
Object-Oriented, Structural
Software Configuration Management

Tien N. Nguyen
Dept. of EECS

Univ. of Wisconsin-Milwaukee

tien@cs.uwm.edu

Ethan V. Munson
Dept. of EECS

Univ. of Wisconsin-Milwaukee

munson@cs.uwm.edu

John T. Boyland
Dept. of EECS

Univ. of Wisconsin-Milwaukee

boyland@cs.uwm.edu

ABSTRACT
Capturing the evolution of logical objects and structures in a soft-
ware project is crucial to the development of a high-quality soft-
ware. This research demonstration presents anobject-orientedap-
proach to managing the evolution of system objects at thelog-
ical level. Keys to our approach are itsextensible, logical,and
object-oriented system modelandstructure versioning framework
in which types of logical objects and structures in a software system
are extended from a small set of the system model’s basic entities,
allowing them to be versioned in afine-grainedmanner andinde-
pendentof the physical file structure. Changes to all logical objects
and structures are captured and related to each other in a tightly
connected and cohesive manner via theMolhadoproduct version-
ing software configuration management (SCM) infrastructure. We
also demonstrate our object-oriented SCM approach by applying
it in different development paradigms such as UML-based object-
oriented software development, architecture-based software devel-
opment, and Web application development.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management

General Terms: Management

Keywords: Object-Oriented, Software Configuration Management,
Version Control

1. INTRODUCTION
The ability to manage the evolution of these logical abstractions,

objects, and structures during a design and implementation process
is crucial to the development of a high-quality software. However,
manyfile-orientedSCM systems treat a software system as a “set of
files” in directories on a file system, and consistent configurations
are defined implicitly as sets of file versions with a certain label or
tag. This creates an impedance mismatch between the design and
implementation domain (architectural level) and the SCM domain
(file level). SCM systems, whose concepts are heavily based on
physical structure can become burdensome for ordinary develop-
ers partly because design and implementation methods and SCM
infrastructures require different mental models.

Even advanced SCM systems, which can capture the evolution
of non-program software artifacts, do not provide much support be-
yond storing different versions of those artifacts. For example, in
current practice, system architecture is often versioned as simple
text or graphic files, whose logical contents are irrelevant to SCM
systems. Therefore, the semantic connection between the architec-

Copyright is held by the author/owner.
OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

tural entities and source code is difficult to manage. Some systems
heavily depend on a line-oriented model of internal changes that
disregardslogical structures of software artifacts. In file-oriented
SCM systems, logical relationships among software objects during
a development process are not versioned. For example, Java classes
are often versioned in terms of files, therefore, the evolution of the
class hierarchy among them is hardly managed.

To minimize the gap between software designs and SCM, the
SCM research community has investigated ways to provide version
control for software objects and structures. However, in most of ex-
isting SCM systems, a text file or a source code file is often divided
into smaller logical units (such as modules, sections, classes, or
functions), which are versioned as individual files. Then, versions
of those files are combined to create the versions of a composite
object. The problem with this approach is that the granularity of
versionable information units is fixed and the versioning system
is inflexible and inextensible. For example, in POEM [2], where
the basic versionable unit is a function, it is impossible to manage
versions of finer units such as statements or expressions. A more
serious problem is that these systems actually control versions of
parts of softwaredocuments, rather than versions oflogical ob-
jects. For example, they are able to manage versions of a fragment
of a software architecturespecificationthat describes an architec-
tural object in a system architecture. However, the evolution of the
architectural object itself isnot really managed. In brief, it is neces-
sary to haveobject-oriented SCM toolsthat allow users to manage
the evolution of logical abstractions and relationships without wor-
rying about the concrete level of actual file versioning and storing.

2. MOLHADO APPROACH
The key departure point of Molhado from other SCM approaches

is its extensible, object-oriented system modeland structure ver-
sioning framework. The system model is logical and extensible to
enable the definition of any new type of objects in accordance with
the structure versioning framework. The versioning framework al-
lows logical objects to be versioned at both fine and coarse gran-
ularities. Versions and configurations among objects are managed
via the Molhadoproduct versioningSCM infrastructure, which re-
lates all changes in objects at both design and implementation lev-
els in a cohesive manner. The details are as follows.

Unlike other SCM models, Molhado places all system objects
in a uniform, global version space. A versionis global across the
whole project and is a point in atree-structured discrete timeab-
straction, rather than being aparticular stateof a system object as
in other versioning models. The state of the whole software system
is captured at certain discrete tree-based time points and only these
captured versions can be retrieved in later sessions. Thecurrent
versionis the version designating the current state of the project.

35



When the current version is set to a captured version, the state of
the whole project is set back to that version. Changes made to the
project at the current version create a temporary version,branch-
ing off the current version. That temporary version will only be
recorded if a user explicitly requests that it be captured. This ap-
proach is calledproduct versioning.

In Molhado, logical objects and structures are built from a prim-
itive data model, namedFluid Internal Representation(IR) [1]. In
the model, anodeis the basic unit of identity and is used to repre-
sent any abstraction. Aslot is a memory location that can store a
value in any data type, possibly a reference to a node or a sequence
of slots. A slot can exist in isolation but more typically slots are
attached to nodes, using anattribute. There are three kinds of slots.
A constant slotis immutable; such a slot can only be given a value
once, when it is defined. Asimple slotmay be assigned even af-
ter it has been defined. The third kind of slot is theversioned slot,
which may have different values in different versions. The data
model can thus be regarded as an attribute table whose rows corre-
spond to nodes and columns correspond to attributes and the cells
are slots. Once we add versioning, the table gets a third dimen-
sion: the version. Fluid’s persistence model can store and retrieve
different types of versioned data in attribute tables. From Fluid
IR, a fine-grained versioning algorithm is developed fortreesand
directed graphs. Trees and directed graphs are built from nodes,
slots, and attributes. Depending on the current version, the algo-
rithm can properly retrieve the shape of a tree or a directed graph
and versioned slots that are associated with its nodes.

To model a software project and its logical objects, an object-
oriented system model is defined. Its basic set of entities includes
logical unit, component(atomic and composite component), and
project. Concrete logical object types in a software project will be
extended from these entities and must be built in accordance with
our structure versioning framework. In that framework, acompo-
nentbasically represents for alogical object. An atomic component
(representing for an atomic object) is the basic unit for composi-
tion and aggregation in acomposite component(representing for a
composite object). In Molhado, to accommodate fine-grained ver-
sioning, an atomic object can be internally composed of finer units,
called logical units. For example, a class hierarchy (modeled as a
composite component) is composed of classes (as atomic compo-
nents), where a class can be represented by an abstract syntax tree
(AST) of syntactical units (as logical units).

An atomic component might have no internal structure. But if
it has (e.g. a class), its internal structure is modeled by a tree or
a directed graph where each node represents a logical unit. An
object derived from this type of component must contain a tree
or a directed graph data structure built from Fluid IR. Therefore,
the internal structure of an atomic component is versioned via the
tree-based and graph-based fine-grained versioning algorithm. For
example, the history of any syntactical unit in a program or any
XML element in an XML document can be recorded. Composite
objects or logical structures such as compound documents, archi-
tectural composite components, class hierarchy, UML diagrams,
can be constructed in a similar way as atomic components. That is,
the internal structure of a composite must be represented by either
a tree or a directed graph. However, an additional “component” at-
tribute defines for each node in that tree or graph a versioned slot
referring to a component that the composite contains. A compo-
nent’s internal properties whose history needs to be captured are
represented by versioned slots that are contained within the com-
ponent as its fields. When a project version is chosen ascurrent, the
directed graph of a composite component will be correctly retrieved
and versioned slots associated with nodes in the graph will refer to

proper constituent components at the current version as well. Then,
the internal structure of each constituent component and the con-
tents of versioned slots are also properly determined.

A projectis a named entity that represents theoverall system log-
ical structureof a software project. A project has a structure that is
composed of components. Depending on the software development
framework used, a project will represent various forms of system
structures. Classical hierarchical types of overall system structure
such as classes/packages, files/directories, or more advanced types
such as UML class hierarchies or control hierarchies can be eas-
ily modeled as trees. More complex types including architectural
design diagrams, data flow diagrams, or ER diagrams require the
use of a graph-based scheme. To be general, a project contains a
directed graph. For a given node in that graph, the associated “com-
ponent” slot contains a reference to a composite or an atomic com-
ponent. Since the overall structure (i.e. aproject) is represented
as a directed graph, it is versioned according to the graph-based
versioning algorithm. Similar to composite components, the con-
struction of a consistent configuration is always guaranteed since
when a project version is chosen as current, the project’s directed
graph and components will be correctly retrieved.

The Molhado’s object-oriented SCM approach created several
benefits: 1) structure versioning infrastructure allows for defini-
tions of new object types (components) to accommodate different
software development paradigms; 2) objects can be versioned at
both fine (logical unit level) and coarse (component level) granu-
larities since the history of any abstraction represented by a node
can be recorded; 3) the approach also facilitates the construction of
comparison tools for two different versions of any structured ob-
jects, for example, the system hierarchical structure, a structured
document or a program in both structural and line-oriented fash-
ions; 4) versioned hypermedia infrastructure for software traceabil-
ity is easily built since all hypermedia structures and individual re-
lationships are uniformly versioned as other structured objects; 5)
traceability links are maintained amongobjects, rather than among
software documentsas in traditional traceability tools.

To demonstrate the use of Molhado, we built four prototypes
of object-oriented SCM systems to accommodate different soft-
ware development frameworks including architecture-based soft-
ware development [4], Web application development [5], UML-
based object-oriented development [3]. Types of objects span a
wide range from architectural elements in software architectural
designs, UML diagrams, XML, HTML, graphic documentations,
to program source code. To make Molhado compatible with file-
based SCM systems, we also produced an SCM system that is able
to support the logical document-directory organization of programs
and documentations. In brief, the OO approach in Molhado allows
us to produce SCM systems that works at the object level.

3. REFERENCES
[1] John Boyland, Aaron Greenhouse, and William L. Scherlis. The Fluid IR: An

internal representation for a software engineering environment.
http://www.fluid.cs.cmu.edu.

[2] Y. Lin and S. Reiss. Configuration management with logical structures. In
Proceedings of the Eighth International Conference on Software Engineering,
pages 298–307, 1996.

[3] Tien N. Nguyen and Ethan V. Munson. The Software Concordance: A New
Software Document Management Environment. InProceedings of ACM
Conference on Computer Documentation, ACM Press, 2003.

[4] Tien N. Nguyen, Ethan V. Munson, John T. Boyland, and Cheng Thao.
Architectural Software Configuration Management in Molhado. InProceedings
of 20th International Conference on Software Maintenance (ICSM’04). IEEE
Computer Society Press, 2004.

[5] Tien N. Nguyen, Ethan V. Munson, and Cheng Thao. Fine-grained, structured
software configuration management for Web projects. InProceedings of the
13rd International World Wide Web Conference. ACM Press, 2004.

36


