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Abstract
Originally conceived as the target platform for Java alone,
the Java Virtual Machine (JVM) has since been targeted by
other languages, one of which is Scala. This trend, however,
is not yet reflected by the benchmark suites commonly used
in JVM research. In this paper, we thus present the design
and analysis of the first full-fledged benchmark suite for
Scala. We furthermore compare the benchmarks contained
therein with those from the well-known DaCapo 9.12 bench-
mark suite and showwhere the differences are between Scala
and Java code—and where not.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Performance attributes; D.2.8 [Metrics]: Perfor-
mance measures

General Terms Languages, Measurement, Performance

Keywords Benchmarks, dynamic metrics, Scala, Java

1. Introduction
While originally conceived as a target platform of the Java
language only, the Java Virtual Machine (JVM) [31] has
since been targeted by numerous programming languages,
ranging from Ada to Z-code. Among the most popular of
these are Clojure, Groovy, JRuby, Jython, and Scala, which
have gathered a following in recent years, as they bring
expressive constructs to a stable and portable platform.
However, the benchmark suites so often used in JVM re-

search do not yet reflect this development. Not only do older
benchmark suites like SPECjbb20051 and Java Grande [10]
altogether ignore languages other than Java, but also are the
two modern benchmark suites commonly used in research

1 See http://www.spec.org/jbb2005/.
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still firmly Java-focused: The SPECjvm2008 suite2 does not
contain a single benchmark written in a non-Java language.
The DaCapo suite [7] contains only a single one, namely
jython. But while a single such benchmark might serve as
an interesting curiosity,3 it does not allow for deeper insights
into the execution characteristics of non-Java languages on
the JVM. We have therefore set out to complement the exist-
ing Java benchmark suites with a new suite featuring a large
set of non-Java applications.
The language we chose for our endeavour is Scala [34], a

statically-typed language with roots in both functional and
object-oriented programming. The reason for choosing a
single language rather than several is simple: Any relevant
benchmark suite needs to cover a broad selection of real-
world applications; choosing a single language leads to a
comprehensive yet cohesive suite. The reason for preferring
Scala over other possible candidates like Clojure, Groovy,
JRuby, or Jython is more involved: Of the aforementioned
five languages, four are dynamically-typed. But this single
language feature has significant impact [49] on the perfor-
mance of the JVM, a machine which, until recently [41],
has been specifically tailored towards a single, statically-
type language, namely Java. In contrast, the execution char-
acteristics of other statically-typed languages like Scala on
the JVM are less well understood, in part due to the lack
of a comprehensive benchmark suite. “Scala ≡ Java mod
JVM?” thus becomes an interesting research question [45]:
Does Scala code differ significantly from Java code4 when
viewed at the bytecode level?
In this paper we will therefore extensively analyze our

Scala benchmark suite with respect to various dynamic met-
rics, e.g., the benchmarks’ instruction mixes, the code hot-
ness at different levels, or the use of reflection and box-
ing. These metrics are computed for three distinct, but re-
lated reasons: First, to validate that the suite is indeed a
valid Scala benchmark suite, i.e., that Scala code contributes
significantly to the benchmarks’ executions. Second, to en-

2 See http://www.spec.org/jvm2008/.
3 The jython benchmark, e.g., exhibits very many short-lived objects.
4 For the sake of brevity, we refer to Java bytecode that was compiled from
Java and Scala sources as “Java code” and “Scala code,” respectively.
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sure that the selected Scala benchmarks exhibit a varied set
of execution characteristics. Third, to investigate whether
the Scala benchmarks’ execution characteristics differ from
those of an established Java benchmark suite. All our metrics
are hence chosen to be relevant to common JVMs but inde-
pendent of any particular implementation. We will therefore
focus exclusively on properties of bytecode rather than ma-
chine code. Moreover, our analysis is focused on code rather
than memory and pointer behaviour; a detailed study of the
latter is beyond the scope of this paper.
Our evaluation is concerned with comparing the execu-

tion characteristics of Scala and Java code;5 it is explicitly
not designed to compare the “performance of Scala” with the
“performance of ‘raw’ Java.” Such a study would require two
sets of equivalent yet idiomatic applications written in both
languages. Instead, our Scala benchmark suite, like the Da-
Capo suite we compare it against, consists of independently-
developed, real-world applications.
The scientific contributions of this paper are two-fold:

1. The design of a new, comprehensive, and open-source
Scala benchmark suite that complements the popular Da-
Capo benchmark suite [7].

2. The analysis of both suites with respect to various static
and dynamic metrics.

This paper is structured as follows: First, Section 2 gives
a brief overview of our evaluation setup. Next, Section 3
describes our benchmark suite and the design criteria we
applied. Then, Section 4 describes the metrics we used to
compare the Scala benchmarks to each other and to the Java
benchmarks of the DaCapo suite as well as the results of this
analysis. Section 5 discusses related work, before Section 6
concludes with a summary of our analysis. Finally, Section 7
suggests directions of future work. Two appendices offer
additional notes and observations on building a benchmark
suite and on the collection of dynamic metrics.

2. Evaluation Setup
In contrast to several other researchers [7, 21], we refrain
entirely from using hardware performance counters to char-
acterize the benchmark suite’s workloads. Instead, we rely
exclusively on metrics which are independent of both the
specific JVM and architecture used, as it has been shown
that, e.g., the JVM used can have a large impact for short-
running benchmarks [21]. Another, pragmatic reason for us-
ing bytecode-based metrics is that doing so does not obscure
the contribution of the source language and its compiler as
much as the JVM and its just-in-time compiler would do.
To collect metrics which are independent of the specific

JVM, we extended the JP2 calling-context profiler [42, 43]
to collect execution frequencies for basic blocks. The rich

5 Scala also compiles to CIL [20]. However, an analysis of Scala’s execution
characteristics on the .NET platform is beyond the scope of this paper.

profiles collected by the call-site aware JP2 enable us to
derive all code metrics—with one exception (see below)—
from a single, consistent set of measurements. We use a
specially-written callback [42] that ensures that only the
benchmark itself is profiled by JP2; this includes both the
benchmark’s setup and its actual iteration, but excludes JVM
startup and shutdown as well as the benchmark harness.
This methodology ensures that the results are not diluted by
startup and shutdown code [19]. Also, the Scala benchmarks
remain undiluted by Java code used only in the harness.
More information on JP2 can be found in Appendix B.
We furthermore extended TamiFlex [8] to measure the

use of reflection. All these measurements have been nor-
malized with respect to a dummy benchmark, which simply
does nothing during its iteration. This normalization step en-
sures that reflection used during JVM startup or shutdown or
within the harness does not perturb the measurements.
All measurements were conducted on a Quad-Core AMD

Opteron 8356 processor with 40 GiB of RAM running build
17.1-b03 of the Java HotSpot 64 bit Server VM (build 17.1-
b03, JRE build 1.6.0 22-b04) in mixed mode. Externally
multi-threaded benchmarks where run with the maximum
number of threads. We used version 9.12 of the DaCapo
benchmark suite and a pre-release version of our own Scala
benchmark suite. All benchmarks safe one (factorie) in
the latter suite are compiled for version 2.8.1 of the Scala
language. This ensures that any difference between Scala
benchmarks are due to the workload itself rather than due to
differences in the compiler.
The internal validity of our findings is high; both JP2 and

TamiFlex have been shown to collect stable and complete
profiles [6, 8]. The chosen JRE, however, exerts some in-
fluence on the profiles, as both Scala and Java benchmarks
spend a considerable portion of their execution in the JRE’s
code (cf. Section 3.3). This needs to be kept in mind when
interpreting the results.

3. Benchmark Design
The Scala benchmark suite is based on the latest release (ver-
sion 9.12, nicknamed “Bach”) of the DaCapo benchmark
suite, a suite already popular among JVM researchers which
specifically strives for “ease of use” [7]. Table 1 summarizes
the 12 Scala benchmarks we added to the 14 Java bench-
marks;6 thus, our suite is almost on par with the current re-
lease of the DaCapo benchmark suite and larger than its pre-
vious one, despite a more limited set of well-known appli-
cations written in Scala to choose from. To allow for easy
experimentation with different inputs, several benchmarks
come with more than the two to four input sizes (small, de-
fault, large, and huge) typical for the DaCapo benchmarks.
This gives rise to 51 unique workloads, i.e., benchmark-
input combinations. The DaCapo benchmark suite offers 44
such workloads.

6 See http://www.scalabench.org/.
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Benchmark Description Inputs (#) References

actors Trading sample with Scala and Akka actors tiny–gargantuan (6)
apparat Framework to optimize ABC, SWC, and SWF files tiny–gargantuan (6)
factorie Toolkit for deployable probabilistic modeling tiny–gargantuan (6) [32]
kiama Library for language processing small–default (2) [47]
scalac Compiler for the Scala 2 language small–large (3) [44]

scaladoc Scala documentation tool small–large (3)
scalap Scala classfile decoder small–large (3)

scalariform Code formatter for Scala tiny–huge (5)
scalatest Testing toolkit for Scala and Java programmers small–huge (4)
scalaxb XML data-binding tool tiny–huge (5)
specs Behaviour-driven design framework small–large (3)
tmt Stanford Topic Modeling Toolbox tiny–huge (5) [37]

Table 1. The 12 Scala benchmarks selected for inclusion in the benchmark suite.

3.1 Covered Application Domains

The external validity of our findings hinges on the bench-
marks’ representativeness. We have therefore chosen a large
set of applications from a range of different domains as the
basis of our benchmark suite. In fact, only two categories of
application are completely absent from the Scala benchmark
suite but present in the latest release of the DaCapo bench-
mark suite: client/server applications (tomcat, tradebeans,
and tradesoap) and in-memory databases (h2). Of these cat-
egories, the earlier release (2006-10) of the DaCapo suite
also covers in-memory databases (hsqldb). The absence of
client/server applications from our suite is explained by the
fact that all three such DaCapo benchmarks rely on either
a Servlet container or an application server, a dependency
which a Scala benchmark within this category will have to
share. In fact, a benchmark based on the popular Lift web
framework was designed [45] but then discarded, as its pro-
file proved to be dominated by the Java-based container. The
absence of in-memory databases is explained by the fact that,
to the best of our knowledge, no such Scala application yet
exists that is more than a thin wrapper around Java code.
While the range of domains covered is nevertheless

broad, several benchmarks occupy the same niche. This
was a deliberate choice made to avoid bias from prefer-
ring one application over another in a domain where Scala
is frequently used: automated testing (scalatest, specs),
source-code processing (scaladoc, scalariform), or machine-
learning (factorie, tmt). In this paper, we will thus show that
the inclusion of several applications from the same domain
is indeed justified; in particular, the respective benchmarks
exhibit a distinct instruction mix (cf. Section 4.1).

3.2 Code Size

Using established source code metrics [12], Blackburn et
al. [7] argue that the DaCapo benchmarks exhibit “much
richer code complexity, class structures, and class hierar-
chies” than their predecessors. Source code metrics, how-
ever, are less useful when assessing our Scala benchmarks
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Figure 1. Number of classes loaded and method called
at least once by the DaCapo ( ) and Scala ( ) bench-
marks (default input size).

as there are, aside from various micro-benchmarks,7 no pre-
decessors to compare the benchmarks against. Also, source
code metrics are difficult to compare across language bound-
aries. All metrics to compare Scala with Java code are thus
based on bytecode rather than source code.
The selected benchmarks are of significant code size,

comparable to those of the DaCapo benchmarks. As Fig-
ure 1 shows, even comparatively simple Scala programs like
scalap consist of thousands of classes, although the number
of methods actually called per class is, in general, slightly
lower than for their Java counterparts. This is due to the
translation strategy the Scala compiler employs [44]; a sin-
gle Scala class often results in several Java classes with few
methods apiece. This fact may have performance ramifica-

7 See http://www.scala-lang.org/node/360.
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tions, as class metadata stored by the JVM consumes a sig-
nificant amount of memory [35].
For the Scala benchmarks, abstract and interface classes

on average account for 13.8% and 13.2% of the loaded
classes, respectively. For the Java benchmarks, the situation
is similar: 11.3% and 14.1%. In case of the Scala bench-
marks, though, 48.4% of the loaded classes are marked
final. This is in stark contrast to the Java benchmarks, where
only 13.5% are marked thusly. This discrepancy is in part
explained by the Scala compiler’s translation strategy for
anonymous functions: On average, 32.8% of the classes
loaded by the Scala benchmarks represent such functions.
The methods executed at least once by the Scala bench-

marks consist, on average, of just 2.9 basic blocks, which
is much smaller than the 5.1 basic blocks found in the Java
benchmarks’ methods. Not only do methods in Scala code
generally consist of less basic blocks, they also consist of
less instructions, namely 17.3 on average, which is again
significantly smaller than the 35.8 instructions per method
of the Java benchmarks; on average, Scala methods are only
half as large as Java methods.

3.3 Code Sources

For research purposes the selected benchmarks must not
only be of significant size and representative of real-world
applications, but they must also consist primarily of Scala
code. This requirement rules out a large set of Scala pro-
grams and libraries as they are merely a thin wrapper around
Java code. To assess to what extent our benchmarks are com-
prised of Java and Scala code, respectively, we thus catego-
rize all bytecodes loaded by the benchmarks according to
their containing classes’ package names and source file at-
tributes into one of five categories:

Java Runtime. Packages java, javax, sun, com.sun, and
com.oracle; ∗.java source files

Other Java libraries. Other packages; ∗.java source files
Scala Runtime (Java code). Package scala; ∗.java
Scala Runtime (Scala code). Package scala;8 ∗.scala
Scala application and libraries. Other packages, ∗.scala
Runtime-generated classes (proxies and mock classes)

are categorized like the library that generated the class, even
though the generated class typically resides in a different
package than the generating library.
Based on the categorization, the inner circles in Figure 2

show how the loaded bytecodes are distributed among the
five classes, with the circles’ areas signifying the relative
number of bytecodes loaded by the benchmarks. As can be
seen, all benchmarks contain significant portions of Scala
code, albeit for three of them (actors, factorie, and tmt) the
actual application consists only of a rather small Scala ker-

8 The package scala.tools was excluded; it contains, e.g., the Scala com-
piler and the ScalaDoc tool that are used as benchmarks in their own right.
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Figure 2. Bytecodes loaded and executed by each of the
12 Scala benchmarks (default input size): Java runtime ( ),
Java libraries ( ), Scala runtime written in Java ( ) and
Scala ( ), and Scala application ( ).

nel. Still, in terms of bytecodes executed rather than merely
loaded, all but two benchmarks (actors, scalatest) spend at
least two thirds of their execution within these portions, as
is signified by the outer rings. The two exceptional bench-
marks nevertheless warrant inclusion in a Scala benchmark
suite: In the case of the actors benchmark, the Java code it
primarily executes is part of the Scala runtime rather than
the Java runtime. In the case of the scalatest benchmark, a
vast portion of code loaded is Scala code.
Like the scalatest benchmark, the specs benchmark is

particularly noteworthy in this respect: While it loads a large
number of bytecodes belonging to the Scala application, it
spends most of its execution elsewhere, namely in parts of
the Scala runtime. This behaviour is explained by the fact
that the workloads of both benchmarks execute a series of
tests written using the ScalaTest and Specs testing frame-
works, respectively. While the volume of test code is high,
each test is only executed once and then discarded. This
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behaviour places the emphasis on the JVM’s interpreter or
“baseline” just-in-time compiler as well as its class meta-
data organization. As such, this kind of behaviour is not
well-covered by current benchmark suites like DaCapo or
SPECjvm2008, but nevertheless of real-world importance
since tests play a large role in modern software development.
Native method invocations are rare; on average, 0.44%

of all method calls target a native method. The actors bench-
mark (1.8%), which makes heavy use of actor-based concur-
rency [29], and the scalatest benchmark (2.1%), which uses
the Java runtime library quite heavily, are the only notable
outliers. These values are very similar to those obtained for
the Java benchmarks; on average 0.49% of method calls
target native methods, with tomcat (2.0%) and trades-
oap (1.3%) being the outliers. The actual execution time
spent in native code depends on the used Java runtime and on
the concrete execution platform, as none of the benchmarks
analyzed in this paper contain any native code themselves.
Since we focus on dynamic metrics at the bytecode level,
a detailed analysis of the contribution of native code to the
overall benchmark execution time is not within the scope of
this paper. An initial study by one of the authors on native
code execution, using the SPECjvm989 and SPECjbb2005
benchmarks, can be found elsewhere [5].

4. Benchmark Analysis
In the following, we analyze the Scala and DaCapo bench-
mark suites with respect to a variety of metrics all of which
affect compilation and compiler optimizations. An analysis
with respect to properties more relevant to a JVM’s garbage
collector [7, 16] than to its interpreter and compiler is subject
to future work.
All these metrics are dynamic in nature. If we, e.g., say

that a call site targets a single method only (cf. Section 4.2)
and thus is particularly suitable for inlining, this means that
the call site in question only had a single target method
during the benchmark’s execution; the call site may or may
not be monomorphic in general. Also, any concrete JVM
may be able to infer that a call site is de-facto monomorphic
only in some of the cases, due to the inevitable limitations
of any static analysis. However, we assume an idealized
JVM for our metrics. The numbers we report are thus upper
bounds of what a JVM can infer.

4.1 Instruction Mix

The instruction mix of a benchmark can serve as an indicator
whether the application in question is, e.g., “array intensive”
or “floating-point intensive;” moreover, it may show patterns
discriminating Scala from Java code. We have thus used
JP2 to obtain precise frequency counts for all Java bytecode
instructions.

9 See http://www.spec.org/jvm98/.

Unlike some related work on workload characterization,
we neither consider all 156 instructions10 individually [13,
14] nor do we group them manually [14, 19]. Instead, we
apply principal component analysis (PCA) [36] to discern
meaningful groupings of instructions. This approach offers
a higher-level view of the instruction mix which is objective
rather than being influenced by one’s own intuition of what
groupings might be meaningful.
The benchmarks are represented by vectors X in a 156-

dimensional space whose components Xi are the relative
execution frequencies of the individual instructions. As such
high-dimensional vector spaces are hard to comprehend, we
apply PCA to reduce the data’s dimensionality. To this effect,
we standardize each component Xi to zero mean, i.e., Yi =
Xi − Xi. We do not standardize to unit variance, however.
In other words, we use PCA with the covariance rather
than the correlation matrix; this is justified as using the
latter would exaggerate rarely-executed instructions whose
execution frequency varies little across benchmarks (e.g.,
nop, multianewarray, floating-point coercions). PCA now
yields a new set of vectors, whose uncorrelated components
Zi =

∑
j aijYj are called principal components.

We discard those principal components that account for
a low variance only, i.e., those which do not discriminate
the benchmarks well, and retain 4 components that account
for 58.9%, 15.3%, 6.4%, and 5.6% of the variance present
in the data. Taken together, these four principal components
explain more than 86.2% of the total variance, whereas none
of the discarded components accounts for more than 2.7%
of variance. Figure 3 depicts the so-called loadings, i.e.,
the weights aij ∈ [−1,+1], of the four retained principal
components.
We now proceed to interpret the retained principal com-

ponents. For the first component, several instructions ex-
hibit a strong positive correlation (|a1j | > 0.1) with the
first principal component: reference loads (aload), method
calls (invoke. . . ), and several kinds of method return (areturn,
ireturn, and return). Likewise, one group of three instruc-
tions exhibits an equally strong negative correlation: integer
variable manipulations (iinc, iload, and istore). This sug-
gests that the first component contrasts interprocedural with
intraprocedural control flow, i.e., method calls and their cor-
responding returns with “counting” loops controlled by inte-
ger variables. This is further substantiated by the fact that the
if icmpge instruction commonly found in such loops is also
negatively correlated. The second principal component is
governed by floating-point manipulations (fload, fmul, and
fstore) and field accesses (getfield, putfield), all of which are
positively correlated.
Figure 4 shows to what degree both the Scala and Java

benchmarks are affected by these principal components. As

10 This number is slightly smaller than the actual number of JVM instruc-
tions (201); mere abbreviations like aload 0 and goto have been treated as
aload and goto w, respectively. The wide modifier is treated similarily.
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Figure 3. The top four principal components that account for 86.2% of variance in the benchmarks’ instruction mixes.
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can be seen, all Scala benchmarks with the exception of
actors exhibit high values for the first principal component,
the scalatest benchmark with its heavy usage of the Java
runtime (cf. Section 3.3) being a borderline case. This shows
that these Scala benchmarks strongly favor interprocedural
over intraprocedural control flow. In fact, they do so to a
larger degree than most of the considered Java benchmarks.
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Figure 5. The DaCapo ( ) and Scala benchmarks ( ) with
respect to the third and fourth principal component.

The third principal component correlates positively with
calls that are dynamically dispatched (invokevirtual and
invokeinterface) and negatively with calls that are stati-
cally dispatched (invokespecial and invokestatic). Moreover,
other forms of dynamic type checks (checkcast, instanceof)
also contribute negatively to this component. The fourth
principal component again correlates (negatively) with vari-
ous floating-point operations, but is otherwise hard to grasp
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Figure 6a. The relative number of callsites using
invokevirtual ( ), invokeinterface ( ), invokespecial ( ),
and invokestatic ( ) instructions for the Scala benchmarks.
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Figure 6b. The relative number of callsites using
invokevirtual ( ), invokeinterface ( ), invokespecial ( ),
and invokestatic ( ) instructions for the Java benchmarks.

intuitively. Still, as Figure 5 shows, it has significant dis-
criminatory power, in particular with respect to the Scala
benchmarks.
What is noteworthy in Figure 4 and particularly in Fig-

ure 5 is that benchmarks from the same application domain,
e.g., factorie and tmt (machine-learning), nevertheless ex-
hibit a different instruction mix. This justifies their joint in-
clusion into the suite.

4.2 Call Site Polymorphism

In object-oriented languages like Java or Scala, polymor-
phism plays an important role. For the JVM, however, call
sites that potentially target different methods pose a chal-
lenge, as dynamic dispatch hinders method inlining, which
is an important optimization. At the level of Java byte-
code, such dynamically dispatched calls take the form of
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Figure 7a. The relative number of calls made using
invokevirtual ( ), invokeinterface ( ), invokespecial ( ),
and invokestatic ( ) instructions for the Scala benchmarks.
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Figure 7b. The relative number of calls made using
invokevirtual ( ), invokeinterface ( ), invokespecial ( ),
and invokestatic ( ) instructions for the Java benchmarks.

invokevirtual or invokeinterface instructions, whereas the
invokespecial and invokestatic instructions are statically dis-
patched. Figures 6a and 6b contrast the relative occurrences
of these instructions in the Scala and Java benchmarks.
Here, only instructions executed at least once have been

counted; dormant code is ignored. The numbers are remark-
ably similar for the Scala and Java benchmarks, with the ver-
tical bars denoting the respective arithmetic mean, with only
a slight shift from invokevirtual to invokeinterface instruc-
tions due to the way the Scala compiler unties inheritance
and subtyping [44, Chapter 2] to implement mixins.
But the numbers in these figures provide only a static

view. At runtime, the instructions’ actual execution frequen-
cies may differ. Figures 7a and 7b thus show the relative
number of actual calls made via the corresponding call sites.

663



101

103

105

#
C
al
lS
ite
s

actors apparat factorie

101

103

105

#
C
al
lS
ite
s

kiama scalac scaladoc

101

103

105

#
C
al
lS
ite
s

scalap scalariform scalatest

5 10 15+

101

103

105

# Targets

#
C
al
lS
ite
s

scalaxb

5 10 15+

# Targets

specs

5 10 15+

# Targets

tmt

Figure 8a. The number of dynamically-dispatched call sites
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Here, the numbers for the Scala and Java benchmarks
diverge, with the Scala benchmarks exhibiting a dispro-
portionate amount of calls made by invokeinterface and
invokestatic instructions. The former is again explained by
the use of mixins, the latter by the use of singleton objects
in general and by companion objects in particular. The di-
vergence is even more pronounced, specifically with respect
to calls made by invokeinterface, when comparing the num-
bers for Scala with results obtained for older Java bench-
mark suites [22]. In general, Scala code benefits more than
Java code from techniques for the efficient execution of the
invokeinterface instruction [1].
Polymorphic calls involve dynamic binding, since the tar-

get method may depend on the runtime type of the object
receiving the call. In their analysis [19], Dufour et al. there-
fore distinguish between the number of target methods and
the number of receiver types for polymorphic call sites, as
there are typically more of the latter than of the former; not
all subclasses override all methods.
Both dynamic metrics are relevant to different com-

piler optimizations [19]: The number of receiver types for
polymorphic call sites is relevant for inline caching [25],
an optimization technique commonly used in runtimes for
dynamically-typed languages. Modern JVMs, however, rely
on virtual method tables in combination with method inlin-
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Figure 8b. The number of dynamically-dispatched call sites
targeting a given number of methods for the Java bench-
marks.

ing. We thus do not investigate the number of receiver types
in this paper,11 but focus on the number of target methods
for polymorphic call sites. This information is essential for
method inlining, one of the most effective compiler opti-
mizations for the JVM. If a call site has only a single target
method, the target method can be (speculatively) inlined.
Moreover, even if a call site has more than one target, in-
lining is still possible with appropriate guards in place [15].
Only if the number of possible targets grows too large, inlin-
ing becomes infeasible.
Figures 8a and 8b (respectively 9a and 9b) show his-

tograms of the polymorphic call sites, presenting the num-
ber of call sites (respectively the number of calls for call
sites) with x ≥ 1 target methods. These statistics com-
prise all exercised call sites corresponding to invokevirtual
or invokeinterface instructions. Call sites that are never ex-

11 The Scala compiler relies on a similar compilation technique using Java
reflection and polymorphic inline caches for structural types [18]. However,
this technique is not applied within the JVM itself.
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Figure 9a. The number of dynamically-dispatched calls
made at call sites with a given number of targets for the Scala
benchmarks.

ecuted by the workload are excluded; also, call sites corre-
sponding to invokestatic and invokespecial bytecodes are ex-
cluded, as they are trivially monomorphic.
In Figures 8a and 8b, the actual number of invocations

at a call site is not taken into account; call sites are merely
counted. If a call site S, e.g., targets two methodsM andN ,
wherebyM is invokedmS times andN is invoked nS times,
then call site S will be counted once for the bar at x = 2;
the actual numbers mS and nS will be ignored. In contrast
to Figures 8a and 8b, Figures 9a and 9b do take the actual
number of invocations into account. That is, in the previous
example, call site S contributesmS+nS to the bar at x = 2.
Figures 8a and 8b thus correspond to Figures 6a and 6b,
whereas Figures 9a and 9b in turn correspond to Figures 7a
and 7b. Whereas the former histograms show the possibility
of inlining, the latter show its possible effectiveness.
As the analysis shows, there exist marked differences be-

tween the individual benchmarks, while the differences be-
tween the Scala and DaCapo benchmark suites are less pro-
nounced. Still, dynamic dispatch with many different tar-
gets per call site used less by the Java benchmarks than by
most Scala benchmarks except for factorie. However, mega-
morphic call sites with 15 or more targets are exercised
almost all benchmarks in both the Scala and the DaCapo
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Figure 9b. The number of dynamically-dispatched calls
made at call sites with a given number of targets for the Java
benchmarks.

benchmark suites, i.e., by 11 out of 12 and 10 ouf of 14
benchmarks, respectively.
In general, polymorphism plays a larger role for the Scala

benchmarks than for their Java counterparts, but this does
not diminish the effectiveness of inlining significantly: Call
sites with few targets in general and monomorphic call sites
in particular account for a large part of potentially polymor-
phic method calls: For the Scala benchmarks, on average
97.1% of callsites are monomorphic and they account for
89.7% of the overall method calls. For the Java benchmarks
on average 97.8% of callsites are monomorphic and account
for 91.5% of calls.
The Scala benchmarks, however, show a higher vari-

ance (6.0%) than the Java benchmarks (3.2%) with respect
to the number of monomorphic calls: The portion of such
calls ranges from 76.4% (apparat) to 99.2% (tmt) rather
than from 83.9% (h2) to 96.0% (xalan). With respect to this
metric, our Scala benchmark suite is therefore at least as
diverse as the DaCapo benchmark suite.
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Figure 10. The maximum stack height required by the
Scala ( ) and Dacapo ( ) benchmarks (default input size).

4.3 Stack Usage and Recursion

On the JVM, each method call creates a stack frame which,
at least conceptually, holds the method’s arguments and local
variables, although some of them may be placed in registers
instead (cf. Section 4.4). As most modern JVMs are unable
to re-size a thread’s call stack at runtime, they have to re-
serve a sufficiently large amount of memory whenever a new
thread is created. If the newly-created thread does not require
all the reserved space, memory is wasted; if it requires more
space than was reserved, a StackOverflowException ensues.
As Figure 10 shows, the stack usage of the Scala bench-

marks is significantly higher than for the Java benchmarks.
However, for both benchmark suites the required stack size
varies widely across benchmarks: For the Scala benchmarks,
it ranges from 110 (tmt) to 1,460 frames (kiama), with an
average of about 472. For the Java benchmarks, these num-
bers are more stable and significantly lower, ranging from
45 (lusearch) to 477 frames (pmd), with an average of 137.
The question is thus what gives rise to this significant in-

crease in stack usage, the prime suspects being infrastructure
methods inserted by the Scala compiler on the one hand and
recursion on the other hand. To assess to what extent the pro-
grammer’s use of the latter contributes to the benchmarks’
stack usage, we make use of the calling context profiles col-
lected by JP2. In the presence of polymorphism, however,
a recursive method call is dynamically dispatched and may
or may not target an implementation of the method identical
to the caller’s. This, e.g., often occurs when the Composite
pattern is used.
Figures 11a and 11b, which depict the distribution of

stack heights for each of the benchmarks, therefore use an
extended definition of recursion. In this definition we dis-
tinguish between “true” recursive calls that target the same
implementation of a method and plain recursive calls, which
may also target a different implementation of the same
method. Now, to compute the histograms of Figures 11a
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Figure 11a. The distribution of stack heights upon a method
call for the Scala benchmarks: all method calls ( ), recursive
calls ( ), and recursive calls to the same implementation ( ).

and 11b, at every method call the current stack height x is
noted. All method calls contribute to the corresponding light
grey bar, whereas only recursive calls contribute to the dark
grey bar, and only “true” recursive calls contribute to the
black one.
The scalariform benchmark, e.g., makes no “true” re-

cursive calls that target an implementation identical to the
caller’s at a stack height beyond 287, but still makes plenty
of recursive calls targeting a different implementation of the
selfsame method. In this case, the phenomenon is explained
by the benchmark traversing a deeply-nested composite data
structure. In general, this form of recursion is harder to opti-
mize, as dynamic dispatch hinders, e.g., tail call elimination.
For all benchmarks, recursive calls indeed contribute sig-

nificantly to the stack’s growth, up to its respective max-
imum size, although for two Scala (scalap and scalari-
form) and one Java (pmd) benchmark this is not a direct
consequence of “true” recursive calls, but of dynamically-
dispatched ones. For all other benchmarks, however, there
exists a stack height x at which all calls are “truly” recur-
sive. This shows that, ultimately, it is the more extensive
use of recursion by Scala programmers rather than of in-
frastructure methods by the Scala compiler that leads to the
observed high stack usage.
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Figure 11b. The distribution of stack heights upon a call
for the Java benchmarks: all method calls ( ), recursive
calls ( ), and recursive calls to the same implementation ( ).

4.4 Argument Passing

Amethod’s stack frame not only stores a method’s local vari-
ables, but it also contains the arguments passed to the method
in question. Now both the number and kind of arguments
passed upon a method call can have a performance impact:
Large numbers of arguments lead to spilling on register-
scarce architectures; they cannot be passed in registers alone.
Different kinds of arguments may need to be passed differ-
ently; on many architectures, e.g., floating point numbers oc-
cupy a distinct set of registers.
As not all benchmarks in the DaCapo and Scala bench-

mark suites make much use of floating-point arithmetic,
we first focus on the six benchmarks for which at least
1% of method calls carries at least one floating-point ar-
gument: the Java benchmarks batik (1.9%), fop (3.4%),
lusearch (2.6%), and sunflow (25.1%) and the Scala bench-
marks factorie (5.1%) and tmt (13.5%).
The histograms in Figure 12 depict the number of floating-

point arguments passed upon a method call, in relation to
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Figure 12. Distribution of the number of floating-point ar-
guments passed upon a method call: none ( ), 1 ( ), 2 ( ),
3( ), 4 ( ), and 5 or more ( ).

the overall number of arguments. The bars’ shadings corre-
spond to the number of floating-point arguments; the darker
the shade, the more arguments are of either float or double
type. As can be seen, not only do sunflow and tmt most
frequently pass floating-point arguments to methods, but
these two benchmarks are also the only ones where a no-
ticeable portion of calls passes more than one floating-point
argument: In the case of sunflow, four-argument methods
are frequently called with three floating-point arguments,
indicated by the dark portion of the respective bar. In the
case of tmt, three-argument methods occasionally have two
floating-point arguments (1.0% of all calls).
The relation of floating-point and integral arguments is

not the only dimension of interest with respect to argument
passing: The histograms in Figures 13a and 13b thus depict
the number of reference arguments passed upon an method
call, in relation to the overall number of arguments, i.e., of
primitive and reference arguments alike. Here the bars’ shad-
ing corresponds to the number of reference arguments; the
darker the shade, the more of the arguments are references
rather than primitives.
Figures 13a and 13b distinguish between calls with

an implicit receiver (invokevirtual, invokeinterface, and
invokespecial) and calls without one (invokestatic). Both
figures display the amount of arguments attributed to the
former group above the “x-axis,” whereas that attributed to
the latter is displayed below the “x-axis.” Taken together, the
bars above and below the axis show the distribution of ref-
erence arguments for all calls to methods with x arguments.
The receiver of a method call (if any) is hereby treated as a
reference argument as well. This is in line with the treatment
this receives from the virtual machine; it is simply placed
“in local variable 0” [31].
For Scala and Java benchmarks alike, almost all meth-

ods have at least one argument, be it explicit or implicit,
viz., this. This is in line with earlier findings on Java bench-
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Figure 13a. Distribution of the number of reference argu-
ments passed upon a method call by the Scala benchmarks:
none ( ), 1 ( ), 2 ( ), 3 ( ), 4 ( ), and 5 or more ( ).

marks [14]. But while the maximum number of passed argu-
ments can be as large as 21 for Scala code (specs) and 35 for
Java code (tradebeans, tradesoap), on average only very few
arguments are passed upon a call: 1.04–1.47 for Scala code
and 1.69–2.43 for Java code. In particular, the vast major-
ity of methods called by the Scala benchmarks has no argu-
ments other than the receiver; they are simple “getters.” This
has an effect on the economics of method inlining: the direct
benefit of inlining, i.e., the removal of the actual call, clearly
outweighs the possible indirect benefits, i.e., the propagation
of information about the arguments’ types and values which,
in turn, facilitates, e.g., constant folding.
This marked difference between Scala and Java bench-

marks is of particular interest, as the Scala language offers
special constructs, namely implicit parameters and default
values, to make methods with many arguments less incon-
venient to the programmer. But while methods taking many
parameters do exist, they are rarely called.

4.5 Method and Basic Block Hotness

Any modern JVM with a just-in-time compiler adaptively
optimizes application code, focusing its efforts on those
parts that are “hot,” i.e., executed frequently. Regardless of
whether the virtual machine follows a traditional, region-
based [24, 48], or trace-based [3] approach to compilation,
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Figure 13b. Distribution of the number of reference argu-
ments passed upon a method call by the Java benchmarks:
none ( ), 1 ( ), 2 ( ), 3 ( ), 4 ( ), and 5 or more ( ).

pronounced hotspots are fundamental to the effectiveness of
adaptive optimization efforts. It is thus of interest to which
extent the different benchmarks exhibit such hotspots.
In contrast to Dufour et al., who report only “the num-

ber of bytecode instructions responsible for 90% execu-
tion” [19], our metric is continuous. Figures 14a and 14b
report to which extent the top 20% of all static bytecode
instructions in the code contribute to the overall dynamic
bytecode execution. A value of 100% on the x-axis cor-
responds to all instructions contained in methods invoked
at least once; dormant methods are excluded. However, ba-
sic blocks that are either dead or simply dormant during the
benchmark’s execution in an otherwise live method are taken
into account, as they still would need to be compiled using a
traditional approach. A value of 100% on the y-axis simply
corresponds to the total number of all executed bytecodes.
Current JVMs typically optimize at the granularity of

methods rather than basic blocks and are thus often unable
to optimize just the most frequently executed instructions or
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Figure 14a. Cumulative number of executed bytecodes for
the most frequently executed bytecodes when measured at
the granularity of basic blocks ( ) or methods ( ).

basic blocks. To reflect this, Figures 14a and 14b also report
the extent to which the hottest methods are responsible for
the execution. The two data series are derived as follows:

Basic block hotness. The basic blocks (in methods exe-
cuted at least once) are sorted in descending order of their
execution frequencies. Each basic block bi is then plotted
at x =

∑i
j=1 size(bj) and y =

∑i
j=1 size(bj) · freq(bj),

where size(bj) is the number of bytecodes in bj and
freq(bj) is the number of times bj has been executed.

Method hotness. The methods (that are executed at least
once) are sorted in descending order of the overall
number of bytecodes executed in each method. Each
methodmi is then plotted at x =

∑i
j=1

∑
b∈Bj

length(b)

and y =
∑i

j=1

∑
b∈Bj

length(b) · freq(b), where Bj are
the basic blocks of methodmj .

For the actors and scalap benchmarks, e.g., only 1.4%
and 1.5% of all bytecode instructions, respectively, are re-
sponsible for 90% of all executed bytecodes. However, be-
yond that point, the basic block hotness of the two bench-
marks’ differs considerably. Moreover, the method hotness
of these two benchmarks is also different, the discrepancy
between basic block and method hotness being much larger
for scalap than for actors: A method-based compiler would
need to compile just 2.7% of actor’s bytecodes to cover
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Figure 14b. Cumulative number of executed bytecodes for
the most frequently executed bytecodes when measured at
the granularity of basic blocks ( ) or methods ( ).

90% of all executed instructions, whereas 4.7% of all in-
structions need to be compiled for scalap to achieve the same
coverage.
In general, the discrepancy between basic block and

method hotness is quite pronounced. This is the effect
of methods that contain both hot and cold basic blocks,
i.e., some that are frequently executed and some that are
not. Four Java benchmarks (jython, pmd, tradesoap, and
xalan) with a larger than average number of basic blocks
per method suffer most from this problem. The remaining
Java benchmarks exhibit patterns similar to the Scala bench-
marks. Both region-based [24, 48] and trace-based com-
pilation [3] can be employed to lessen the effect of such
temperature drops within methods.

4.6 Reflection

While reflective features that are purely informational, e.g.,
runtime-type information, do not pose implementation chal-
lenges, other introspective features like reflective invoca-
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Figure 15a. Number of methods invoked reflectively by
the Scala benchmarks with a single or multiple Method in-
stances per call site, normalized to the number of all method
invocations.

av
ro
ra

ba
tik

ec
lip
se fo

p h2

jy
th
on

lu
in
de
x

lu
se
ar
ch
pm
d

su
nfl
ow

to
m
ca
t

tr
ad
eb
ea
ns

tr
ad
es
oa
p
xa
la
n

0

0.01

0.02

0.03

#
In
vo
ca
tio
ns
[%
]

Single
Multiple

Figure 15b. Number of methods invoked reflectively by the
Java benchmarks with a single or multipleMethod instances
per call site, normalized to the number of all method invoca-
tions.

tions or instantiations are harder to implement efficiently by
a JVM [40]. It is thus of interest to what extent Scala code
makes use of such features, in particular as Scala’s struc-
tural types are compiled using a reflective technique [18].
We have thus extended TamiFlex [8] to gather informa-
tion about the following three usages of reflection: method
calls (Method.invoke), object allocation (Class.newInstance,
Constructor.invoke, and Array.newInstance), and field ac-
cesses (Field.get, Field.set, etc.).
We first consider reflective invocations. What is of in-

terest here is not only how often such calls are made, but
also whether a call site exhibits the same behaviour through-
out. If a call site forMethod.invoke, e.g., consistently refers
to the same Method instance, partial evaluation [9] might
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Figure 16a. Number of objects instantiated reflectively by
the Scala benchmarks with a single or multiple Class in-
stances per call site, normalized to the number of all object
instantiations (new).
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Figure 16b. Number of objects instantiated reflectively by
the Java benchmarks with a single or multiple Class in-
stances per call site, normalized to the number of all object
instantiations (new).

avoid the reflective call altogether. For the Scala and DaCapo
benchmark suites, respectively, Figures 15a and 15b depict
the number of reflective method invocations with a single
or multiple Method instances per call site. These numbers
have been normalized with respect to the number of over-
all method calls (invokevirtual–invokeinterface bytecode in-
structions). As can be seen, few benchmarks in either suite
perform a significant number of reflective method invoca-
tions. Even for those benchmarks (scalap, pmd, tomcat,
and tradesoap), reflective invocations account for at most
0.03% of invocations. In the case of scalap, these invoca-
tions are almost exclusively due to the use of structural types
within the benchmark. This also explains why only a single
Method instance is involved [18]. Should the use of reflec-
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tion to implement structural types be supplanted by the use
of invokedynamic, these metrics remain meaningful, as sim-
ilar caching techniques can be applied as an optimization.
We next consider reflective object instantiations, i.e.,

calls to Class.newInstance, Constructor.invoke, as well as
Array.newInstance. Again, for reasons explained above, we
distinguish between call sites referring to a single meta-
object and call sites referring to several.12 Figures 16a and
16b depict the number of reflective instantiations for the
Scala and DaCapo benchmark suites, respectively. The num-
bers have been normalized with respect to the number of
overall allocations (new bytecode instructions).
The surprisingly large number of reflective instantiations

by several Scala benchmarks can be attributed to the creation
of arrays via scala.reflect.ClassManifest, where a single call
site instantiates numerous arrays of different type. This is an
artifact of Scala’s translation strategy, as one cannot express
the creation of generic arrays in Java bytecode without re-
sorting to reflection.
Unlike reflective invocations and instantiations, reflective

field accesses are almost absent from both Scala and Java
benchmarks. The only notable exception is eclipse, which
uses reflection to write to a few hundred fields.

4.7 Boxed Types

Boxing of primitive types like int or doublemay incur signif-
icant overhead; not only is an otherwise superfluous object
created, but simple operations like addition now require prior
unboxing of the boxed value. We have therefore measured to
which degree the Java and Scala benchmarks create boxed
values. To this end, we distinguish between the mere request
to create a boxed value by using the appropriate valueOf fac-
tory method and the actual creation of a new instance using
the boxed type’s constructor; usage of the factory method
allows for caching but may impede JIT compiler optimiza-
tions [11].
Figures 17a and 17b show how many boxed values are re-

quested and howmany are actually created. The counts have
been normalized with respect to the number of all object
allocations (new bytecode instructions). Note that we have
not counted boxed values created from strings instead of un-
boxed values, as the intent here is rather different, namely to
parse a string. While for the Java benchmarks (Figure 17b),
boxing accounts only for very few object creations, this is
not true for many of the Scala benchmarks (Figure 17a); al-
most all of the objects created by, e.g., the tmt benchmark
are boxed primitives.
In general, the caching performed by the factory methods

is effective. Only for factorie and tmt, a significant num-
ber of requests (calls to valueOf) to box a value result in
an actual object creation; this is due to the fact these two
benchmarks operate with floating-point values, for which

12We treat the Class instance passed to Array.newInstance as the meta-
object here.
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Figure 17a. Boxed instances requested (valueOf) and cre-
ated (Constructor) by the Scala benchmarks, normalized to
the number of all object allocations (new).
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Figure 17b. Boxed instances requested (valueOf) and cre-
ated (Constructor) by the Java benchmarks, normalized to
the number of all object allocations (new).

the corresponding valueOf factory methods do not perform
caching. That being said, the Scala benchmarks in general
both create and request more boxed values than their Java
counterparts. Extensive use of user-directed type specializa-
tion [17] may be able to decrease these numbers, though.
Another interesting fact about the usage of boxed values

is that they are created at a few dozen sites only within the
program, the fop Java benchmark being the only exception
with 4,547 call sites of a boxing constructor.

5. Related Work
Blackburn et al. [7] created the DaCapo benchmark suite to
improve upon the state-of-the-art of Java benchmark suites
at that time. Their selection of metrics puts a strong em-
phasis on the benchmarks’ memory and pointer behaviours,
whereas the present paper concentrates on the difference
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between Scala and Java code, leaving a detailed analysis
of memory and pointer behaviour to future work (cf. Sec-
tion 7). While the creators of the DaCapo benchmark suite
also report code-related metrics, only the static metrics re-
ported, e.g., the number of loaded classes or the coupling
between them, are JVM-independent; the reported dynamic
metrics like instruction mix (cf. Section 4.1) or method
hotness (cf. Section 4.5) have been measured in a JVM-
dependent fashion. Like others [26], Blackburn et al. use
principal component analysis to demonstrate the bench-
marks’ diversity.
Dufour et al. [19] computed a range of VM-independent

metrics for a selection of Java workloads. Unlike in the
present paper, the authors’ primary objects of study are the
metrics, not the benchmarks. While Dufour et al. were trying
to assess the usefulness of the various metrics in distinguish-
ing the benchmarks, we use metrics to distinguish between
the benchmarks themselves, in particular with respect to the
Scala / Java code dichotomy.
Shiv et al. [46] analyzed the SPECjvm2008 benchmark

suite both qualitatively and quantitatively. The majority of
their quantitative evaluation, however, is based on JVM-
and architecture-dependent metrics. The authors further-
more offer a brief comparison of the SPECjvm2008 and
SPECjvm98 benchmark suites.
Daly et al. [14] conducted an analysis of the Java Grande

benchmark suite [10] using VM-independent metrics. Their
analysis focuses on the benchmark’s static and dynamic in-
struction mix and considers the 201 instructions both indi-
vidually and by manual assignment to one of 22 groups. In
contrast to Daly et al., we apply principal component anal-
ysis to automatically extract groupings, which we then use
to show that there a differences not only between individ-
ual benchmarks, but also between the Scala and Java bench-
marks as a whole.
The number of actual invocations of native methods is

a dynamic metric that can be obtained by incrementing a
counter at runtime. Gregg et al. [22] used an instrumented
version of the Kaffe virtual machine in order to gather this
metric. Thus, their approach is not portable and provides
only a very coarse-grained view of where CPU time is actu-
ally spent. Some researchers provided a more detailed break-
down of where CPU time is spent in Java workloads [23, 30];
however, they likewise had to sacrifice portability by directly
modifying a JVM.
Hoste and Eeckhout [26] used principal component anal-

ysis to show that workload characterization is most effec-
tively done in a microarchitecture-independent fashion; in-
stead of relying on a particular microarchitecture, metrics
should instead be defined with respect to an idealized one.
In the present paper, we apply this tenet by using metrics
defined with respect to Java bytecode, it being arguably the
natural microarchitecture of JVMs.

To assess the performance impact of run-time types,
Schinz [44, Chapter 6] performed some experiments with
earlier (circa 2005) versions of two Scala applications that
are part of our benchmark suite: scalac13 and scalap. These
experiments, however, were limited to evaluating different
translation strategies for run-time types.
Recent work by Richards et al. [39] and Ratanaworab-

han et al. [38] applied an approach similar to ours to ana-
lyze the dynamic behaviour of JavaScript; the authors use
platform-independent metrics to characterize, e.g., the in-
struction mix, call site polymorphism, and method hotness.
The key difference, besides the considered languages, is
that our work resulted in a full-fledged benchmark suite re-
searchers can re-use. Only Ratanaworabhan et al. compare
their findings with established JavaScript benchmarks suites.
Jibaja et al. [27] recently compared the memory be-

haviour of two managed languages, namely PHP and Java, to
guide language implementers. From the significant similari-
ties found between benchmarks of the PHP and SPECjvm98
benchmark suites, the authors infer that PHP would benefit
from garbage collector designs similar to those successful in
modern JVMs.

6. Summary and Conclusions
The Java Virtual Machine is no longer targeted by the Java
language alone but by a variety of programming languages.
The benchmark suites used within the JVM research com-
munity, however, do not yet reflect this trend. The bench-
mark suite presented in this paper addresses this issue for the
Scala language. They have been shown to a offer a varied set
of workloads from a broad range of application domains.
To summarize, our analysis of the Scala benchmark suite

led to the following findings, which may be of interest to
both the developers of JVMs and to the developers of the
Scala compiler and its associated libraries.

Instruction Mix. Scala and Java programs differ signifi-
cantly in their instruction mix.

Call Site Polymorphism. Although polymorphism plays a
larger role for Scala than for Java code, the overwhelming
number of callsites is effectively monomorphic and ac-
counts for the majority of calls. Inlining is thus expected
to be as effective for Scala code as its is for Java code.

Stack Usage and Recursion. Scala applications require sig-
nificantly more space on the call stack than their Java
counterparts. Recursive method calls to varying target
implementations contribute significantly to this.

Argument Passing. The vast majority of method calls in
Scala code target parameter-less “getters;” methods with
more than one arguments are rarely called. This nega-
tively affects the economics of method inlining, as the

13 At that time, it was still called nsc, the New Scala Compiler.
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optimization propagates less information into the inlined
method.

Method and Basic Block Hotness. Hotspots in Scala and
Java code are similarly distributed. However, Scala code
seems to be slightly easier for method-based compilation
to cope with.

Reflection. Although the Scala compiler resorts to using re-
flection to translate structural types, reflective invocations
are not a significant performance bottleneck in Scala ap-
plications. Scala is thus much less likely to benefits from
the invokedynamic instruction than dynamically-typed
languages like JRuby or Jython.

Boxed Types. While the Scala compiler already tries to
avoid boxing, Scala programs nevertheless request and
create significantly more boxed values than Java pro-
grams. Therefore, canonicalization or similar optimiza-
tions are crucial.

Our evaluation suggests that the execution characteristics
of Scala code do differ from Java code in several ways.
However, this does not invalidate optimizations performed
by current JVMs; instead, it suggests that fine-tuning may
be sufficiently profitable.

7. Future Work
No benchmark suite stays relevant forever. Like Blackburn
et al. have done for the DaCapo benchmark suite [7], we plan
to maintain the benchmark suite, incorporate community
feedback, and extend the suite to cover further application
domains once suitable Scala applications emerge. We will
also maintain and extend the toolchain we used to build the
Scala benchmark suite (cf. Appendix A), so that it becomes
easier for other researchers to build their own benchmarks,
possibly for further languages beyond Java or Scala.
Over the years, many researchers have investigated the

memory behaviour of Java programs on a range of bench-
mark suites and with a variety of methods [7, 16, 28]. In the
present paper, we concentrate on the structure and behaviour
of the code itself. However, we do plan to investigate where
the differences are between Scala and Java code with respect
to memory behaviour in the future.
While the Scala library offers dedicated support for the

actor-model of concurrency, a surprisingly small number
of benchmarks (actors, apparat, scalac, scaladoc, scalatest,
tmt) is multi-threaded. A detailed analysis of the execution
characteristics of concurrent Scala program on the JVM re-
quires further research. The actors benchmark contained in
our suite, however, with its usage of different actor imple-
mentations, may prove a good starting point.
The Scala distribution also supports the Microsoft .NET

platform.14 For practical reasons, however, we have re-
stricted our analysis to a single platform, namely the JVM.

14 See http://www.scala-lang.org/node/168.

A detailed analysis of Scala’s execution characteristics on
the .NET platform is beyond the scope of the present paper,
but subject to future work.

A. Building a Benchmark Suite
The entire benchmark suite is built using Apache Maven,15

a build management tool whose basic tenet rings particu-
larly true in the context of a research benchmark suite: build
reproducibility. The use of a central artifact repository mir-
rored many times worldwide, in particular, ensures that the
benchmark suite can be built reproducibly in the future.
We have developed a dedicated Maven plugin that not

only packages a benchmark according to the DaCapo suite’s
requirements but also performs a series of integration tests
on the newly-built benchmark. It furthermore retrieves but
keeps separate all transitive dependencies of the benchmark
and its harness. Just as the benchmark suite, the Maven
plugin is Open Source and freely available for download.

B. Collecting Dynamic Metrics with JP2
The measurements presented in this paper have been ob-
tained with our open-source profiler JP216 [42, 43], which
produces a calling context tree (CCT) [2] representing over-
all program execution. JP2 is a reimplementation and exten-
sion of the profiler JP [4, 6, 33]. It produces a complete CCT
that distinguishes between different callsites and counts how
often each basic block is executed in each context. JP2 has
been designed for compatibility with standard JVMs and
supports a variety of output formats for the generated profile.
In the following text, we briefly summarize the key proper-
ties, including the remaining limitations, of JP2.

Completeness of the CCT. We consider the CCT to be
complete if it represents, after an initial JVM bootstrap-
ping phase, every method call where either the caller or the
callee has a bytecode representation. The JVM bootstrap-
ping phase finishes before the program’s main method is
invoked. This definition ensures that invocations of native
methods by bytecode and callbacks from native code into
bytecode are also included in the CCT. Furthermore, implicit
method invocations, such as for class loading and class ini-
tialization, must be properly represented.

Distinguishing between Callsites in the CCT. Some call-
ing context profilers like JP do not distinguish between indi-
vidual callsites within a method; if two callsites in a method
invoke the same target method, these invocations will be in-
distinguishable in the CCT. However, if callsites cannot be
distinguished, several useful metrics like call site polymor-
phism (cf. Section 4.2) cannot be computed from the result-
ing profiles. JP2 solves this issue by associating each CCT
node with two keys, a unique identifier of the target method
and an identifier of the callsite within the calling method.

15 See http://maven.apache.org/.
16 See http://jp-profiler.origo.ethz.ch/.
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Counting the Execution of Basic Blocks of Code. While
JP only counts the number of executed bytecodes for each
calling context, the latest version of JP2 keeps a separate
counter for each basic block of code in a method. That is,
each CCT node stores an array of counters, one for each ba-
sic block in the corresponding method. Together with the
CCT itself and the loaded classfiles, these counts are suffi-
cient to compute a variety of dynamic metrics.
For the purpose of this paper, only bytecodes that may

non-sequentially change the control flow (e.g., goto, ifeq,
return, athrow, etc.) end a basic block. In particular, method
invocations as well as instructions which may throw excep-
tions implicitly (e.g., aastore) do not end a basic block. We
have shown in previous work that this has little to no impact
on the profiles’ accuracy [6].

Compatibility with Standard JVMs. JP2 is implemented
with ASM,17 a light-weight bytecode manipulation frame-
work. The profiler keeps structural modifications of class-
files to a minimum; it only modifies method bodies and in-
serts entries in the classfile constant pool. These transfor-
mations are neither visible through the Java reflection API
nor do they interfere with stack introspection. Only a few in-
stance fields are inserted into java.lang.Thread to reduce the
overhead of thread-local variables used by JP2.
JP2 relies on native method prefixing, a JVMTI feature

introduced with Java 6, in order to profile the invocation
of native methods. Native methods are renamed (by adding
a prefix) and wrapped with Java methods that will invoke
the corresponding prefixed native methods. Although these
transformations change the classfile structure, the Java class
library and the JVM have been designed to properly deal
with this issue (e.g., in the code for stack introspection).
However, in some JVM releases, there are still a few native
methods that cannot be prefixed.

Output formats. JP2 offers several plugins to serialize the
CCT upon program termination. The plugin used for the
measurements presented in this paper stores the CCT in an
XML format. Together with the stored classfiles, converted
to XML by ASM, we were able to compute all dynamic met-
rics using XQuery by cross-referencing between classfiles
and CCT [43].

Limitations. JP2 currently does not distinguish between
different classloaders. That is, if a polymorphic callsite in-
vokes two different target methods with the same name and
signature that are defined in distinct classes bearing the same
name but defined by distinct classloaders, the two targets
will be represented by the same CCT node. Such a situa-
tion may yield corrupt profiles, but was not encountered for
any of the evaluated benchmarks.
Depending on the JVM used, prefixing may not work

with a few native methods (e.g., registerNatives). Invoca-
tions of these methods will not be present in the CCT.

17 See http://asm.ow2.org/.
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