
TRANSFORMATION OF DATA Row ANALYSIS MODELS TO
OBJECT ORIENTED DESIGN

Bnmo Alabiso

Micfosuft Corporation
16017 NE 36th Way

Redmond, WA 960734717

ABSTRACT
This paper describes a strategy to transform Data Flow
Analysis into Object Oriented Design. This transformation is
performed by extracting information from the Data Flow
Model, by enriching with Design decision and by finally
producing an Object Oriented Design Model. Semiformal
transformation rules are described. Also a special notation
is introduced to describe the Object Oriented Design
Model. The Model used to represent Data Flow Analysis is
the one originally proposed by Yourdon, complemented
with Ward-Mellor’s Real Time extensions (the “Essential
Model’).

1. INTRODUCTION AND OVERVIEW

In the last few years the software community has witnessed
the appearance of a multitude of software development
methodologies. Almost simultaneously, products have
appeared on the market to support one or more of these
methodologies.

Development methodologies address several phases of
the development life cycle, with emphasis ranging from
requirements specification to system testing and
maintainance. The most popular “early-phases”
methodologies (also nicknamed “upperCASE’
methodologies) are all derivatives of the one originally
proposed by Yourdon-De Marco [DEM78] [YC79]:
Structured Analysis and Structured Design (SASD), more .
recently enriched by extensions to support the
construction of Real Time Systems by Ward-Mellor [MJ86]
and Hatley [HAT86].
According to the Yourdon methodology and its derivatives,
the construction of software systems must be preceded by
two phases:

1. Analysis: during this phase the question: “Uh&
is the system supposed to do?” should be
answered. The emphasis on u rather than on
&y implies that Analysis is an activity which goes
hand in hand with that of stating the reauiremenb
of a system.

Permission to copy without fee all or part of thismaterial is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or spxiti~ permission.

o 1988 ACM O-89791-284-5/88/0009/0335 $1.50

september25-30,1966

2. Design: during this phase the question: “j&&
does the system do what is stated in the
Analysis?” should be answered. For a software
system this is equivalent to exercising strategies
to isolate and define precise software
components and their interrelations (Modules,
Functions, Packages, Objects, or whatever,
depending on the particular Design Methodology
being adopted).

Both phases are supported by a varfety of models which
provide essential expressive power to the general
precepts of the methodologies.

The most widely used model for Analysis is the Data Flow
Mode/, which describes the system in terms of so called
Data F&w Diagrams or DFD’s. An example of Data Flow
Diagram is given in figure 1.

photocells

Motors Control Motion

flgurel - Slmple DFD

The DFD’s are excellent at describing the flow of data to
and from loci of functionality (the Data Prucesses, normally
shown in DFD’s as circles, or rectangles with rounded
corners), but they are not very effective at expressing
control to be exercised on the execution of functions.
Ward-Mellor’s and Hatley’s methods have remedied to this
by extending the basic DFD model with concepts to
describe “control”. The Model used in this paper is the one
proposed by Ward-Mellor (the so called “Essential Model”).
The “Essential Model’ adds to the expressive power of
DFD’s by introducing the concept of Central Pmcess (as
opposed to standard DFD’s Data Processes) and Control
Flow (as opposed to Data Flow). An example of Essential
Model is given in figure 2. Control flows (normally shown as
dashed lines) carry events which may cause the activation
of functions. These events can be generates internally or
externally (interrupts are an example of externally
generated events). Control Processes are de facto Finite
State Machines which exclusively process events.

OOPSLA ‘88 Proceedings 335

flgure 2 - Ward Malior’s Essrntlal Mod.1

I
symbol table

figure 3- Decomposltlon of Data Processes

A Data Process may be decomposed by describing it in
terms of a lower level DFD (see figure 3) or by providing
semi-formal specifications rmini specs3.

Control Processes are described in terms of so called State
TransiW Diagrams (see figure 4).

Whereas Analysis Models dwell in the problem state (i.e.
they state the problem), Design Models live in the solution
space. For this reason the flavor of a Design Model is
heavily dependent on the conceptual schema chosen to
represent the “solution”. In the case where we wish to
express our solution in terms of the familiar concepts of

Classes, Objects, Methods. Inheritance etc. we talk about
O&jec? Onbted Des&~

There is very little merit in completing the formal Analysis of
a system if there isni a path which will lead us from Analysts
to Design. PageJones [PJ80] describes in his book a
method to migrate from Structured Analysis to Structured
Design (a form of functional decomposition Design). In this
paper we propose a methodology to transform an Analysis
Model into an Object Oriented Model. Before discussing
this transformation, we will briefly .outline the Object
Oriented Model and we will introduce a notation to express
it.

336 OOPSLA ‘66 Proceedings Sqdember2530,1966

1 empty/close outlet

flush/open outlet

fill/close outlet: open inlet

r- flush/close inlet: open outlet
Filling

4

full/close inlet

Flgure 4 - State TransItIon Diagram for Control Tank

2 TW ORJFCT OWNTED DBIGE(
MODE&

The Object Oriented Design Model used in this paper is
based on the SmalItalk-80’D” [GR80] model, with two
fundamental differences:

1. Objects in our model are strongly typed.
2. We do away with the concept of Smalltalk
Processes. Instead we introduce the concept of
Active Ob@cts (see also Actors [AGH86]). An
Active Object may answer messages like any othe
Object, but it also features asynchronous
behaviour (i.e. independent execution thread).
This special asynchronous behavior of an Active
Object may be assimilated to the execution (on a
separate thread) of an Instance Method which
starts when the Object is instantiated and never
“returns”‘. We will refer to this pseudo-Method by
calling the Executive of an Active Obje&.

For the physical description of the Design Model we shall
use two forms of design charts:

1. The Fundbnal Des@n Chart or FDC.
2. The CBject Structure Chart or OSC.

The first type of chart (FDC) is used to express and break
down the functional behavior of Objects, i.e. the make up
of Methos. The second type (OSC) is used to express and
break down the “data’ structure of Objects, i.e. the make
up of Objects in terms of their Class and Instance Variables
and Class inheritance. A FDS is shown in figure 5.

Control tines (shown by dashed lines) partially or totally
order Acfbns. An Action is, for instance, to send a message
to an object.

Object Lines represent Object Stores. For more clarity, a
rectangle with an enclosed Object Name may be attached
to an Object Line: this is normally used to highlight the
receiver of a message.

Note that FDCs can also be used to describe the behavior
of more than one Method for a given Class: in this case we
talk about Class FDC’s. Naturally a Class FDC can always be
reduced to a group of Method FDC’s (one for each Method
of that Class).

An Example of OSC is given in figure 7.

l It may. however, terminate.
*In our Model Acrive Objects play Ihe role of Smalltalk Processes.

September 2!%3,1988 OOPSIA ‘El8 Proceedings 337

figure 5 - Functlonal Design Chart

Notice (some of) the conventions used in fgure 6. ,

an Object Ii aMessage To An ,~%&Q?&?~~~&i~
Object

.p An In Formal Parm

An Out Formal Parm another Object Line

:
object line I

: another Control Line !........~....I...........~..~

figure 6 - some FDC conventions

338 OOPSLA ‘88 Proceedings

/

name of
a Class

names of Variables

Rectangle 1

Rotate
Move

length < ’
width

b
Display

integer

pa

method names inheritance

flgure 7 - Object Structure Chart

. THF TRANSFORMATIOY
This “miaration” is trulv a transformation between two

We will now describe a strategy to migrate from the Models orthe same system. We will call this transformation:
decomposition of a system functionality performed Tad (Transformation from Analysis to Design) (see figure
according to the methods of Structured Analysis to the 8).
design of the same system according to Object Oriented
techniques.

Structured
~ Anal y s! Model ~ ,

AL:--*
Tad

Design
Decisions

figure 8 - The Analysis to Object Orlented Design Transformation (Tad)

Note the following facts:

l The transformation Tad is not automatic (of
course): many design-time facts are not

expressed during the phase of analysis. Human
intervention (3) is necessary to manipulate the
input Mode (1) and transform it into the design
Model (2).

QOPSLA ‘88 ProceadinqE 339

l Model (1) is the Structured Analysis Model
based on Ward-Melbr’s extensions of the original
Yourdon methodology.

l Model (2) is the Object Oriented Model briefly
presented in the previous sections.

3.1. FUNCTIONAl,, DECOMPOSITION
VERSUS OBJECT DPCCMPCSfTlCF(

The advent and increasing popularity of Object Oriented
Design/Programming disciplines advocate Object
Decomposition as the primary technique to be used when
designing software. According to this technique, the types
(Classes) of various Objects are identified. the Methods
(operations) listed and referenced or sub-Object
components are identified. The process continues
recursively until we are left with either very simple Classes
(perhaps those which map directly onto types of the
programming language’) or with Classes which have
already been designed/programmed.

In practice, the only flaw with the above technique is that it
does not take into consideration the fact that, in order to
specify the list of Methods of Objects of a given Class, it is
necessary to know who are the client-Methods. and what.
are their needs: it is the clients who ultimately define which
operations need to be supported for the Objects of a given
Class. In other words it is still necessary to perform
Functional Decomposition.

We see Functional Decomposition as a process parallel to
that of Object Decomposition. More strongly we say that
neither should take the precedence over the other: the
designer should feel free to hop between the two
techniques at will.

By ,nature, Data Flow Diagrams decompose functions.
Other common practice analysis techniques, such as
dictionary data definitions, provide adequate abstractions
to aid Object Decomposition.

The Structured Analysis Model is constructed by:

1. Defining “what” the system ought to do, in
terms of a hierarchy of Data/Control Flow
Diagrams. In this hierarchy lower level Flow
Diagrams express the function of a Data Process
at the level immediately above.

2. Defining Finite State Machines governing the
firing of Data or Control Processes (Ward-Melbr’s
State Tmsitbn Diagms).

3. Defining Data and Decomposing Data.

So. in order to devebp a strategy for Tad, it is necessary
to:

‘We are not considering here ‘pure’ object oriented languages like
!SmaWk-80”“. but rather hybrid kquages like Gt$ecdve-@ or C++.

1. Interpret Data, Data Processes, Data Stores and
Terminals in terms of Object Oriented concepts.

2. Interpret the DFD hierarchy in terms of Design
Decomposition: it is intuitively obvious that the
DFD hierarchy and- the decomposition of a
complex design into design components must
bear some relationship to one another.

3. Interpret the significance of Control Processes
for the Design Model. Express Events and
ordering of resulting Actions in the Design , as
defined in the State Transition Diagrams.

4. Use Data Decomposition information to help
.define Object Decomposition.

3.2.1. DATA AND OBJFCTS

In an Object Oriented Design Data is Objects and Objects is
Data. lt makes no sense to differentiate the two. So it is
obvious to map Data defined in the Analysis Model to
Objects in the Design Model.

Data Flow lines can be dubbed as o@ecf flow Ines and data
names entered in the Data Dictionary, truly correspond to
Object names.

DATA PROCESSES

A Data Process in a DFD reads Input Data, transforms it and
produces Output Data. lt seems at first obvious to map a
Data Process to the Method of an Object, and to interpret
the activation of a Process as the sending of a Message”
(figure 9).

flgure 9 - A Data Process

There are two obvious choices for the destination of the
message:

1. The destination could be one of the input data
(Objects), i.e. a or b. Often the same object is also
present on an output line, disguised under a
different name. For instance a could be flleX and
c could be UpdatedFileX: the clear choice in this

2Naarally the Oata Process may be mapped to the asynchronous behavior
of some Active Object. This would generate.the Design of a concurrent
rst& slmptiaty we shall not discuss desgn of conamnt app8irNfu

340 OOPSLA ‘88 Proceedings september’~, 1888

case is to make flleX the receiver and to eliminate
lines flleX and updatedFileX.

2. The destination could be an Object x not
described by any of the inputs which we wish to
associate with Method A.

The choice of the destination will naturafly bring us to select
the remaining input/output data as candidates for
becoming input/output parameters of the Methos A (we are
assuming I/O cohesiveness here, i.e. that the process A
reads exactly one single piece of input data for each piece
of output data generated. Read further in this paper for a
discussion on VO uncohesiveness).

Figure 10 shows how cases 1. and 2. above are expressed
in FDC formalism.

Figure 11 shows an example of case 1.

It can be seen (from figure 11) that the Method POP is
associated with the Input Object (Data item) myStack.

As an example of Case 2 consider the following lad
transformation (figure 12).

In the example above a new Object (the Class
VectorMaths) has been introduced to become the
destination of the Message CalculateProjections.
Naturally the designer might have chosen Vector to be the
destination of the Message like in Case 1 I.

Terminals in the Data Flow Model represent entities which
exist in the world outside the Application System and which
produce or consume data (terminals are also called, for this
reason, sources and sinks). The act of extracting data from

d D-
b

> b
a

C

d

CASE 1

I d

CASE 2

a source and that of delivering data to a sink are always l

associated, in the Object Oriented world, with precise figure 10 - Data Process expressed
Method invocations. In FDC formalism

For example, let’s consider the DFD shown in figure 13.

An obvious observation is that all terminals can be safely
mapped to Objects. Data (Objects) from sources must be
read by sending appropriate messages to the sources.
Data is delivered to sinks by sending appropriate messages
to the sinks themselves.

INote ‘that CalcufatoProjmction b a Inlay Method of VoctorYaths,
whereas the same would be a~! m Method of Vector. Tad does not
provide any hard rules to decide whether operarions are to be implemenmd
as Class or Instance Methods: this kind of decisions belong solely to the
design domain. Also note that Voctorhlathr resembIes closely a packagw
in the ADA sense.

*tember 25-30,1988 OOPSIA ‘88 Proceedings
341

figure 11 - Transformation of process POP

xProj

*2lE?--~ ~roj

Tad

+
CalculateProjections 1 VectorMaths

A)
vector

xProj D xProi

yProj D vProi

figure 12 - Transformation of CalculateProjections

keyboard

camera
armcommand

mechanicalArm

figure 13 - a DFD with terminals

for instance, the process INTERPRET can be Tad-
These messages may be directly derived from the ,Data transformed into a Method of keyboard its& in this case
Processes specified in the Data Flow Diagrams, or new the line char would disappear (figure 14).
messages can be introduced. In the case of the keyboard

342 OOPSLA ‘88 Promdings september2530.1988

user-Command p

Method getChar is introduced for the destination
keyboard.

Similar strategies can be applied to sinks.

figure 14 3.2.4. DATA STORES

Data Stores are naturally mapped to Objects in the 0’
g&Char Design world. As for the case of Terminals, Methods may

char D
be added to extract/place data from/into a data store (see
figure 16).

In case the data store is identified as the destination of a
figure 15 Message (Tad-transformed from a Process reading from or

writing to the Data Store itself), the Tad transformation is
Another possible transformation is to introduce a Method simplified as shown in figure 17.
which extracts data from the source. In figure 15 the

aFile

Tad

figure 16 - transformation of a Data Store

September2%3,1988 OOPSIA ‘88 Proceedings
343

Tad

aFile aPile anotherfile

Tad

figure 17
Finally a Process which writes to two or more Data Stores
may be Tad-mapped to two or more messages as shown in
figure 18. figure 18

One of the main benefits of the Data Flow Methodology
(DFM) used for the Analysis of application systems is that it
allows us to apply a divide and conquer strategy to

d- the comptexity Of a system. w8
have seen in the previous sections that it is possible to
convert DFD fragments into FDC fragments. This allows us,
in principle, to adopt parallel methodologies for functional
decomposition in the DFM and functional decomposition in
the Object Oriented Design. The example in figure 19
illustrates this.

If we assume l/O cohesiveness for all Processes (see
section 3.3). the DFD’s in figure 19 are transformed to the
FDC’s in figures 20 and 21.

344 OOPSLA ‘88 Proceedings 8eptemb8r 2!Mo, 1988

: . Process foo j
i i ,"""""""""'""""""""""...................~

:

:

""""""""""""‘;

:
:

a :
:
:
:
: 4
:
:
:
i

:.................~...~..~~.........~....~.........~.~............ :

flguro 19

figure 20 - FL?C for Method foo, Class X.

sephlbrm, 1988 OOPSIA ‘88 Promdings 345

i

i

:
:

:

:

:

:
:

:
:

:
:
:

:

i
:
:

:

:
:
:

:

i

:
:

figure 21 - FDC for Method 6 of Class &lass, the Class to which 8 belongs

. 53. I/O UNCOHFSIVENESS. THF RURIAL
METHOD

lt would seem from the above example that functional DFD
decomposition is always parallel and isomorphic to
functional Method decomposition. Unfortunately this is
true only for a very limited class of DFD’s.

When performing a transformation from a Process
Activation to a Method Invocation (message), we may face a
problem if the Process is consuming several pieces of input
data before generating output data, and/or if the Process
generates pieces of output data ind8p8nd8ntjy with
respect with all other inputs and outputs. We call this
potential problem of DFM Data Processes I/O
uncohesiveness. In case a Process suffers from l/O
uncohesiveness, mapping it to a Method invocation is not a
straight forward operation, because the Mechanism of
Method invocation (message) assumes t/O cohesiveness’.
For example, take the DFM fragment shown in figure 22.

In this case th8 Data Process MAKE-WORD may chew
up several characters (char) before generating a word.

Obviously one cannot make MAKE-WORD a Method of
char, since it would not be able to return a word every time
it is invoked. The same problem arises if on8 selects
MAKE-WORD to be a Method of some other Object.

Note that the problem is not only inherent to the mapping
of DFM’s to Object Oriented Design, but in general to the
mapping of DFM’s (which are intrinsically concurrent) to a
“procsdural”, sequential view of the world.

On8 choice could be to d8Cid8 that MAKE-WORD is
going to be mapped to a task (an Active Object). Naturally
this is not always desirable: we shouldn’t be forced to make
such decision from an inherent property of Data Flow
Analysis Models.

In can be however observed that MAKE-WORD can be
likened to a Method invocation if char were not an input
parameter, but rather some private variable directly buried”
in the Method itself, or indirectly “buried” in some Other
Method which MAKE-WORD directly or indirectly
invokes.

This suggest that a manipulation of the original DFD can b8
performed by burying a part of the DFD itself within
MA K E-W 0 R D in order to render the process
MAKE-WORD itself l/O cohesive.

figure 22 - DFD fragment

‘The Process cammunicaes as
’ indivisible enlity.

~,wtmreasamessageisatims

346 OOPSIA ‘88 Proceedings ssptember~, 1988

figure 23 - DFD with 110 uncoheslveness

in the DFD in figure 23 the process MAKE WORD is not
VO cohesive. The “burial” technique con&s of pushing
down that part of the diagram which feeds multiple inputs to
MAKE-WORD: in this case the terminal keyboard and
the data flow line char are buried within MAKE-WORD

before attempting to transform (figures 24-25). This is
equivalent to stating that the implementation of the
operation MAKE-WORD will be responsible for dealing
with chars coming from the keyboard.

figure 24 - burial of keyboard

I

4
:
:
:

t
:
:
:

1
: MI

OOPSLA ‘88 Procesdings 347

The question is now: what is the entity X? There are two
possible answers:

1. If MAKE-WORD was originally decomposed into a
DFD, then X represents that DFD. Note that, by the rules
defined for burial, X is always balanced with respect to the
original DFD.

2. If MAKE WORD was not originally decomposed, then
X is undefi%d. In this case we adopt the convention to
represent X’s input and output data flow lines as shown in
figure 26.

an Input to X

an Output from X

figure 26 - terminators

So, if 2. holds, the DFD of MAKE-WORD becomes that
shown in figure 27.

figure 27 - Modlfled DFD of MAKE-WORD after
burial and decomposition

The grayed circle (which we shall call terminator) indicates
that “something is missing” in the specifications. In the
above example it is not specified how char will be
processed. Equally it is not specified how word wilt be
produced.

Note also that by applying the burial method we have
allowed certain processes to be pure sources {no input) or
pure consumers (no output): this only indicates that the
complete I/O of those processes is hidden within the
process specifications. In other words, burial is a step
towards abstraction and encapsulation.

In any case, after burial it is possible to transform in the
usual manner. The terminators will still be present in the
FDC’s which result from the transformation: the designer
may choose at this point to eliminate them by providing
further detail in the Object Oriented Design.

The burial method presents other nuances which are not
described here for brevity. The most important thing to
realize about this method is that it allows to transform
functional decomposition expressed by a Data Ftow Model
to functional decomposition expressed by an Object
Oriented Model.

s;4;vcfuRE
ROM ATA 3 CTIONARY TO O0JECT

During the Analysis phase the Data Dictionary is populated
with entries describing the decomposition of data
elements. Data identified during the Analysis correspond to
Object identified during the Object - Oriented Design
phase. Decomposition in the Object Oriented world means
to discover what Objects an Object is made of or what
Objects it references. Or, if you want, decomposition
means to uncover client-server relationships.

The OSC is used to describe both the client-server
relationship and the inheritance relationship. So 0%‘~ will
be the product of transforming Data into Objects.

The following obs8rvations apply:

1. If a Data entry specifies a sequence: a is
composed of al+al+...+an, this implies that the
Class a must feature Variables al, a2,...,an.

2. If a Data entry specifies rel>etitian: a is
composed of 1 to n ax’s, this means that, in the
Object Oriented Design world, a must contain a
Set, List, Array, or some other Collection which
holds together Objects of the Class ax.

3. If a Data entry specifies gelectiorl: a is
composed of either al or a2 or.,.. or an, this may
translate into an inheritance scheme, in the sense
that, for instance, al , a2 ,..., an could be
subclasses of a common ancestor-Class ac. Then
a could contain an Object of Class ac, or a may

In all cases it is quite straight forward to transform Data
Dictionary Entries in a set of consistent Object Modelling
Charts. The examples in figure 28 illustrates this.

Naturally the resulting OSC’s will still lack essential
information after the transformation. Namely the lists of
operations (Methods) featured by each Object cannot be
derived from the Data Dictionary: these lists must be
compiled by observing the places in the design ,(FDC’s)
where the objects in ques?ion play a role. Also more
information about decomposition of Objects (i.e.
determination of private Variables) may be obtained by
observing places in the DFD’s where Data is
group8&ungrouped.

Unfortunately Structured Analysis does not help much with
inheritance (with the exception of very limited cases, like
the one shown in figure 29): the process of organizing
Classes of Objects in a hierarchical fashion is truly a design-
time task.

3.5. TRANSFORMATION Of CONTROL

In the discussion of tad applied to control, let’s consider
separately:

1Oepending on whether or not the names used for Oata in theAn Ts
indicate types (Classes) or variab~s of a given data type (hsstan~es).
distincrion is very often only loosaly made in Analysis.

348 OOPStA ‘88 Proceedings September 2530,1988

1. Data Processes featuring incoming/outgoing
control lines.

2. Control Processes.

r-l passenger
list

Ilt REPETITION

r-l

passenger
name

customer
order

vacuum
cleaner
order

jet engine
order

figure 28 - Data Decompositlonl

pass&gerList

g&Name personName
. . . I \

REPETITION

getAreaCode
getNumber
. . . .

SELECTION

‘Taken form [PJ8OJ.

September 2!%0,1988

customer order

SELECTION

figure 29 - OSC from Data decomposition

OOPSLA ‘88 Pwceedings 349

0 ATA P RdCFSSES WITti.

Let’s consider an example (fgure 30).

figure 30 - Data Process with control lines

Note that control lines ‘are labeled, by convention, with
underscored lower case characters.

It is obvious that the process A must “react” to the events 3
and E. This suggests that & and E could be Method
invocations (Messages) requesting action. The destination
of the Messages would be an Object OA which
“implements’ A. The Object OA could be that
corresponding to one of the input data lines to A (a in the
example above) or some other Object.

The implication of this mapping strategy is that the process
A does not map to a &gl.e Muds Inv& but to

le Method Invm(on the same Object). This
poses an immediate difficulty in the sense that it is easy to
associate input/output dala lines to input/output
parameters of a Method. The question is: which Method?
The answer is provided by decisions made by the
Designer. In general each Method derived from an

incoming controi line may be associated with a set of
parameters which correspond to all or part of the
incoming/outgoing data lines of process A. Let’s consider a
concrete example (figure 31).

coidWaterTapControl

figure 31 - the Data Process fIllTank

The process fIllTank fills a tank with water and it keeps the
temperature at deslredTemp. By applying Tad to the
above DFD fragment, we decide to introduce one Active
Object: tankController which enjoys three Methods:
enable, disable and tankfull. The control lines enable,
disable and tankFull become Method Invocations on the
receiver tankController (see figure 32).

Clearly the FDC fragment in figure 32 is not complete. #We
need to add a Method to set deslredTemp (figure 33)

.--- Ak?!?~~* * ;7Yiizac,

.-&&Ed!,+

figure 32 - Tad Transformation of Data Process fillTank

OOPSLA ‘88 Proceedings slQtf3lnbsr #30,1888

tankController

desiredfemp
$ temp

figure 33

The output Objects hotWaterTapContro1.
drainControl and coldWattarTapContro1 (presumably
integers specifying voltage levels for the operation of
electrical valves) are definitely VO uncohesive with respect
to any input data. Hence the Burial method must be applied
to these Objects. It isevident from the example that the
Objects in questions are produced by the Executive of
tankController, therefore they will appear in the FDC of
the Executive of tankController as parameter-values of
Method Invocations performed by that Executive on other
Objects in the system (like InletValve, draInValve. etc.).

Similar observations apply to currentTemp: this input line
is also most likely VO uncohesive’.

In the above example no outgoing control lines were
present. Output control lines from a Data Process are dealt
with again by applying the Burial method. This is done to
reflect the fact that FDC’s model the functional
decomposition of Methods, where control requiring further
action is always passed from Client to Server. If we left the
output control lines in the FDC which transforms the Data
Process featuring those lines, we would be incorrectly
showing the inner workings of an Object within the
specifications of its Client: this clearly violates the basic
principle of information hiding of Object Oriented Design.

3 5.2. . CONTROL PROCESSES

A Control Process processes events and generates
events. Its definition in the Ward-Mellor Methodology is
given in terms of the specification of a Finite State Machine.
The State Transition Diagram is used for this purpose.

Since a Control Process h a Finite State Machine, we may
map it via Tad to an Object implementing the functionality
of this Machine. Since this Machine controls all processes
which reside in the same Data Flow Diagram, it is natural to
bury all Objects which implement the functions of
Processes external to the Control Process inside the
Object implementing the Finite State Machine. Before we
can do this, though, it is necessary to eliminate Control

‘Reasonably the process 1ankControllor will read this value at random
times. not prompted from the outside. Uncohesiveness and consequently
need for burial would disappear if we chose to communicate currrntlomp
in UnkControllor at times determined from outside, for instance at regular
time intervals.

Lines which are both input to the Control Process and
output from some Data Process. The Burial method is
applied in both cases. Let’s illustrate this with an example
(figure 34).

The first task is to bury X in all processes which control X,
i.e. 6 (which controls C through h) and C (which controls C
through a). The diagram in figure 34 is transformed into the
one shown in figure 35.

Note that, although C has been buried within B and C
(changing them into B’ and C) to allow B and C to control
X, X must still appear at this level to control process at the
same level (A through a B’ through d and c’ through f).
This makes perfect sense in the Object Oriented world: Z is
an Object Server of both B and C. whilst both B and C are
servers of Z.

After the above transformation, A, B and C are buried within
Z to allow Z to control them. The way C controls A, B and- C
is totally determined by the State Transition Diagram
associated with Z. A computer tool which supports the
transformation Tad will be quite capable to generate the
Design Methods h and 3 of X automatically.

Finally notice that the FDC’s which are going to be used to
map the decomposed DFD’s of B’ and c’ above are w
FDC’s, since more than one Method is specified (g and d for
B,f anclgforc).

September 2530.1988 OOPSLA ‘88 Proceedings 351

figure 35 - the Burlat Method applied to Control Procosws

4. SUU

There has been much controversy about whether
Structured Analysis techniques make sense at all in an
Object Oriented context. The main objection to using SA
techniques prior to an Object Oriented Design is that SA
techniques ignore the existence of Objects, hence SA
may “warp” the resulting Object Oriented design.

The approach outlined in this article shows that a great
amount of reconciliation of the two techniques is m.
We also go so far as to say th;rt this reconciliation is L&&

SA techniques have amply demonstrated their value in
expressing the specifications of the functional
requirements of a system. The major shortcoming of SA is
that it requires a sizeable informal quantum jump to reach
down from DFD’s and Data Dictionaries to any form of
software design. This paper hopes to show that it is
possible to provide semiformal strategies to reach down
from SA to Object Oriented Design.

Undoubtedly the transformatbn is less painful if the person
who compiles the -Essential Mod& ls ‘object aware.: in
this case it will be much easier to isolate and give form and
behavior. to Objects in the Design phase.

In facts if the Analysis Model itseff were slightly modified to
deal with -objects, dasses and methods’, rather than “data
and processes’, the transformation could be further
simplified. In this case much less guesswork would be
required to migrate from the Analysis Model to the Object
Oriented Model.

We would like to conclude this paper with a phibsophical
note. We believe that, when it cOmes to the use of different
Models for the description of a complex system, one
should never be religious about the use of one Model or
another: it is a typical human ability to be able to apply
different abstraction Models to the same underlying
“reality? the more numerous and the more descriptive the

352 OCIPSIA ‘88 Proceedings t%ptmberm, 1988

Models, the better our understanding. As mentioned
above, Analysis Models have well proven their value in pre-
design activities, especially when large, complex
application systems are involved. SA models are used

re the dew therefore they should be useful
whatever the chosen Design methodology happens to be.

More generally, the problem facing the
analyst/designer/software engineer is not one of &~&8
between different methodologies, but one of m of
different models, where each model is a very valuable
View” of the system from a preferred perspective (the
program itself is one such model). We believe that the
ideas presented in this paper are a step in the right
direction and we hope that more effort be dedicated by
methodologists and tool builders alike to favor and support
multi-model integration.

5. ACKNOWLFDG-

The author wishes to thank Nastec Corporation for making
the research for thispaper possible.

[ALA871 Alabiso, B., Object-Oriented Design,
The Case Report, Nastec Corp., September 1987 and
October 1987.

[AGH88] Agha G.A., Actors: A Model of
Concurrent Compufatbn in Distributed Systems, the MIT
Press, 1988.

[BES87] Besemer, Y., An htroductbn to Object
Oriented Design
September 1987.

and Programming, Case Outlook.

[Booas]
Development,

Booth, G., Object Oriented
IEEE Transactions on Software

Engineering, February 1986.

[COX88] Co%, B., Object-Oriented Programming,
an Evolu&nary qpprOach, Addison Wesley, 1986.

[DEM78] De Marco, T., Structured Analysis and
System SpecifWtEon, Yourdon Press, New York 1978.

[DOD831 US Department of Defense, Reference
Manual for the ADA Programming Language, ANSVMIL-
STD-181 SA-1983.

[GR83] Goldberg, A. and Robson, D.. Smafftafk
80, the La&age and its Implementation, Addison Wesley,
1983.

[OS791 Gane, C. and Sarson, T., Structured
Systems Analysis: 7001s and Techniques, Prentice-Hall,
Englewood Cliffs, NJ, 1986.

[HAT861 Hatley, D. J., Structured Method lor Real
Time and General Syssrems Devcilopment, IEEE
Proceedings, 10th Anniversary COMSAC. Chicago, IL.. 8-
10th Oct. 1986

8epternber 2530,19&t OOPSLA ‘88 Proceedings

[JAC87] Jacobson, I., Object Oriented
Development in an Industrial Development. Proceedings
of OOPStA’87, Orlando, FL, 1987.

[MWSS] Mellor, S. and Ward, P., Structured
Development for Real-Time Systems, Prentice Hall,
Englewood Cliffs, NJ, 1986.

[MEY87] Meyer, B., Reusability: the Case for
Object Oriented Design, IEEE Software, March 1987.

[MEY87] Meyer, 8. Eiffel: A Language and
Environment for Software Engineering, Interactive
Software Engineering, January 6th, 1987.

[PJ80] PageJones, M., The PractM Guide to
Structured System Design, Yourdon Press, New York,
1980.

[STR88] Stroustrup B., The C++ Programming
Langua9q Addison-Wesley, 1986.

[YC79] Yourdon, E. and Constantine, L.,
Structured Design, Prentice Hall, Englewood Cliffs, NJ,
1979.

353

