
XIRC: Cross-Artifact Information Retrieval [GPCE]

Michael Eichberg and Thorsten Schäfer
Software Modularity Lab, Department of Computer Science

Darmstadt University of Technology, Germany
{eichberg,mezini,ostermann,schaefer}@informatik.tu-darmstadt.de

ABSTRACT
In large scale software development projects, in particu-
lar in the field of Component-Based Software Engineering
(CBSE), different kinds of a project’s artifacts are used and
related information is spread over the different artifacts.
E.g., the transaction attributes (“Require”, “Requires-New”,etc.)
of methods of an Enterprise Java Bean are defined in the de-
ployment descriptor while the method bodies are defined in
a Java class. If we want to put these information into re-
lation, e.g., to find all methods with a specific transaction
attribute, we have to use different search engines and have to
map the information manually. It is not possible to execute
“one query” that returns the desired result.
XIRC is a platform that enables to define queries over a

uniform representation of all artifacts of a software project.
XIRC maps all artifacts of a project to XML representa-
tions and stores the documents in a database. The database
can be queried using XQuery, a functional query language
for XML documents. XIRC can be used as a sophisticated
search engine, as a tool to check implementation restric-
tions, to find errors or as a basis for further tools for code
generation and visualization.

1. INTRODUCTION
Information engineering (IE), the interconnected processes

of information retrieval and information processing, is an
important and challenging task in software development.
While many “proprietary” tools for retrieving and processing
information from particular types of artifacts have been de-
veloped, most tools do not enable cross-artifact information
retrieval.
To close this gap we present XIRC [3], an open, cross-

artifact information engineering platform. The term open
has two main facets. Firstly, the platform is open with
respect to the kinds of information that can be searched
for. Secondly, the platform supports a variety of processing
techniques, e.g., to visualize information or to generate new
artifacts. The term cross-artifact refers to information re-

Copyright is held by the author/owner.
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

trieval and processing across several heterogeneous software
development artifacts. This is crucial since the types of the
source documents of a software project are very different,
including source and binary code, deployment descriptors,
scripting and configuration files, etc., and the information
stored in the documents are tightly related.
XIRC uses a uniform representation of all documents to

enable cross-artifact information retrieval. All sources of
information (artifacts involved in the software development
process) are mapped to equivalent representations in XML.
To query the XML documents we use the query language
XQuery [1]. This approach enables to use a single query
language for diverse artifacts.

2. THE XIRC PLATFORM
XIRC’s approach to information engineering platforms has

three main building blocks. The first one are the XML con-
verters for different kinds of development artifacts. They
convert the documents into XML and build up the reposi-
tory. The second building block is the query engine, which
is based on XQuery. The third block of the approach are
various tools which build on top of the query engine and
support retrieval and processing of the retrieved informa-
tion in different ways.
Currently XIRC has support for retrieving artifact ele-

ments that share some properties, e.g., all persistent fields
of a set of classes, or for discovering patterns in various arti-
facts that indicate violations of implementation restrictions,
best practices, or design rules.
In order to meet the requirements on a platform for infor-

mation engineering integrated in software development en-
vironments, the architecture of XIRC is organized in three
layers: application, framework, and data layer.
The application layer is responsible for initializing and

using the XIRC framework. As a first application layer,
we implemented an Eclipse plug-in to integrate XIRC into
the Eclipse IDE, which is fully functional and can be down-
loaded from:
www.st.informatik.tu-darmstadt.de/pages/projects/IRC
The plug-in provides functionality for tracking changes of
artifacts, for defining queries, and for triggering their exe-
cution.
In order to be able to handle different kinds of artifacts,

the application registers input processors responsible for pro-
ducing the XML representation of a certain artifact type and
output processors, which are Eclipse specific and responsible
for the further processing of the results.
The framework layer manages artifact updates, query ex-

43

ecutions, and transformations of the artifacts. After every
change of an artifact, the framework is notified by the ap-
plication layer and all queries are re-evaluated.
The data layer is responsible for storing the XML doc-

uments representing involved artifacts and to evaluate the
queries.

3. AN EXEMPLARY APPLICATION
In this section, we present an exemplary application of

XIRC, namely the discovery of patterns in software artifacts
which indicate that certain implementation restrictions, best
practices and design guidelines are violated.
We will check two EJB programming restrictions [2]. On

the one hand, an enterprise bean must not define the final-
ize() method, on the other hand “An enterprise bean must
not use thread synchronization primitives to synchronize ex-
ecution of multiple instances”. Altogether, there are 17 such
restrictions in the specification and quite some others not
explicitly stated in the specification; the violation causes
more or less severe problems which are often very hard to
detect before runtime [4].
Patterns in the code structure that indicate the violation

of these restrictions can be expressed as queries in XIRC.
The first query selects all method nodes of all subclasses of
the class EnterpriseBean whose signature is void finalize().
A non-empty result set of this query indicates a violation of
the first restriction above and delivers all locations in the
bean classes where finalize methods are declared. The sec-
ond query detects synchronized methods and the usage of
the synchronized statement in Java source code of any class
inheriting from EnterpriseBean.
1 subtypes(/class[@name="javax.ejb.EnterpriseBean"])
2 /method[@name = "finalize" and
3 .//returns/@type = "void" and not(.//parameter)]

1 subtypes(/class[@name="javax.ejb.EnterpriseBean"])
2 //(monitorenter | method[@synchronized="true"])

Note, the sample restrictions presented so far can also be
detected by other tools because the evaluation whether or
not a restriction is violated can be done by analyzing a single
artifact - Java source code / byte code. However, in general,
checking for implementation restrictions requires the anal-
ysis of different types of artifacts. For example, the EJB
specification also states that: A session bean or a message-
driven bean can be designed with bean-managed transaction
demarcation or with container-managed transaction demar-
cation. (But it cannot be both at the same time.) In order
to detect violations of this restriction it is necessary to ana-
lyze an EJB’s deployment descriptor to determine the cho-
sen transaction demarcation method – Container (CMT)
or Bean (BMT) – and only if it is Container the bean’s im-
plementation has to be searched for the prohibited usage of
programmatic transactions. Such cross-artifact detection is
not supported by the tools mentioned above.
To illustrate how “cross-artifact” detection of violations

is supported by our approach, consider the following query
which discovers beans with declarative transaction demar-
cation that also use transactions explicitly in their code.
1 declare function EJBsWithCMT() as element()*{
2 let $ejbname := /ejb-jar/enterprise-beans
3 /(session | message-driven)/transaction-type
4 [./text() = "Container"]/../ejb-class/text()
5 return /class[@name = $ejbname]
6 };

7 declare function methodsWithBMT() as element()*{
8 //invoke[@declaringClassName =
9 "javax.transaction.UserTransaction"]/ancestor::method
10 };
11 methodsWithBMT() intersect EJBsWithCMT()//method

Listing 1: Detecting the co-existence of declarative
and programmatic transaction management

The first function (line 1) returns the set of all classes
for which declarative transactions are specified. The second
function (line 7) returns all methods that call a method to
begin or commit transactions. The query itself (line 11) sim-
ply returns the intersection between the set of all methods
of all classes with specified container-managed transactions
and the set of methods using programmatic (bean-managed)
transactions. For illustration, Fig. 1 shows the result of eval-
uating this cross-artifact query in our plug-in.

Figure 1: Presenting the result of multiple queries

4. REFERENCES
[1] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu,

J. Robie, and J. Siméon. XQuery 1.0: An XML Query
Language. http://www.w3.org/TR/xquery/.

[2] Linda G. DeMichiel. Enterprise JavaBeans
Specification, Version 2.1. SUN Microsystems, 2003.

[3] M. Eichberg, M. Mezini, K. Ostermann, and
T. Schäfer. Xirc: A kernel for cross-artifact information
engineering in software development environments. In
Proc. of WCRE 2004. IEEE Computer Society.

[4] M. Eichberg, M. Mezini, T. Schäfer, C. Beringer, and
K. M. Hamel. Enforcing system-wide properties. In
Proc. of ASWEC 2004. IEEE Computer Society.

44

