

Copyright is held by the author/owner(s).

OOPSLA’08, October 19-23, 2008, Nashville, Tennessee, USA.

ACM 978-1-60558-220-7/08/10.

Automatic Detection of Memory Anti-Patterns

Adriana E. Chis

Performance Engineering Laboratory

University College Dublin, Ireland

adriana.chis@ucd.ie

Abstract

In large distributed enterprise systems detection of memory

problems can be a burdensome task. For understanding the

memory related problems a catalog which documents mem-

ory anti-patterns is proposed. This paper also introduces our

proposed prototype tool for the automatic detection of

memory anti-patterns.

Categories and Subject Descriptors D.2.5 [Software

Engineering]: Testing and Debugging – Debugging aids,

Diagnostics, Tracing; D.2.8 [Software Engineering]: Met-

rics – Performance measures

General Terms Measurement, Documentation, Perform-

ance, Reliability

Keywords memory anti-patterns; memory footprint; Java

heap dumps; metrics

1. Motivation

Distributed enterprise applications are becoming increas-

ingly complex and problem determination during both test-

ing and in production environments can be a difficult task.

For example, enterprise applications can typically contain

millions of objects and thousands of different object types.

In such systems it is difficult to pinpoint the root cause of

memory issues when they occur. These memory problems

can have a negative effect on runtime performance and in

severe cases can cause the application to crash.

Java heap dumps contain large amounts of data which

can be complex and difficult to understand. Commonly,

memory analyses require expert knowledge which is often

not readily available throughout development and testing

teams. Furthermore today's tools are limited in terms of the

functionality they provide and the volume of data that they

produce is large. The identification of the problems using

current tools represents a burdensome task because a sig-

nificant amount of time has to be spent on analyzing the

data they produce.

2. Background and Related Work

For the automatic detection of recurring memory related

problems the issues need to be first documented. Recurring

issues in software are often documented in form of the anti-

patterns. Brown et al. [4] define anti-patterns as “a literary

form that describes a commonly occurring solution to a

problem that generates decidedly negative consequences”.

Anti-patterns provide understanding for what was wrong

with the application and a solution that can be applied to

eradicate the problem.

The automatic detection of the anti-patterns has been

previously performed for performance design and deploy-

ment anti-patterns in component based systems [3]. Detec-

tion is achieved through a three stage approach: (1) data is

collected from the systems under test, (2) analysis is per-

formed on the collected data and a model is extracted, and

(3) known problems are detected in the model.

To identify memory issues in the heap, the structure of

the heap has to be known. A previous effort in this area has

been made by Mitchell [2] who reveals the content of the

heap through ownership analysis. Mitchell and Sevitsky [1]

also provide two classifications for memory health where

bytes are categorized by the role they have in objects (e.g.

primitive, header, pointer, and null) and objects are catego-

rized by the role they have in a collection (e.g. head, array,

entry, and contained). Furthermore, they propose a tech-

nique for analyzing the individual data types and exposing

their essential structure. This summarization provides a

useful insight into memory consumption which can assist

with bug detection. However analysis of such structures for

memory issues requires expert knowledge. Our work pro-

vides automatic analysis of such structures which allows for

automatic recognition of memory related problems.

3. Proposed Solution

The automatic detection of memory anti-patterns requires

both documentation and a detection process. As part of this

work we are documenting a new catalog of memory anti-

925

patterns. Furthermore we are applying anti-pattern detec-

tion to the new area of memory related anti-patterns.

3.1 Memory Anti-Patterns

A catalog that documents memory related issues is in de-

velopment. It documents a large range of memory problems

from the data structures that produce high overhead mem-

ory footprint [1] to more acute problems like memory leaks.

The memory related anti-patterns are documented at two

levels of understanding: for those who are not experts in the

memory area (e.g. system testers trying to identify issues)

and for those who have a deep technical expertise (e.g. ex-

perienced developers expected to resolve such problems).

The problems are also documented from the detection per-

spective such that future tool developers can easily detect

such issues. The data required for automatically detecting

the anti-patterns will thus be documented.

3.2 Prototype tool for memory anti-patterns detection

As part of this work we propose a tool that automatically

identifies the memory related problems from large distrib-

uted Java applications. The aim of this tool is to identify

issues and to provide a precise description of the problem

and a corresponding solution in a format that is useful for

both systems testers and domain experts. This tool will pro-

vide support for answering such questions as:

• Is there a memory leak? If so, what is the source of

it?

• Which data structures have the greatest memory

overhead? Are there more efficient solutions?

• Does the heap contain data structure dependencies

which are known to be inefficient? [1]

Our prototype applies two main steps for anti-pattern de-

tection: analysis and detection.

3.2.1 Analysis

The analysis phase uses as input Java heap dumps. A heap

dumps represent a complete snapshot of all live objects in

the Java heap. Heap dump analysis retrieves the memory

map of the application at certain point(s) during its execu-

tion. A number of different heap analysis techniques (such

as object ownership, backbone equivalence) [2, 1] are used

during the analysis step to extract a model of the heap.

3.2.2 Detection and Presentation

Documented anti-patterns will be transformed into metrics/

rules. The automatic identification of the memory anti-

patterns will be achieved using the model from the analysis

phase combined with static analysis and metrics. The model

computed in the analysis phase is annotated with metrics.

For example, for detection of a known anti-pattern,

whereby large numbers of high overhead collections with

few elements exist [1], three metrics can be used for detec-

tion: (1) the number of collection’s instances, (2) the num-

ber of collection’s entries, and (3) the ratio between the fix

memory overhead (per container) and the variable memory

overhead (per entry). If such metrics violate particular

threshold values the anti-pattern is detected.

Visualization also represents an important part of this

work. The heap content is displayed in UML-like diagrams

as trees of data structures. For each data structure a zoom in

option is available to look into composite objects. In this

stage identified anti-patterns are highlighted and presented

in a meaningful format, accompanied by the solutions.

4. Conclusion

There are two main outputs of this work. A catalog which

documents memory anti-patterns is proposed. It will be

presented to provide understanding to both experts and non-

experts in the area of memory management. This catalog is

useful from a problem solving point of view: the problem is

explained in detail and a solution is suggested. Furthermore

it will provide data required for automatic detection of the

issues. Such a catalog will allow for the sharing of knowl-

edge across the industry and for the development of tools

for detection. The second output of this research will be a

prototype tool for memory anti-pattern detection in Java

heap dumps. The tool will present memory issues in a use-

ful format for both system testers and domain experts. An-

other important aspect is that this tool will suggest a

solution, which may target the user code, the libraries, or

JVM itself. The tool will be validated by applying it to real

enterprise applications from IBM.

Acknowledgments

Thanks to Nick Mitchell, Gary Sevitsky and Trevor Parsons

for their useful comments and discussions. This work is

funded under the Enterprise Ireland Innovation Partnership

in cooperation with IBM and UCD.

References

[1] N. Mitchell and G. Sevitsky. The Causes of Bloat, The Limits

of Health. In Object-Oriented Programming, Systems, Lan-

guages, and Applications, pp. 245-260, 2007.

[2] N. Mitchell. The Runtime Structure of Object Ownership. In

European Conference on Object-Oriented Programming, pp.

74-98, 2006.

[3] T. Parsons. Automatic Detection of Performance Design and

Deployment Antipatterns in Component Based Enterprise

Systems, PhD Thesis, University College Dublin, 2007.

[4] W. J. Brown, R. C. Malveau, and T. J. Mowbray. AntiPat-

terns: Refactoring Software, Architectures and Projects in

Crisis. Willey, 1998.

926

