collected

from Twitter. To accomplish this we will need a mapping
of days to tweets collected on those days. This could be
done via the addition of a new column family. That ap-
proach, however, would require the service tier to join to-
gether the data from the new column family and the Events
column family, which is not ideal for our purposes. Until
now we have omitted discussing a common “gotcha” in
NoSQL data modeling. Indeed, it is a problem present even
in our previous discussion of the Events column family.

A single event in the Events column family may contain
an extremely large number of tweets (in the 10s of mil-
lions). This results in a single row key with an extremely
large number of columns. Generally this is considered a
bad practice. When Cassandra attempts to replicate keys
and their associated data (columns) around a cluster of ma-
chines all of the key’s data is replicated as a unit. This can
result in long delays or timeouts when adding additional
nodes to the cluster. Our Events column family, as shown
in Fig. 4, could encounter scalability problems during
events of long duration. Adding the requirement of support-
ing the partitioning of the data by time actually enables and
ensures linear scalability. By decreasing the number of col-
umns stored with each key the amount of data that must be
moved with each key when it is replicated across the cluster
is also decreased, resulting in faster key replication. In fact,
data reads may also be more efficient because the client
may now specify the exact data they are interested in re-
ceiving instead of requesting all the data available. To ena-
ble this new approach, we must slightly modify our Events
column family via the use of a composite row key.

Our initial row key for our Events column family was
simply a unique event name. This key mapped a single
event to all the tweets associated with the event. Since the
row key for our Events column family is simply a string,
we will make a small modification to the string to support
the time partitioning requirements. The new row key will
be a composite string starting with the unique event name
and ending with the day the tweets in this row were collect-
ed; the two elements of a composite key are separated—by
convention—with a colon (“:”).

Given a date range and an event name, we can now con-
struct the required composite keys in our service tier to
retrieve the desired set of tweets. This change can be seen
in Fig. 6. This simple change now allows for the full range
of time slicing operations required by our research col-
leagues and also greatly enhances scalability by preventing
the rows of the Events column family from becoming too
large to efficiently replicate across a cluster. In addition,
this scheme is easily extended to handle time windows of
finer granularity by splitting existing rows into smaller
rows and extending the key to also include a timestamp.

Figure 5. Tweets Column Family.

198

7. After the Transition
The previous section discussed various data modeling chal-
lenges that software engineers will encounter when their
scalability needs force a transition away from relational
technology and towards NoSQL technology. However, this
transition is not one of completely replacing the former
with the latter—hence the “not only SQL” expansion for
the NoSQL term—but rather adding NoSQL technologies
into an existing software infrastructure providing it with a
hybrid persistence architecture.

After the addition, of NoSQL technologies to Project
EPIC’s data collection infrastructure, its software architec-
ture now takes the form shown in Fig. 7. The existing per-
sistence-related components—our transaction service,
Hibernate, MySQL, and Lucene—are all still present and
all services and applications that previously made use of
them still function with their previous levels of scalability
and reliability [1]. Now, however, an additional API called
Hector exists within the persistence tier and is now availa-
ble to any service within our service tier. Hector is a Java
wrapper for Cassandra’s native API, which makes use of
the Apache project Thrift. Thrift handles interactions with
the services of a Cassandra cluster and Hector provides
access to Thrift via a Java API.

Project EPIC’s software architecture was well-suited for
a transition from a relational-only persistence architecture
to a hybrid persistence architecture due to its use of the
Spring dependency injection framework. In Fig. 1, all of
the services shown in the service tier have abstract interfac-
es that get implemented by particular concrete classes. All
interactions between services occur via the abstract inter-
faces and rely on Spring to plug-in concrete implementa-
tions at run-time to achieve desired functionality.

So, while it was not made explicit in Fig. 1, it is not the
TwitterStatusService that talks to the TransactionService

but the MySQLTwitterStatusService that talks to the
ProjectEPICTransactionService at run-time. These latter
two classes are concrete implementations of the previous
two abstract interfaces. MySQLTwitterStatusService
knows how to make use of the transaction service and Hi-
bernate to store and access tweets in MySQL. Meanwhile
the Twitter Collection & Search application that lives with-
in the application tier knows only about the abstract
TwitterStatusService interface and knows nothing about
MySQL and has no dependence on it.

As a result of this carefully designed software architec-
ture, the transition to Cassandra within the infrastructure is
easily accommodated. We simply needed to create a con-
crete implementation of the TwitterStatusService called
CassandraTwitterStatusService that encapsulates the
knowledge of how to create the appropriate column fami-
lies in Cassandra (via Hector) to store events, tweets and
twitter users after they have been retrieved from Twitter by
the RequestService (also an abstract interface with multiple
concrete implementations) shown in Fig. 1. Since
CassandraTwitterStatusService is hidden behind the ab-
stract TwitterStatusService interface, the existing Twitter
Collection & Search application runs unmodified on top of
this new implementation and now has the ability to collect
and search over significantly larger datasets than before.
The difficult part in making this transition was the data
modeling challenges discussed in the previous section; the
actual transition due to the abstract and flexible nature of
our software architecture was straightforward.

Of course, in making this transition there exists the need
to create and configure a Cassandra cluster, and that is a
non-trivial task. However, developers who are in contexts
that have acquired datasets sufficient in size to require the
use of NoSQL technologies are often in settings that have
access to the system administration expertise and resources
needed to acquire the hardware, configure the cluster and
install the relevant software. While our software infrastruc-
ture can be run on a single machine, the advantages of
NoSQL technologies cannot be truly realized until they are
running on a sizeable cluster of machines.

For instance, for popular queries, Twitter can deliver 50-
60 tweets per second, twenty-four hours per day, via its
Streaming API. That translates to ~5M tweets per day.
With our old infrastructure, that rate would cause our
memory-based queues to fill with 1000s of unprocessed
tweets as Hibernate Search struggled to keep pace. Now, on
our cluster, Cassandra’s ability to provide sub-millisecond
inserts allows us to process 50-60 tweets per second with
no need to store tweets in a queue waiting for our persis-
tence mechanism to update its records. We are now confi-
dent that we can handle the 100+ tweets per second rate
(~8.6M tweets per day) that we experienced while collect-
ing data during the 2011 Japan Earthquake.

Figure 6. Events Column Family partitioned by day.

199

Indeed, during the days leading up to and including the
first week of the 2012 London Olympics (14 days), our
new infrastructure collected 40 million tweets (98.2GB) on
a 4 node Cassandra cluster, collecting on 712 user accounts
and keywords. At one point during that collection, our sys-
tem received a burst of tweets that caused our in-memory
queue to expand to 40,623 tweets; after the spike, our sys-
tem cleared that queue in less than two minutes by pro-
cessing the tweets at a rate of 491 tweets per second. We
are quite pleased with the improvements our Cassandra-
based system is providing during the collection of truly
large-scale “mass convergence” events.

It is important to note that due to the design of our soft-
ware architecture and our use of Spring, we have the ability
to deploy the Project EPIC software infrastructure in a wide
variety of configurations: from a single researcher storing
Twitter data in JSON files (we have a service not shown in
Fig. 1 and Fig. 7 that can persist tweets to a single file) to a
research group running the infrastructure on a single pow-
erful server (as Project EPIC did for its first two years) to
an even larger research group running a hybrid persistence
architecture on a large cluster of machines (as Project EPIC
does today). The use of Spring by our software infrastruc-
ture allows each of these configurations to be realized in a
straightforward manner via the editing of a few configura-

Figure 7. The architecture of the Project EPIC software infrastructure after the addition of Cassandra, a NoSQL data
store. This diagram elides details present in Fig. 1 to focus on two important aspects. The first is that none of the services
that previously depended on our initial persistence layer have to change. They can continue to store and access data in
MySQL and Lucene. The second is that those services that require the scalability and availability guarantees of NoSQL
can add an additional implementation of their service interface that stores and accesses data in Cassandra. Due to our use
of Spring, we can now flexibly plug-in the service implementations that will meet a wide range of scalability constraints.

Cassandra

Administration
Interface

Admin
Services Twitter

StatusService

Spring
Containers

•••

Hector

Application

Service

Persistence

Database MySQL

TransactionService

JPA/Hibernate

Lucene

Applications

MySQLTwitter
StatusService

CassandraTwitter
StatusService

Twitter Collection
& Search

200

tion files. It is important to note the value of this flexibility
as it is sometimes overlooked. The nature of the work done
by Project EPIC is inherently multi-disciplinary involving a
wide variety of individuals and technical skillsets. Provid-
ing an infrastructure capable of enabling any individual
involved in the research activities to collect and analyze
relevant data is a significant accomplishment.

Having performed this work to add Cassandra to the
persistence tier of our software infrastructure, we gain sig-
nificant options for advancing the research goals of Project
EPIC, especially with respect to real-time analysis. Up until
this point even providing simple statistics such as the num-
ber of data points available in our data sets had proven time
consuming and troublesome.

In particular, the move to Cassandra now allows us to
develop services that will analyze and index our datasets in
parallel. For instance, there is an implementation of Lucene
that is built on top of Cassandra. As we collect additional
datasets, we will be able to use that variant of Lucene to
make sure our index stays up-to-date even as the total num-
ber of tweets moves into the billions. Lucene also enables a
variety of information retrieval techniques to be applied to
our data at scale. Using Lucene to generate term vector
representations of our data has proven valuable in applying
similarity metrics to tweets, which allows for easy identifi-
cation of retweets and exploration of the search space.

Finally, there are analysis tools that are being developed
for Cassandra that have now become available for use in
advancing Project EPIC’s research goals. DataStax, for
instance, has developed a product that combines Hive,
Hadoop and Cassandra such that Hadoop operates directly
against Cassandra, effectively mimicking Hadoop’s native
file system HDFS. Hadoop’s MapReduce operations can
now be applied directly against data stored in Cassandra
column families enabling the use of other Hadoop compati-
ble frameworks to help us scale.

We will be leveraging the Apache project Mahout to ap-
ply distributed machine learning and data mining algo-
rithms to our large datasets, enabling a variety of clustering
and classification capabilities. The Apache project Hive
enables an SQL-like language called QL that can interact
directly with data stored in Hadoop. By using DataStax, the
data stored in Cassandra can be accessed by Hadoop and,
transitively, by Hive giving back some of the advantages of
working with a structured query language lost by transition-
ing to NoSQL. Hive allows our research team to view and
store our data in new and interesting ways without requir-
ing even the knowledge of our service tier, translating eve-
ry query into a set of MapReduce jobs that are executed in
parallel across the Cassandra cluster. This can drastically
improve the execution time of complex queries, the results
of which can be stored and made available to applications
through our service tier.

These features will allow us to provide an experimental
browsing interface into the data being stored in our Cas-
sandra cluster by our service tier. The set of services creat-
ed to support this interface can then be used by Project
EPIC researchers to understand the types of information
that can be extracted from our datasets; this, in turn, would
aid the design and implementation of new services and ap-
plications that would be directly useful to the research of
our NLP and HCC collaborators on Project EPIC.

8. Conclusions
Software engineers are increasingly encountering develop-
ment situations in which it is straightforward to collect
large amounts of data. While NoSQL technologies provide
a means for scaling beyond the capabilities of relational
databases, they bring a wealth of data modeling challenges
that make it difficult for developers to understand how best
to migrate data previously stored using a relational schema
to the schema-less world of NoSQL. In addition, NoSQL
platforms are not meant to replace relational databases,
placing pressure on software engineers to create software
infrastructures that adopt hybrid persistence architectures
that contain both types of technologies. Without the right
software architectural approach, these hybrid architectures
are difficult to achieve such that the resulting infrastructure
is maintainable and straightforward to evolve. In this paper,
we present the approach that Project EPIC has adopted to
meet the significant data modeling challenges that occur
when migrating from a relational approach to the NoSQL
approach as well as the software architecture challenges of
producing a flexible and extensible software infrastructure.
Our data collection infrastructure can now scale in a
straightforward manner to handle the increasingly large sets
of data that we collect and analyze during times of crisis in
support of our crisis informatics research agenda.

Acknowledgments
This material is based upon work sponsored by the NSF
under Grant IIS-0910586.

References
[1] Anderson K. M. & Schram A. Design and Implementation of

a Data Analytics Infrastructure in Support of Crisis Informat-
ics Research: NIER Track. In 33rd International Conference
on Software Engineering, pp. 844–847. May 2011.

[2] Chang F., Dean J., Ghemawat S., Hsieh W. C., Wallach D.
A., Burrows M., Chandra T., Fikes A. & Gruber R. E.
Bigtable: A Distributed Storage System for Structured Data.
In 7th Symposium on Operating Systems Design and Imple-
mentation, pp. 205–218. Nov. 2006.

[3] Dean, J. & Ghemawat, S. Mapreduce: Simplified Data Pro-
cessing on Large Clusters. Communications of the Associa-
tion of Computing Machinery, 51(1):107-113. Jan. 2008.

201

[4] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P.
& Vogels, W. Dynamo: Amazon's Highly Available Key-
Value Store. ACM SIGOPS Operating Systems Review,
41(6):205-220. Oct. 2007.

[5] Lakshman, A. & Malik, P. Cassandra: A Decentralized Struc-
tured Storage System. ACM SIGOPS Operating Systems Re-
view, 44(2):35-40. Apr. 2010.

[6] Malmkjaer, K,The Linguistics Encyclopedia. 2nd Edition.
Routledge, 688 pages, 2004.

[7] Palen L., Anderson K. M., Mark G., Martin J., Sicker D.,
Palmer M. & Grunwald D. A Vision for Technology-
Mediated Support for Public Participation & Assistance in
Mass Emergencies & Disasters. In Proceedings of the 2010
ACM-BCS Visions of Computer Science Conference, pp.
8:1—8:12. Edinburgh, United Kingdom, 2010.

[8] Palen L. & Liu S. B. Citizen Communications in Crisis: An-
ticipating a Future of Ict-Supported Participation. In ACM
Conference on Human Factors in Computing Systems, pp.
727–736. San Jose, CA, USA, Apr. 2007.

202

