

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ACM 978-1-4503-1995-9/13/10.
http://dx.doi.org/10.1145/2508075.2514571

NitroGen: Rapid Development of Mobile Applications

Aharon Abadi1, Yael Dubinsky1, Andrei Kirshin1, Yossi Mesika1, Idan Ben-Harrush1, Uzy Hadad2
1 IBM Research – Haifa

2 The Academic College of Tel Aviv-Yaffo
{aharona,dubinsky,kirshin,mesika,idanb}@il.ibm.com, uzy.hadad@gmail.com

Abstract

Constructing a mobile application is expensive and time consuming.
In this paper, we present NitroGen which is a platform independent
tool that provides a consumable integrated set of capabilities to
construct mobile solutions aiming at reducing development and
maintenance costs. NitroGen is a visual, mostly codeless, cloud-
based platform to construct mobile applications. It can easily con-
nect to back-end services thus enable fast and facile development in
enterprises. Evaluating NitroGen, we found among others, that
participants learned it fast and found it simple and suitable for
mobile applications development.

Categories and Subject Descriptors D.2.2 [Design Tools
and Techniques]: User interfaces; D.2.6 [Programming Envi-
ronments]: Graphical environments

Keywords Mobile development, rapid application construction.

1. Presenter

Aharon Abadi's main research focus is on mobile software engi-
neering. He belongs to the research group developing Nitrogen. He
performed the evaluation of Nitrogen. His current research focuses
on analysis and optimizations of Nitrogen applications. He joined
IBM in 2007. His work has been included in IBM products. Aharon
was awarded the IBM Research Division award (RDA) and the
IBM Outstanding Innovation Award (OIA). He is the main author
of more than 15 patents. He is the main organizer and the PC chair
of the DeMobile 2013 workshop at FSE and MobileDeLi 2013
workshop at SPLASH.

2. Introduction

Building a mobile application is complex and expensive. Based on a
study performed by Propelics [1] on the average of deployed mobile
applications, there is an estimate of 1 week of effort per screen for a
simple baseline, i.e for a simple 8-screen application the baseline is
8 weeks of effort, application visualization and prototype (2 weeks),
development, unit testing, (4 weeks), quality assurance, user ac-
ceptance testing (2 weeks).

Developing an application involves obsessing over vast amounts
of technical details due to today's fragmented and proprietary mo-
bile market [2]. The proprietary programming languages, tools,
models, and device variability cause a significant increase in devel-
opment and maintenance costs. The development process becomes
complicated for enterprises as there are critical decision points

along the way that need broad technical perspective, as they signifi-
cantly impact the developed application.

Finding an easy way to build client-side service-oriented appli-
cations is still a challenge. The existing state-of-the-art requires a
deep understanding of technologies and internals, and the mobile
aspect is adding a new set of challenges such as security, connec-
tivity, and state synchronization. There are known existing devel-
opment environments and frameworks for mobile, among them
Xcode, ADT, Titanium, PhoneGap. These environments are for
developers and require deep knowledge of the targeted technology.
Further, these are no cloud-based and code-less environment. Most
important, these environments do not provide easy access to back-
end services. We suggest that there is a need to define new models
that focus on the goal of the application itself, provide interface for
non-developers and enable facile connectivity with the enterprise
services.

Based on previous work [3], we present the NitroGen tool (see
NitroGen screencast at https://ibm.biz/BdxLnu). NitroGen is a
visual, mostly codeless (drag and drop), cloud based environment to
construct mobile applications. The tool uses enterprise managed
interfaces and provides a consumable, high-level integrated ap-
proach to building mobile applications that are not specific to any
single platform or device. NitroGen allows solutions to be quickly
constructed from customizable templates, instead of developing
them from scratch. This solution accelerates mobile application
construction, lowers the costs, and simplifies the development
process by eliminating the need for heroic efforts or deep technical
skills.

3. NitroGen Architecture

IBM Mobile Foundation® delivers a range of application develop-
ment, connectivity and management capabilities that support a wide
variety of mobile devices and mobile app types. However, a great
deal of mobile application development skills is still required to
construct a mobile application. These skills include, but not limited
to: programming languages (Objective C, Java, C#, HTML, JavaS-
cript, CSS), development environments (XCode, Eclipse, ADT,
Visual Studio), platform specific APIs, frameworks (Dojo, jQuery,
Backbone.js), communication with back-end, mobile specific user
experience. NitroGen aims to eliminate technical skills that are
required to develop mobile applications and extends IBM Mobile
Foundation capabilities. It aims at making it easier for enterprise
employees to create line of business applications that use and create
data within their enterprise.

NitroGen is composed of design time components and runtime
components. With respect to design time components, IBM Web-
Sphere Cast Iron® is a graphical tool that enables users to integrate
cloud and on-premise applications. The results are exposed to mo-
bile applications in a form of services. Our contribution is based on
IBM Forms Experience Builder®. With the help of this tool users of
all skill levels can rapidly build and deploy data intensive web
applications. NitroGen extends the tool for designing mobile appli-
cations. Services defined in Cast Iron are dynamically discovered
and bound to the application data fields. NitroGen allows the user to

15

SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.

quickly preview the application in browser exactly as it will look
like on a real device (various platforms are available). Then Nitro-
Gen generates the application code and publishes it to the IBM
Worklight® for validation and testing on actual mobile devices. As
for runtime components, tested applications are hosted and distrib-
uted using IBM Worklight. Applications securely communicate
with Cast Iron via Worklight server. Cast Iron in its turn brings
together the data from various sources.

4. Application Abstraction
To deal with the complexity associated with mobile application
development, we have defined an abstract application model that
represents a mobile application. The user designs the application
with the help of a simple and intuitive web based Integrated Devel-
opment Environment (IDE) never seeing any of the underlying
models. Our runtime then interprets the application model providing
the best user experience on different mobile platforms and form
factors. While the created application is a true Model, View, Con-
troller (MVC) type of application, the user of the IDE is unaware of
this. She simply works with the user interface (UI) and connects the
backend data to the UI. The user is unaware of how the application
connects to the backend data as the IDE uses meta-data about the
various backend data sources to generate the needed Worklight
artifacts for this.

An application is a set of forms (screens), each having a se-
quence of fields that show application data. Fields are of different
kinds, such as text, telephone, date, and image. Fields can be either
read-only to present data or editable to collect data. Table is a spe-
cial kind of field for showing repetitive data. Buttons and table rows
are used for navigation between forms. Under the covers these UI
artifacts are bound to a data model that is extracted from the UI
designed by the user.

Services transfer data between the application and back-end. For
example, the Pre-population service is automatically invoked when
a form opens to fetch the needed data; the Save service is used to
save form’s data and its existence causes automatically add a save
button to the UI in runtime. The NitroGen IDE's server has an
extendable method for discovering data sources available to the user
when creating the application. This process provides information
such as connectivity and data fields available enabling an easy way
to connect to the needed backend data sources.

The integration with the backend services in NitroGen is rele-
vant in two stages of the application lifetime: design and runtime.
At design time the application developer is binding the services to
the application. The Cast Iron as a backend system provides SOAP
based Application Program Interface (API) to query for available
services and description of each service in a Web Service Definition
Language (WSDL) format. The result of this discovery is a set of
structured service description documents that contains the relevant
information needed for the service binding. NitroGen platform use
these service descriptors at design time to create the mapping dialog
where developer is able to select the service and map fields to and
from the service.

The same service descriptor is being used for generating the re-
quired adapters for the invocation of the service at runtime. Each
adapter is configured to communicate with a specific backend
system and acts as the mediator between the mobile application and
the backend service. The main advantage of using an adapter is to
take out the complexity of the integration from the client side to the
server side. The use of an adapter is also crucial for overcoming
security issues where the mobile application is not allowed to direct-
ly communicate with a backend service.

5. Evaluating NitroGen
We studied the functionality and usability of NitroGen with CS-
major students in their third year of graduation who take the ‘De-
veloping Web Applications’ course in The Academic College of Tel
Aviv-Yaffo. In the first evaluation stage, participants were asked to
fill in a pre-experiment questionnaire (10 minutes); In the second
stage, they learned NitroGen while using the tool according to
written tasks (90 minutes); and in the third stage they reflected on
and shared their experience (10 minutes). In what follows, we pre-
sent some of the findings.

Learning about their skills level using the pre-experiment ques-
tionnaire (36 participants’ answers), we found that participants are
knowledgeable with tools and techniques for developing web appli-
cations still do not have experience with development of mobile
applications. In the second half of this questionnaire, we introduced
a scenario to be developed as a mobile application and we asked
participants to estimate the amount of time they need for the devel-
opment of such a mobile application. The answers varied from 2
days to 3 months. We further asked about the most problematic
issue in this application development. 11 participants indicated that
developing the user interface is the most problematic issue, and 10
participants mentioned different features of the application. Only
few (3 participants) refer to the database, to the suitability to differ-
ent platforms (2 participants), or suggested that there are no prob-
lems (3 participants).

In the second stage, we presented the basic concepts of NitroGen
to the participants, divided the class to groups (pairs and triplets),
and provided a movie on developing using NitroGen and 9-tasks
exercise that led step by step the development of a mobile applica-
tion using NitroGen. We checked NitroGen server for the comple-
tion status of the different groups. 5 groups completed the exercise.
9 groups completed till a certain point among them 4 groups left at
the early tasks and 5 groups stopped in the advanced part. It took 46
minutes for the first group to complete the exercise. After 75
minutes 5 groups completed the exercise.

In the last stage we asked participants to reflect on their devel-
opment activity filling in a post-experiment questionnaire using
close and open questions. Only 15 participants filled in the ques-
tionnaire, all of them are part of groups that completed the task. We
found that participants like NitroGen features and found it not
difficult to work with. In the last part of the questionnaire, we iterate
the question on the estimation to develop the scenario. Answers
ranged between 1 hour and 1 week. This is a significant change in
how participants perceived of mobile application development.
Since the scenario is relatively comprehensive and a small-scale
application was developed in less than one hour, participants
changed the way they estimated such a development.

We noticed that NitroGen is intuitive and easy to learn, and that
no significant barrier was reported.

References
[1] Propelics, How to Size a Mobile App Development Effort,

2013 [online] http://www.slideshare.net/propelics/how-to-size-
a-mobile-app-development-effort.

[2] Gavalas,D.,Economou,D.,Development platforms for mobile
applications: status and trends. IEEE Software 28(1),2011.

[3] Shachor, G., Rubin, Y., Guy, N., Dubinsky, Y., Barnea, M.,
Kallner, S., Landau, A. What You See And Do Is What You
Get: A Human-Centric Design Approach to Human-Centric
Process, Business Process Design (BPD) in BPM, 2010.

16

