
The Concern Manipulation Environment [OOPSLA/GPCE]
Peri Tarr, William Chung, William Harrison,

Vincent Kruskal, Harold Ossher,
Stanley M. Sutton Jr.

IBM Thomas J. Watson Research Center
P.O. Box 708

Yorktown Heights, NY 10598 USA
+1 914 784 7279

tarr@watson.ibm.com

Andrew Clement, Matthew Chapman,
Helen Hawkins, Sian January

IBM Hursley Park
Hursley Park

Hursley SO212JN England
+44 01962 816658

clemas@uk.ibm.com

ABSTRACT
The Concern Manipulation Environment (CME) aims to provide a
set of open, extensible components and a set of tools that promote
aspect-oriented software development (AOSD) throughout the
software lifecycle. It has two main goals:
� To provide an open, integrated development environment

(IDE) to enable software engineers to use AOSD techniques
throughout the software lifecycle, and to allow them to use
different AOSD approaches in an integrated manner.

� To promote the rapid development of new tools supporting
AOSD at any stage of the software lifecycle, and to serve as an
integrating platform for such tools, facilitating development and
experimentation with new AOSD approaches.

This demonstration will highlight a number of tools and
components that are useful to software developers and to AOSD
tool providers and researchers. Tools for software developers
include ones that allow developers to identify, model and
visualize concerns, aspects and relationships in their software,
covering software artifacts of any type, including both code and
non-code artifacts, and including latent concerns or aspects that
were not separated in the artifacts; that enable flexible queries
over software; and that compose/integrate aspects and other
concerns. For AOSD tool providers and researchers, the
demonstration will describe some of the CME's support for
integration of tools and approaches within the environment,
highlighting the integration of Java, AspectJ and Ant artifacts
within the CME, and how to use the CME's extensible
components to create new AOSD tools or prototypes rapidly.

Categories and Subject Descriptors
D1.m [Programming Techniques]—aspect-oriented software
development D2.6 [Software Engineering]: Programming
Environments—integrated environments, programmer
workbench. D.3.3 [Programming Languages]: Language
Constructs and Features–frameworks, patterns.

General Terms
Design, Languages.

Keywords
Aspect-oriented software development (AOSD), separation of
concern, software design, software composition, integration,
extraction, concern modeling, software query, full-lifecycle
software engineering, integrated development environment,
Eclipse open source

1. INTRODUCTION
The area of aspect-oriented software development (AOSD) has
seen much progress in the past few years towards improving the
quality of object-oriented, generative, and component-based
software engineering, including some use in large-scale
applications. Research and development efforts have
demonstrated that support for large-scale AOSD must address the
full software lifecycle, with all its tasks, activities, artifacts, their
interrelationships, and consistency across them. Thus, large-scale
AOSD requires tool, paradigm, and methodology support for:

Multiple aspect models: Different aspect models come with
different benefits and different costs. It is clear that any given
development effort will often need different approaches to
accomplish different tasks and goals, and at different stages of the
software lifecycle.

Multiple artifacts and formalisms: Different software
engineering activities produce and manipulate different artifacts,
such as use cases, designs, architectures, models, code, build and
deployment artifacts (e.g., Ant scripts), test cases, and bug reports,
and each type of artifact may be represented using different
formalisms, such as source and binary files, databases, and
collaborative development software.

Multiple tasks and activities: A variety of tasks and activities
occur in different software development processes and
methodologies..

Despite the progress in the AOSD field, we have noted the
difficulty research and development efforts have in producing new
tools, paradigms, and methodologies, and the difficulty which
AOSD end users have in adopting these technologies. This is, we
believe, largely because the development of tools to realize
different AOSD approaches represents a huge investment of time
and effort, as each one must currently be built from scratch or
from low-level abstractions. Consequently, the tools themselves
represent isolated point solutions, and rarely have any ability to
interoperate or be integrated. This has impeded the development
and validation of full-lifecycle AOSD support, and the extension

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

29

of existing technologies to other paradigms, artifacts, formalisms,
tasks, and activities. It has also significantly hindered the use of
existing tools and paradigms by end users, who find themselves
unable to use available tools and paradigms together.

The Concern Manipulation Environment (CME) [4] aims to
provide a set of open, extensible components and a set of tools
that promote aspect-oriented software development (AOSD)
throughout the software lifecycle, addressing all of the points
above. Its goals are:

� To provide an open, integrated development environment
(IDE) for those producing software using aspect-oriented
software development techniques throughout the software
lifecycle, and to allow developers to use different AOSD
approaches in an integrated manner.

� To promote the rapid development of new tools supporting
AOSD at any stage of the software lifecycle, and to serve as an
integrating platform for such tools, enabling development and
experimentation with new AOSD approaches.

Towards the first goal, the CME initially surfaces tool support for
two major AOSD approaches: the next generation of Hyper/J and
multidimensional separation of concerns [2], and AspectJ [1],
while providing underlying support for a broad spectrum of
AOSD approaches. These two approaches and sets of tools are
integrated seamlessly within the CME, along with (and largely
through the means of) generic support for querying software and
for modeling, extracting and composing concerns.

To address the second goal, the CME provides a rich collection of
reusable components, with a wide variety of open points, which
provide AOSD tool developers with higher-level abstractions with
which to build and/or integrate AOSD tools and other artifact
languages, such as UML, C++, XML, etc. The CME is now an
Eclipse [3] open source project, and the first beta release occurred
in April 2004. The tools are built as Eclipse plugins, but the
underlying components do not depend on Eclipse, and they can be
used to build freestanding tools or tools for other environments.

For those seeking IDE support for AOSD, this demonstration
highlights some CME tools. Several are useful during regular
software development, even without AOSD. Tools to be shown
include ones that:

� Identify, model and visualize concerns and aspects in
software and relationships among concerns and software units
(i.e., pieces of software artifacts of any type, including both
code and non-code artifacts). Concerns can be identified up-
front, during the software’s initial creation, or on demand, at
any point during the software’s lifecycle when the concern
manifests itself. For example, an end-user feature such as
“XML streaming” may be identified early and encapsulated as a
separate concern. Other concerns may manifest later in the
software lifecycle. For example, when faced with the task of
migrating from one security protocol to another, a developer
might want a concern that encapsulates, non-invasively, all parts
of the software that pertain to the original security protocol,
even if they were not encapsulated together in the initial
software design.
The identification and modeling activity promotes software
understanding and multiple perspectives, refactoring, and re-
engineering, and it is also generally the first activity developers

undertake when identifying and separating particular aspects or
concerns. Note that this capability adds value for both AOSD
developers and Java developers who are not using AOSD, and
thus it provides a no-cost entry path to AOSD.

� Enable flexible queries over software, which help developers
to find concerns and aspects in existing software, and to
navigate and understand the software and its interrelationships.
The entry barrier for using this capability is also low, since this
tool provides the ability to query standard, existing Java,
AspectJ, and Ant software.

� Flexibly compose/integrate aspects and other concerns. This
supports, for example, optional features or instrumentation,
mix-and-match of features, and product lines.

� Disentangle latent concerns or aspects from existing
software, making them first-class entities.

Development incorporating multiple types of artifacts, such as
Java, AspectJ, Ant, and UML, towards full lifecycle AOSD
support, will be described, as will the integrated use of Ant build
control, AspectJ weaving and Hyper/J composition on the same
software and projects.

For AOSD tool providers and researchers, this demonstration will
describe:

� Some of the CME's support for integration of tools and
support for new languages and paradigms within the
environment. Different levels of integration are supported. For
example, at the highest level, the concern and relationship
modeling and visualization capabilities are generic across
different AOSD approaches, and can be used to provide end
users with uniform access to concerns, aspects, and
relationships, no matter what formalism or language is used to
represent the underlying artifacts. Deeper integration occurs via
open points within various components. Support for other
artifacts, such as AspectJ and Ant, are provided and integrated
using different CME open points.

� How to use the CME's extensible components to create
and/or integrate AOSD tools, technologies, or prototypes more
rapidly. For example, high-quality tools for any AOSD
approach must clearly identify join points and show what is
attached to them. The CME provides generic modeling and
visualization support for this.

For more information, see the CME web site at
http://www.eclipse.org/cme.

2. REFERENCES
[1] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,

Jeffrey Palm and William C. Griswold. “Getting Started with
AspectJ.” CACM 44(10): 59–65, October 2001.

[2] Harold Ossher and Peri Tarr. “Using Multi-Dimensional
Separation of Concerns to (Re)Shape Evolving Software.”
CACM 44(10): 43–50, October 2001.

[3] http://www.eclipse.org.
[4] http://www.eclipse.org/cme.

30

