
Lightweight Programming Experiments without
Programmers and Programs: An Example Study on the

Effect of Similarity and Number of Object Identifiers
on the Readability of Source Code using Natural Texts

Tim Marter Paul Babucke Philipp Lembken Stefan Hanenberg
Department for Computer Science and Business Information Systems

University of Duisburg–Essen, Germany
tim.marter | paul.babucke | philipp.lembken@stud.uni-due.de, stefan.hanenberg@uni-due.de

Abstract
It is often said that controlled experiments should check the
effect of programming languages or styles on programming.
But it is also often said that running controlled experiments
is a very time consuming and error prone task – that’s why
a lot of researchers do not run such experiments. Both ar-
guments are plausible, but there is potentially an alterna-
tive: lightweight experiments where the effort to run such
experiments is low and which (still) fulfill the requirements
of controlled experiments with two exceptions: First, these
experiments do not use programmers as subjects, and sec-
ond, the experiments do not contain programming tasks. In-
stead, such experiments try to find analogies from other do-
mains where the topic to be studied is (still) close enough
to the original target domain but where it is easier to find
participants and experimental setups. This paper illustrates
such a lightweight experiment by introducing a study on the
effect of number of identifiers and similarity of identifiers
on (code) readability – without using source code and with-
out programmers as subjects. The result of the experiment
is comparable to other experimental results which gives a
first indicator that it is possible to run such lightweight ex-
periments that approximate the results of full-blown experi-
ments. This paper argues that such lightweight experiments
could be useful in the process of experimentation – they can-
not and should not supersede full-blown experiments, but
they can help in early stages of experimentation.

Categories and Subject Descriptors H.1.2;D.1 [User/Ma-
chine Systems]: Programming Techniques

General Terms Experimentation, Human Factors

Keywords Experimentation, Programming, Randomized
Controlled Trials, Human Factors

1. Introduction
Much has been said about possible factors that influence the
comprehension of software. In the tradition of software met-
rics (see [7] for an introduction into that field) things such
as size or structure metrics are analyzed in regard to their
(possible) influence on the readability. Other approaches re-
fer more to the human-computer-interaction aspect of source
code (the book by Shneiderman [21] gives a broader in-
troduction into that field) by applying human-centered con-
trolled experiments (see [15, 26]).

The human-centered approach seems plausible to a num-
ber of people, but a number of authors criticize that the
number of controlled experiments in the area of program-
ming or programming languages is very low (see for exam-
ple [12, 20, 22, 24, 25]). For example, Kaijanaho has shown
that the number of studies that analyze programming lan-
guage features using human-centered methods is quite low:
if reduced to the approach of randomized controlled trials,
Kaijanaho just found 22 studies in the field of programming
languages between 1970 and 2012 [16].

There might be reasons why relatively few studies are
executed per year: it is often said that the design and ex-
ecution of controlled trials take a lot of time and is rela-
tively expensive (see for example the often mentioned ar-
guments against experimentation mentioned by Tichy [24]).
And this seems to be an intrinsic problem of programming
experiments: Non-trivial programming tasks require still a
large amount of time and require programmers to partici-
pate. Such programmers need to be recruited and then they
need to spend a lot of time in an experiment – which causes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

Onward!’16, November 2–4, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4076-2/16/11...$15.00
http://dx.doi.org/10.1145/2986012.2986020

1

not negligible costs. And such costs become even more an-
noying when an experiment fails. As a consequence, most
researchers rather refuse to run experiments and spend more
effort in the design and implementation of artifacts (instead
of the design and implementation of experiments that evalu-
ate these artifacts).

We think both arguments should be taken into account.
First, we agree that randomized controlled trials are required
in order to check whether new programming technologies do
have an effect. But we also think that it is desirable to reduce
the costs of experimentation: if the software science commu-
nity runs controlled experiments in the same quantity as in
the last decades (again, Kaijanaho just found 22 randomized
trials in more than 30 years), there is relatively little hope
that software science becomes a mature discipline (from the
empirical perspective). Hence, the general question is how
the number of controlled trials can be increased in a way
that the effort for running such trials is much less than what’s
currently practiced.

We think that it is (to a certain extent) possible to drasti-
cally reduce the effort for designing and running such exper-
iments if the problem domain can be mapped to some other,
similar domain that is not directly related to programming
and where it is not necessary to use programmers as partici-
pants in the experiment. In case the problem domain is much
smaller (in terms of time required to solve a given experi-
mental task) this reveals new opportunities do run a larger
number of small-scaled experiments – experiments that can
be executed before running a full-blown experiment.

1.1 Motivation: Experimentation with
Non-Programmers

Often, there is the claim that programming experiments are
too expensive. For example, Tichy mentions (and criticizes)
the often heard phrase that “doing an experiment would
be incredibly expensive” [24]. By observing an experiment
series that one of the authors is involved in (see [5, 6, 8, 10,
11, 13, 19]) we share this impression: designing and running
such programming experiments takes a lot of time.

When doing programming experiments, experimenters
have to write some code (that requires exhaustive testing), to
provide the experiment’s participants with some program-
ming environment, to find participants who are capable to
write code, to find participants who are familiar with the
programming languages used in the experiment, to prepare
training sessions, etc. And finally, it is rather hard to design
programming experiments that require less than for example
an hour (for a single programming task). In case, the ex-
periment requires some within-subject measurements, this
implies that it takes even more time to measure a single par-
ticipant. And finally, in case the experiment assumes that the
participants are volunteers, the experiment must not take too
long (otherwise the motivation to volunteer is rather low).

Although we think that it is worth the effort to do such
kinds of programming experiments, we still think that there

are circumstances where it is worth to think about alternative
ways – ways where the effort for running an experiment is
much reduced.

We were heavily influenced by Binkley et al. [1] who ran
an experiment about identifiers where it was not necessary to
read or write code but where participants just had to remem-
ber a given identifier and click in a game-like environment
on identifiers shown to them. This kind of experiment has a
number of interesting implications:

• First, the overall time required by each participant is
rather low: Compared to traditional programming exper-
iments, it is rather a matter of minutes instead of hours.

• Second, such kind of experiment does not require sub-
jects to be familiar with a given programming language
or environment, it is not even necessary for participants
to be programmers.1

• Third, exhaustive training sessions for subjects are hardly
required.

Hence, we conclude from the Binkley study that it is prob-
ably easy for such a study to find participants (because not
much time and no special skills are required from the par-
ticipants) and to collect the data (because a single partici-
pant can be measured within minutes – i.e., a larger num-
ber of subjects can be measured in hours instead of weeks,
what is in our experience more likely the case in program-
ming experiments). Of course, there is no guarantee that
such lightweight experiments reveal effects comparable to
experiments executed in a programming environment. But
these experiments give first indicators that it is worth to run
such a study in a larger context with programmers.

1.2 Example: Study on Code Readability in Terms of
Number of Identifiers and Similarities

For the application of lightweight experiments, we had a
concrete research question: we were interested in whether
the similarity and the number of identifiers plays a role for
the readability of source code.

Despite the fact that programmers and programming lan-
guage designers have the tendency to care less about syntax
– Leavens et al. mention that “it is often said that syntax
does not matter” [18] – there are authors that analyzed the
usability and readability of programs from the syntax per-
spective; from the syntax of programming languages up to
the concrete syntax in programs.

From the programming language perspective, Stefik and
Siebert analyzed to what extent different keywords provided
by a programming language (such as keywords for loops,
conditions, or operators) have an effect on the usability of
the programming language [22]. The authors were able to

1 Although it should be mentioned that Binkley et al. were using program-
mers with different experience levels in the experiment in order to study
whether the experience level itself is an influencing factor.

2

detect differences in usability of different keywords with the
same or at least similar semantics.

From the program perspective, authors such as Lawrie et
al. [17], Binkley et al. [1], or Hofmeister [14] asked them-
selves to what extent the concrete syntax of a program in-
fluences the readability. More precisely, they asked whether
different kinds of identifiers have an impact on the read-
ability. The results were that full name identifiers make it
easier for developers to read and understand the code (in
comparison to abbreviations or single letter identifiers) and
that camel case identifiers are easier to detect than identifiers
written in an underscore style.

Using such studies as a starting point, a number of ad-
ditional questions arise. Probably the most obvious one is
to ask whether the number of identifiers in a program do
influence the readability of the source code: It seems plau-
sible that the more identifiers are in the code, the harder it
is to read the code. At least, refactorings such as remove pa-
rameter [9] (for an unused parameter) assume that additional
parameters cause additional effort for developers.

However, by thinking in more detail about the possible re-
lationship between identifiers and readability another ques-
tion arises: the question, whether the similarity of identifiers
do actually influence the readability of code.

p u b l i c f l o a t maxDis tance (P o i n t pointA , P o i n t poin tB ,
P o i n t poin tC , P o i n t po in tD) {

f l o a t d i s t a n c e = Math . s q r t (
(po in tD . x − po in tA . x)∗ (po in tD . x − po in tA . x) +
(po in tD . y − po in tA . y)∗ (po in tD . y − po in tA . y)) ;

d i s t a n c e = Math . max (d i s t a n c e , Math . s q r t (
(po i n tB . x − po in tA . x)∗ (p o in tB . x − po in tA . x) +
(po i n tB . y − po in tA . y)∗ (p o in tB . y − po in tA . y))) ;

. . .
re turn d i s t a n c e ;

}

Figure 1. Source code with similar identifiers

Figure 1 illustrates code that computes the maximum
distance from the first passed point to any other point. In
the code snippet the passed parameters have similar names:
they are just different in the last letter. We think the code
is hard to read because there are so many similarities in the
code: a wrongly chosen identifier somewhere in the code is
(probably) hard to identify.

p u b l i c f l o a t maxDis tance (P o i n t o r i g i n , P o i n t f i r s t ,
P o i n t second , P o i n t t h i r d) {

f l o a t d i s t a n c e = Math . s q r t (
(t h i r d . x − o r i g i n . x)∗ (t h i r d . x − o r i g i n . x) +
(t h i r d . y − o r i g i n . y)∗ (t h i r d . y − o r i g i n . y)) ;

d i s t a n c e = Math . max (d i s t a n c e , Math . s q r t (
(f i r s t . x − o r i g i n . x)∗ (f i r s t . x − o r i g i n . x) +
(f i r s t . y − o r i g i n . y)∗ (f i r s t . y − o r i g i n . y))) ;

. . .
re turn d i s t a n c e ;

}

Figure 2. Source code with different identifiers

Figure 2 illustrates code with the same semantics but
with different identifiers. We think that the second example

is easier to read, because the identifier names are easier to
distinguish. For example, in case somewhere in the code
the identifier third is used where the identifier second
is expected, we assume that this is easier to identify just
because the names of both identifiers are so different.

These examples motivated us to study whether the num-
ber of identifiers as well as their similarities influence the
readability of code. An obvious approach would be to use
the code snippets directly in a controlled experiment. Maybe
the mentioned debugging task (one wrong identifier) could
be a good task for the experiments. But maybe the effect
size of the (possible) difference is too small so that only a
very large set of participants in the experiment would reveal
this difference. Maybe the code needs to be more complex
in order to show such a difference. But complexity of code is
not easy to determine upfront. Again, the code must not be
too complex, otherwise the code’s complexity would be the
dominant factor that potentially hides all other factors.

At that point, we usually design and run a number of
small pilot studies where we give programmers (in our case
typically students) a number of tasks. But even for such
small pilot studies the effort for designing and running ex-
periments is still relatively high. In case we find indicators
that the factor we are studying has an influence, we check
what tasks could be appropriate for a real study. In case the
pilots do not show such indicators, we typically do not run
such a study. Again, this process is not trivial and still very
time-consuming. Although the goal of pilot studies is to be
small our experience is that even for pilot studies the costs
for designing tasks and collecting data is comparable to full-
blown experiment. At least, it is not an order of magnitude
smaller.

Again, the time for preparing and executing a pilot study
is quite high. But our suspicion is that the similarity of
identifiers is something that is not specific to code, but rather
a general issue in any kind of text. We think that when
we read a text with similar words, it is harder to identify
differences between the words. Hence, we think that it is
possible to find an analogy in text reading. And hence we
decided to apply a lightweight study instead of starting with
a number of pilot studies with source code and programmers.

1.3 Contribution and Structure of this Paper
Our general goal is to describe an approach to run lightweight
experiments instead of traditional pilot studies. We do that
by describing the design and execution of an experiment.
Hence, we think that the paper has two different contribu-
tions:

• This paper describes an experiment that compares the ef-
fect of number of object identifiers (in the concrete exper-
iment, these are nouns in a natural text) and their similar-
ities on the readability of a natural text (which is for us a
representative for source code). We did that by giving 32
subjects six different texts to read – each equal in length –

3

and asked questions about it. The result of this study was
that the number of object identifiers are an influencing
factor – no matter whether we asked for characteristics
(adjectives or verbs) of a given thing (the identifier) or
whether we asked for things that fulfill given characteris-
tics: the more object identifiers are in the text, the more
time it took the subjects to respond. With respect to sim-
ilarity of such identifiers it mattered only if we asked for
adjectives or verbs for a given noun where a large num-
ber of similar nouns appeared in the text. In such a case
the more similar these nouns are the more time it took
our participants to respond. Hence, the first contribution
of the paper is to answer a research question related to
programming – but in a non-programming environment.

• The second contribution of this paper, which is actually
the main focus here, is that we describe an experiment
that is from our perspective easy to design and to exe-
cute – and which does neither require a time consum-
ing procedure in the data selection, nor does it depend on
developers participating in the experiment. We answer a
given research question (by showing that the number of
object identifiers as well as their similarities do matter
from the readability perspective) with relatively low ex-
penses in the context of natural texts – but with the risk
that by transforming the research question into a differ-
ent domain, we lose too much context. I.e. the risk is,
that although we showed an effect in natural texts, such
effect would not show up if we run such an experiment in
a programming context.

By making the design of this experiment explicit, we hope
that it motivates other people to think about to what extent it
is possible to design a relatively cheap experiment – people
that currently rather refuse to run controlled trials.

The paper is structured in two parts. The first part of this
paper is the ordinary part of performing a controlled trial.
We describe for a given research question first the related
work in section 2, then, we describe the experiment by intro-
ducing first the research questions and then the experimental
design in section 3. Then, section 4 describes the analysis
of the measured data and the results. After summarizing the
experiment and interpreting the results in section 5, we inter-
pret the results from the source code perspective in section
6. Then, we discuss the experiment’s threats to validity.

In the second part, we discuss in section 8 to what extent
the whole approach – running a lightweight experiment in
order to answer a domain-specific, programming related re-
search question – might be applicable to software science in
general. Finally, we conclude this work in section 9.

2. Related Work on Identifiers
We discuss here workd from three different perspectives:
studies on (a) object identifiers, (b) programming language
syntax, and (c) on readability (in regard to eye movement).

2.1 Identifiers
Lawrie et al. (2006): The study by Lawrie et al. [17] ana-
lyzed the effect of parameter names on the understanding of
code. More precisely, Lawrie et al. gave more than 100 sub-
jects the source code of functions with the length between 8
to 36 lines of code. The experimenters constructed three ver-
sions of the functions: functions with parameter names with
full names, with parameter names consisting of abbrevia-
tions, and with single letter parameter names. The full names
were the ones developers originally have chosen, the abbre-
viations and the single letter names were derived from them.
The participants were given a number of different functions
(with different parameter names) one after the other. After
some reading time, they were asked to write down what the
code actually does. The analysis of the resulting data re-
vealed a significant difference between the different kinds of
identifiers with respect to the correctness of the answers. The
means for the full names were (for almost all functions) al-
ways higher than the means for the abbreviations and means
for the single letter names.

Hofmeister (2015): Hofmeister performed a similar
study on 72 professional developers [14]: Subjects needed to
find semantic defects and syntax errors in C# code snippets.
Each subject received such snippets with full name identi-
fiers, abbreviations, and single letters. The experiment was
performed over the web where the subjects were not able to
execute the code in order to get feedback. The code snippets
given to the subjects were single methods, each consist-
ing of 15 lines of code and each contained between 91 and
94 tokens. Time for fixing errors was measured. Addition-
ally, the number of found errors were measured. The results
were comparable to the results by Lawrie et al.: Full name
identifiers permitted developers to find and fix more errors
per time unit in comparison to abbreviations and single let-
ter names. The difference between full names and non-full
names and reveals a significant benefit for full names. Ad-
ditionally, Hofmeister analyzed the results for the abbrevia-
tions and the single letter names and did not find a significant
difference. Finally, Hofmeister checked, whether the differ-
ent treatments had an effect on the different kinds of errors
to be fixed. Syntactic errors were faster to find than semantic
errors and for syntactic errors no impact of the treatments
was measured.

Binkley et al. (2009): Binkley et al. [1] studied the pos-
sible effect of camel case compared to underscore style for
identifiers on 135 subjects. The general idea of the study was
to test, to what extent subjects are able to detect equal identi-
fiers by first showing such identifiers to subjects and then let
them choose among a given set of identifiers which one was
initially shown. Binkley et al. distinguished between iden-
tifiers which were common English phrases and identifiers
selected from an initially constructed code base. Addition-
ally, the authors varied the length of the words in the identi-
fiers (two word and three word identifiers). After an identi-

4

fier was shown to the subjects, a new screen appeared where
four identifiers were shown to the subjects. One of the shown
identifier was the same as the originally shown identifier,
three were different. The experiment was conducted over
the internet. The result of the study was that camel case in-
creased the correctness of the subjects’ responses, but in the
general case the response time with camel case was longer
as well. However, the study revealed an interesting interac-
tion effect; a longer training influenced the results: ’Subjects
with more training were slower on identifiers written in the
underscore style than subjects without training’. Addition-
ally, Binkley found that longer identifier names took longer
to read than shorter names. Another finding in the study was
that a longer reading time decreased the correctness.

Buse and Weimer (2010): In a larger study performed on
120 participants, Buse and Weimar extracted 100 code snip-
pets from five open-source projects [2] and gave these snip-
pets the participants who rated them with respect to readabil-
ity (scoring 1-5). Then, Buse and Weimar extracted from the
snippets 19 different factors (such number of identifiers, line
length, etc.) and generated a model from these factors. Then,
they compared the resulting model with the participants’ re-
sponses by running a regression analysis, showing that there
is a large correlation between the model and the responses.
Finally, they compared the model with other readability met-
rics and showed that there is a high correlation between such
metrics and the proposed model.

2.2 Programming Language Syntax
In addition to the previously mentioned studies, there are
studies that refer to programming language syntax. Stefik
and Siebert performed three studies, reported in one paper
[22].

The first study was a survey about preferred words that
appear in a programming language syntax. The participants
were grouped according to their expertise into the groups
’programmers’ and ’non-programmers’ and both groups
were asked to rate a number of words that are often used
in common programming languages. An interesting obser-
vation was, that there seems to be some large disagreement
between non-programmers and programmers.

In the second study, different syntactical versions of pro-
gramming language constructs in nine different languages
(C++, Java, Smalltalk, PHP, Perl, Ruby, Go, Python, and
Quorum) where shown to the subjects who rated for each
construct how intuitive it is from their perspective. The dif-
ferent constructs were grouped into different categories such
as loops, conditions, functions, etc. It turned out that devel-
opers considered even language constructs from major lan-
guages (such as C++, Go, or Perl) as problematic.

In a final study, subjects were asked to write some small
piece of code based on a given sheet that introduced the pro-
gramming language via an example. Six different program-
ming languages were tested (Quorum, Perl, Randomo, Java,
Ruby, Python). Then, the authors measured the probability

that single tokens were used in the right way. The experi-
ment revealed that only the programming languages Quo-
rum, Python and Ruby were significantly different from the
randomly created language Randomo – for Java and Perl this
statement did not hold.

2.3 Readability and Eye-Tracking
Finally, there are other studies that refer to the readability of
code - especially those ones that make use of eye-tracking
systems.

The first study to be mentioned is the one by Crosby and
Stelovsky [4]. They gave subjects different kinds of texts
(natural texts as well as algorithms) and analyzed the differ-
ent reading strategies. The algorithms provided to the sub-
jects consisted of loops, conditions and side-effects. The
analysis was performed based on data received from an eye-
tracking system. The study showed that there are differences
in reading algorithms and reading natural texts in almost all
cases. However, with respect to the code, large variations
were found among the subjects. Participants in the low ex-
perience group spent more attention to comments than par-
ticipants from the high-experience group, but in both groups
people were found that did or did not spend most of the at-
tention on comments.

The study by Busjahn et al. [3] measured in more detail
the effect of different groups of people on code reading. In
the experiment, novices were asked to read three programs
(from a few lines of code up to to an entire screen). Two of
them were in pseudo-code, one a complete Java class. Ex-
perienced developers were given six programs: two were the
same as given to the novices. The participants were asked
different kinds of questions from giving a summary of the
code up to answering some multiple choice questions. The
main result of the study is that both – novices and program-
mers – showed a different reading strategy when reading
text. While novices showed a high linear eye movements,
this was not the case for experienced developers: it turned
out that experienced developers adapt their reading strategy
when switching from a natural text to source code.

3. Experiment Description
3.1 Research Questions , Initial Considerations
The experiment addresses two research questions:

• RQ1: Does the number of object identifiers in a piece of
code influence the readability of the code?

• RQ2: Does the similarity of object identifiers in a piece
of code influence the readability of the code?

As described above our goal was to run this study not on
source code but on natural texts. In order to do so, we needed
to translate object names found in code to something we find
in natural texts. One criterion that we already decided in the
beginning was that the texts we gave the subjects should be

5

in their mother tongue, in our case this means that we wanted
to give subjects German texts.

Object identifiers: In our understanding, nouns that de-
scribe actual objects in natural texts are representatives for
object names in source code. Next, we needed to define what
the texts should be about – and what kind of questions should
be asked about the text in order to find indicators for the
readability of the text.

Equality of text: First, we decided to give subjects texts
with equal length. Although the phrase “equal length” is
easy to articulate, we found it rather hard to say what exactly
this should mean. Possible candidates could be equal with
respect to the number of characters in the text, equal with
respect to the number of words or equal with respect to the
number of sentences. While we thought that each of them
are possible criteria, we found it extraordinary hard to write
a natural text that is actually equal with respect to all of
these criteria, i.e. texts that still do represent valid sentences
and that are able to express “something meaningful”. We
have chosen here a much more relaxed criteria. Instead of
measuring equality with respect to number of characters, etc.
we just defined number of lines as a criteria: each text given
to the participants should be equal with respect to its length
measured in lines. For measuring the lines, we used a google
docs document and used in that way google’s underlying
algorithm for setting words into lines as a line measurement.

Number of lines: Next, we needed to decide how many
lines we wanted to give to the subjects. It became relatively
clear to us (by running very small initial studies) that the less
lines we give, the harder it is for us to measure anything at
all, because the effort for searching and finding fragments in
the text would be too low. After some trials, we decided to
give text with five lines to the participants (plus/minus half a
line).

Criteria for object identifiers: Next we needed to de-
fine some criteria for the object identifiers we used in the
text. First, we defined that each noun should have between
8-12 characters. Additionally, participants should be able to
articulate the nouns, i.e. technical terms that might be com-
plicated to read should not be part of the text. Note that we
do not restrict here ourselves to non-artificial nouns. We just
say that a noun should be a word that should be easy to read
and to pronounce.

Similarity of object identifiers: Since similarity is a
factor to be studied in the experiment, we needed to agree
on some similarity measurement. We decided to classify
nouns in the following way. First, we considered nouns to be
very similar if they differ in less than three letters, partially
different if they differ in half of their letters, and different if
they have at most three letters in common.

Number of object identifiers: Since we are interested in
studying the effect of number of object identifiers, we had to
decide on the different numbers that we would like to test.
We decided to design texts with three object identifiers and

texts with five object identifiers. Taking into account that
the text length was fixed, it turned out to be hard to write
meaningful texts with more identifiers within five lines.

Style of the text: Additionally, we needed to agree on
how the style of the text should look like. We decided to use
texts where a number of nouns are mentioned, each noun
representing some object, person or location, and where
some verbs and adjectives were associated to each noun.
And finally, the text should express something meaningful,
i.e. the mentioned nouns should be somehow connected in
the text in a meaningful way.

Appearances of object identifiers: Next, we decided
that each object identifier should appear exactly two times
in the text, i.e. no object identifier should play a larger role
in the text than another one.

FirstObject wants to repair with secondObject the beautiful
mansion thirdObject, owned by the gentle and small man
fourthObject in the village fifthObject. The old secondObject
lives as well in the small fifthObject and firstObject is a
neighbor of fourthObject and they like each other a lot. The
old mansion thirdObject is landmarked.

Figure 3. Example text (translated for illustration purposes
into English, concrete object names were removed)

Figure 3 illustrates one text we used in the experiment:
for illustration purposes we translated the text into English
(original in German) and we removed the object identifiers
from the text, because in the given example the identifiers
were similar, but we did not find appropriate translations
that reflect on this similarity2. Another difference between
the German text and the translation here is, that it is possible
in German to compose nouns to larger words (for example,
an English phrase such as “word length” is in the German
language just one single word). As a consequence, building
larger and similar word are no major problem in German. It
should be made explicit that each word chosen in the text
(including of course the object identifiers) are valid German
words.3

Questions to the subjects: We were interested in the
readability and the comprehension of the text. Hence, we
needed to design corresponding questions to be answered by
the participants. After some trials, we decided to ask for each
text the participants two questions (one after the other). The
first question asked for an object identifier that fulfills some
criteria mentioned in the text. The second question included
an object identifier and asked for some criteria associated to
it. For example, the first question for the text illustrated in

2 Additionally, due to the translation and the replacement of the object
identifiers, the illustrated text is slightly longer than the original one and
some word appear at different places (due to differences in the grammar of
the German and English language).
3 Another difference between English and German that is worth mentioning
here is, that nouns in the German language always start with a capital letter.
I.e. it might be the case that it is easier to identify nouns in the German
language because of the different style in comparison to other words.

6

Figure 3 asked for the village name (with the correct answer
fifthObject), the second question asked how fourthObject is
described (with the correct answer “gentle and small”).

3.2 Experimental Design and Procedure
We decided to measure time (which corresponds to the mea-
surement as taken in programming experiments such as [6,
8]) until we received the right answer from the participants.
The measurement started when we showed a question to the
participant and stopped when we received the right answer.
In case we got a wrong answer, we told the participants so.
The measurement was done by a timer that was started and
stopped by the persons who collected the data by hand.

During prototyping the experiment, we became aware
that different subjects differ widely with respect to read-
ing time and response time. As a consequence, we expected
that in order to show any effect in the study we either need
to drastically increase the number of subjects or to per-
form within-subject measurements. We decided to perform
within-subject measurements. But since there are potentially
learning effects or novelty effects, we decided to do some
counter-balancing by organizing the texts given to the sub-
jects as a repeated Latin square design: one group of sub-
jects received the questions in order ABCD, the next group
received the questions in order BCDA, etc. For the order-
ing of the tasks, we decided to switch between similarities,
i.e. one group received first a text with similar identifiers,
the next group received a text with different identifiers, etc.
However, taking into account that three different kinds of
similarities of texts were chosen (similar, different, partially
different), six different groups would be required. Since we
expected 30-35 subjects in the experiment, six groups were
from our perspective too many: this would imply five partic-
ipants per group – again, taking into account the large devi-
ation between participants, we expected that we would natu-
rally measure differences between such groups just because
of the low number of participants per group. As a compro-
mise we organized the similar and different questions in the
Latin square and left the partially different texts at the end.
Our goal was to use mainly the similar and different iden-
tifier texts for the analysis and using the partially different
identifiers only when needed.

I.e. we have in principle a 3-factor (within-subject) ex-
periment: the first factor is the similarity of object identifiers
(with the treatments similar, different, and partially differ-
ent), the second factor is the number of object identifiers
(with the treatments three and five) and the third factor is
the question (with the treatments question 1 and question 2).
Due to the ordering of tasks into different groups we have an
additional (between-subject) factor group that permits to de-
termine whether our measurements depend on the ordering
of the tasks.

The experiment procedure was as follow:

• We gave participants some warm-up task in order to get

Group Ordering of texts
1 S3, D5, S5, D3, PD3, PD5

2 D5, S5, D3, S3, PD3, PD5

3 S5, D3, S3, D5, PD3, PD5

4 D3, S3, D5, S5, PD3, PD5

Figure 4. Ordering of tasks: S=similar, D=different,
PD=partially different, the index describes the number of ob-
ject identifiers in the text

used to the experimental procedure (example text fol-
lowed by a first question, followed by a second question).

• For each text, we gave participants as much time they
required to read the text (we measured the corresponding
time).

• After a participant told us that he finished reading, we
gave him the first question to read. This was the starting
point of the measurement. For answering the question,
the participant had access to the original text. When the
participant told us the correct answer we stopped the
time. When the participant gave us an incorrect answer,
we told him, that the answer was incorrect.

• We repeated the previous procedure with the second
question. After question two was finished, we moved
to the next text.

The texts and the questions were available as printouts (on
DIN A4 pages). No additional material was available.

4. Results and Analysis
We have asked arbitrary subjects – people working at differ-
ent companies and students from our institute – to participate
in the study. Finally, 32 subjects participated in the experi-
ment who were randomly assigned to the four groups. The
age of the people varied between 18 and 58.

Table 1 shows the raw measurements in the experiment.
Group shows the different groups (according to the Latin
square arrangement), R is the reading time in seconds for
each text, Q1 is the response time in seconds for question 1,
and Q2 is the response time in seconds for question 2. We
analyzed the data using repeated measures ANOVAs using
the statistics package SPSS (version 22).

4.1 Results on Similar/Different Identifier Texts
First, we checked whether the reading time for the differ-
ent tasks were different. We did that by performing the
repeated measures ANOVA on the within-subject variable
numberOfIdentifiers (with the two treatments three identi-
fiers and five identifiers) and the within-subject variable simi-
larity (with the two treatments similar and non-similar). Nei-
ther identifiers nor similarity were significant (p = .27, η2p =
.038, respectively p = .5, η2p = .015). However, there was a
significant disordinal interaction between both (p = .033, see

7

Similar 3 Similar 5 Different 3 Different 5 Indifferent 3 Indifferent 5

Su
bj

ec
t

G
ro

up

R Q1 Q2 R Q1 Q2 R Q1 Q2 R Q1 Q2 R Q1 Q2 R Q1 Q2
1 1 32,8 4,2 6,6 40,3 6,3 8,8 50,1 7,6 7,4 35,0 6,4 7,2 39,6 7,4 6,6 46,1 8,6 11,2
2 1 15,3 10,2 8,6 13,7 12,3 14,9 18,2 11,4 10,7 16,2 10,8 11,0 17,5 8,3 8,9 15,4 11,1 14,2
3 1 35,6 3,0 4,6 38,4 4,5 8,0 40,3 6,3 5,4 39,8 5,8 5,7 44,3 5,5 7,6 41,0 11,3 8,3
4 1 27,0 4,5 12,2 24,3 5,7 11,0 38,2 8,6 3,6 28,4 7,4 5,6 53,0 5,8 7,8 58,9 14,0 8,6
5 1 28,7 5,1 4,7 36,8 11,0 8,6 40,5 8,1 7,9 35,1 7,4 8,4 36,4 6,9 4,9 45,1 8,8 14,0
6 1 65,1 3,8 4,8 59,7 5,2 4,7 66,6 5,3 6,7 55,6 7,0 8,1 70,2 3,5 3,5 56,4 7,0 8,0
7 1 21,3 8,7 7,6 27,8 8,8 9,4 31,4 11,5 9,4 25,8 6,4 8,6 24,2 4,4 6,5 29,0 7,9 6,5
8 1 45,3 10,4 9,8 50,2 8,2 8,7 49,1 11,0 11,1 43,2 9,1 15,7 56,6 3,7 8,7 51,4 9,4 7,7
9 2 16,8 6,9 7,1 17,4 12,7 16,7 15,8 10,7 9,7 14,3 7,5 8,2 16,3 6,7 7,5 18,0 8,4 9,9
10 2 40,4 8,5 8,6 45,5 9,7 13,7 49,7 10,4 9,1 36,7 7,8 11,4 35,5 17,4 10,1 39,7 7,7 9,8
11 2 35,3 5,6 6,6 33,1 4,1 4,1 37,0 4,9 6,2 27,4 4,7 6,3 19,3 10,2 4,4 29,2 6,7 7,0
12 2 14,7 3,5 9,5 17,8 4,7 4,8 10,6 3,7 8,9 21,8 10,9 16,4 11,3 3,2 3,5 13,8 10,7 4,3
13 2 22,1 11,0 9,8 30,3 6,4 6,6 22,6 4,9 15,5 23,3 7,7 14,1 26,6 8,5 5,0 26,5 10,0 6,8
14 2 16,5 2,8 3,0 18,0 6,0 8,7 16,0 1,4 16,8 17,9 2,2 18,6 17,7 6,2 2,0 23,2 3,9 9,2
15 2 19,2 8,5 8,3 20,2 2,4 3,8 16,9 7,6 14,6 21,1 4,1 11,3 19,3 2,9 7,0 18,3 8,6 9,5
16 2 12,7 5,8 3,8 15,8 2,6 6,1 19,8 4,1 16,0 23,0 7,2 11,6 22,2 5,3 8,8 24,8 5,7 4,3
17 3 20,3 4,1 3,9 20,9 4,9 4,0 18,9 6,0 17,6 23,1 5,4 27,6 18,7 6,6 5,6 20,6 11,8 8,6
18 3 24,4 2,9 7,2 21,4 2,5 5,9 31,5 4,3 17,6 33,3 3,1 4,0 18,9 2,2 1,6 23,0 3,4 7,1
19 3 12,7 4,1 11,3 15,4 3,0 15,7 15,5 1,8 16,6 17,5 11,6 32,8 16,7 3,0 9,0 15,6 2,8 5,7
20 3 18,8 2,7 3,3 25,7 2,2 3,0 23,6 2,2 14,5 33,3 1,8 14,4 23,2 2,2 2,6 29,9 3,9 10,1
21 3 20,2 5,6 8,0 22,8 6,6 7,6 19,6 7,6 60,0 27,0 4,3 10,7 21,2 5,0 4,7 21,3 8,1 4,5
22 3 22,8 4,1 4,9 33,6 3,0 11,0 21,9 4,2 47,2 48,1 5,1 11,7 26,5 2,8 10,2 27,4 10,7 23,8
23 3 32,7 4,1 13,9 27,0 4,6 3,9 30,6 11,3 19,5 24,8 8,0 3,7 22,1 5,0 3,0 30,7 3,0 4,4
24 3 24,0 3,1 44,0 19,0 4,3 8,5 24,3 2,3 49,8 23,4 3,7 6,5 24,3 2,3 3,1 19,3 9,7 3,5
25 4 23,6 7,4 4,5 25,6 11,3 10,8 19,0 7,4 10,0 20,0 6,8 20,6 22,9 5,1 7,2 23,2 3,4 7,4
26 4 16,5 7,0 9,2 21,6 12,2 9,6 17,6 9,6 20,9 19,4 6,7 10,1 17,7 5,7 5,6 19,4 6,6 6,6
27 4 22,1 14,4 9,0 17,8 8,3 6,2 16,3 5,5 13,9 21,7 3,5 4,3 34,8 3,0 4,2 30,3 19,7 4,5
28 4 37,4 11,2 7,6 30,2 7,1 4,0 36,5 9,5 15,5 27,2 3,4 22,8 28,7 5,8 7,2 29,2 11,7 11,8
29 4 27,9 6,8 4,3 28,4 5,4 9,3 26,4 7,0 30,5 26,8 4,5 10,6 21,9 3,6 4,0 27,1 4,0 4,5
30 4 23,2 7,9 5,5 35,8 13,1 10,2 31,7 7,1 26,0 32,3 4,4 6,5 32,9 3,4 4,3 29,1 10,3 16,7
31 4 30,4 5,9 10,4 21,1 10,0 3,8 21,8 2,6 35,8 31,7 8,9 9,7 29,6 7,3 5,3 32,0 17,6 6,2
32 4 19,5 3,8 6,3 17,8 5,5 7,5 20,4 6,4 10,7 17,2 4,8 4,4 18,4 2,6 4,7 20,3 6,7 19,6

Table 1. Raw Measurements of all subjects (all times in seconds): R = reading time, Q1 = time for question 1, Q2 = time for
question 2

Figure 5), where the reading time for three different iden-
tifiers was higher than the reading time for the three similar
identifiers (and even higher than for five different identifiers)
– we will speak about this interaction later.

Next, we ran a repeated measures ANOVA with the
between-subject variable group (with 4 treatments), the
within-subject variable question (with the treatments ques-
tion one and question two), the within-subject variable sim-
ilarity (with the treatments similar and different) and the
within-subject variable numberOfIdentifiers (with the two
treatments three identifiers and five identifiers).

First, the factor group was non-significant (p > .17, η2p =
.16) which indicated that there were no differences between
the response times for the different questions and similarities
between the groups. In case this factor would have been
significant it would indicate that the ordering of the tasks
influenced the resulting measurements which means that a
common analysis of all groups would be problematic.

Figure 5. (Surprising) disordinal interaction of identifiers
and similarity on reading time

8

Second, the factor question was significant (p < .001, η2p =
.643) and the subjects required less time to answer question
one (M=6.4) compared to question two (M=11.4).

Third, the factor numberOfIdentifiers was significant (p <
.02, η2p = .18) where responses to texts with three identifiers
required less time (M=8.1) than responses to texts with five
identifiers (M=9.8).

Fourth, the factor similarity was only approaching signif-
icance (p = .072, η2p = .11) with the tendency that different
identifiers (M=8.1) required less time than similar identifiers
(M=9.71).

Taking into account that question was a significant fac-
tor and taking into account that the two questions were in-
tentionally designed in a different way, it is reasonable to
analyze both questions, i.e. question one and question two,
in separation. Hence, we performed a repeated measures
ANOVA on the within-subject factors similarity and num-
berOfIdentifiers.

For question one, none of the identifiers is significant:
neither numberOfIdentifiers (p > .24, η2p = .044) nor simi-
larity (p > .9, η2p < .001).

For question two, the situation was fundamentally dif-
ferent. NumberOfIdentifiers was significant (p = .023, η2p =
.156) and the three identifier texts (M = 9.961) revealed a
smaller response time than the texts with five identifiers (M =
12.886). Similarity was again approaching significance (p =
.075, η2p = .099). Again, we received an interaction effect be-
tween numberOfIdentifiers and similarity with a large effect
size (p < .001, η2p = .419): a disordinal interaction between
both variables, comparable to the one described in Figure 5.

Again, the interaction effect was not plausible to us – but
we received from the subjects one comment over and over
again: the subjects considered the text with three different
identifiers extraordinary hard to read. Not because of the
identifiers or their number, but because of the written text
itself, which was not plausible to them. This information is
consistent with the disordinal interaction we detected in the
beginning.

Because of this comment, and because the previous result
that group was not a significant factor, we decided to repeat
the analysis but this time without the texts similar3 and
similar5, but with the texts partially different3 and partially
different5. We are aware that the last two texts were not given
to the subjects in different orders and that a possible ordering
effect could influence the results. But since we were not able
to detect such an effect for the first four texts, we assumed
that this was not the case as well for the texts partially
different3 and partially different5.

4.2 Results on Similar/Non-Similar Identifier Texts
Instead of repeating the whole previous analysis, we just per-
form the two separate tests for the two different questions.

For question one, numberOfIdentifiers was significant (p
< .001, η2p = .393) where three identifiers (M = 5.8) required

Figure 6. Interaction of number of identifiers and similarity
for question 1

less time than five identifiers (M = 7,6). Similarity was not
significant (p > .28, η2p = .036). However, we receive again
a significant hybrid interaction effect between both variables
(p < .026, η2p = .151): with an increase of similarity the five
identifiers reduced the response time, while the three identi-
fiers increased the response time (see Figure 6). While this
is not intuitive from first glance, there seems to be an easy
interpretation for this phenomenon: the first question asks
for an identifier to whom a certain adjective is associated,
i.e. a given adjective has to be found in the text. The more
identifiers are similar in the text, the easier it is to find this
adjective (because it is easy to skip text while reading sim-
ilar identifiers, because it is clear that none of them is the
adjective to be found). Such an effect must be stronger than
in situations where the number of identifiers is rather low.

For question two, the results are different. NumberOfI-
dentifiers was significant (p < .001, η2p = .443) and three
identifiers (M = 7.1) required less time than five identifiers
(M=13.3). Similarity was significant (p < .002, η2p = .263)
and the more similar those identifiers were, the more time
required the responses (M=7.3 vs M=13.03). There is a sig-
nificant, ordinal interaction between both (p = .008, η2p =
.204), i.e. an increase of identifiers and similarity increases
much more the difference in response time (see Figure 7).

5. Summary and Interpretation
This work was motivated by the works by Lawrie et al. [17],
Hofmeister [14], and Binkley et al. [1] who showed that the
kind of identifiers (full name identifiers vs. abbreviations vs.
single letter identifiers) as well as the style of identifiers
(camel case vs. underscore) have an effect: while the first
authors studies the effect on source code, Binkley studied
the effect in a game-like environment (where subjects had to

9

Figure 7. Interaction of number of identifiers and similarity
for question 2

chose between different options).
One of our goals was to identify more factors that influ-

ence the readability of source code. Our original idea was to
check, whether the number of passed parameters to a method
influence the understandability of such a method. Addition-
ally, we wanted to check, whether the similarity of such pa-
rameter names do influence the understandability of such a
method.

However, we followed another goal in this experiment. A
secondary goal was to build up an experiment that is closely
related to a programming experiment - without actually do-
ing anything directly related to programming. Here, we were
heavily influenced by the Binkley experiment [1] where the
participants were not working on real source code but in a
game-like environment.

By combining both goals we defined tasks on natural
texts, i.e. participants did not read source code but a natural
text that described situations where adjectives were assigned
to object identifiers. Altogether, we designed six of such
texts. Three or them contained three nouns, the other three
contained five nouns. Each noun appeared two times in the
text where corresponding adjectives were assigned to them.
Then, we measured the participants’ response times.

Finally, we asked ourselves whether the experiment’s re-
sults depend on the kind of questions given to the subjects.
For each text, we asked two questions. The first question
asked to what object identifier a criteria matches, the second
question asked for the criteria for a given object identifier.
We expected first that the kind of question has a influence on
the responses and that the number of object identifiers and
their similarity has a different effect for the two different
questions.

The results of the experiment were as follows:

1. When we asked for the criteria by mentioning an object

identifier (question 2), both, the number of identifiers as
well as their similarity effect the response time: an in-
crease of number of object identifiers and their similarity
increased the response times. We think that this result is
quite plausible, because the more similar object identi-
fiers are, the harder it is for readers to detect differences
between a word the reader currently reads and the object
identifier we asked for. Additionally, if there are more
identifiers in the text, the reader has to ask himself more
often whether the word he currently reads corresponds to
the one he has been asked for.

2. When we asked for an identifier by mentioning objects’
criteria (question 1), only the number of identifiers was a
significant factor, but not their similarity. Since the num-
ber of criteria are larger the more object identifiers are in
the text, is is plausible that the number of identifiers (in-
directly) increases the number of comparisons the reader
has to do in mind. We think that the interaction effect
can be explained in a similar way: the similarity does not
(directly) play a role, because readers need to identify
criteria in the text. However, if a larger number of object
identifiers is similar, it is easier to detect other words such
as the criteria the reader has to search for. If the number
of object identifiers is small, this effect is small, too (and
maybe hidden by other factors such as text complexity).

However, we should also keep in mind that the experiment
was not as straight forward as we expected: one text that was
originally intended to be used for the comparison seemed
to be faulty, at least we got feedback from the participants
that indicated this and which was consistent with a rather
peculiar interaction measurement.

6. Interpretation from the Source Code
Perspective

The goal of the experiment was not only to reduce the ef-
fort of designing and running an experiment by using natural
texts, the goal was to learn something about the readability
of source code. From the (object-oriented) source code per-
spective, the object identifiers in the text represent named
objects (which might be local variables or parameters) while
the other criteria represent fields or assigned values. The
whole text does represent a code snippet that does not de-
pend on any other variable (i.e. it does not refer to anything
that is not defined within the text). The used text is just a
very simplified source code: just object identifiers and their
associations with other criteria are being used. From our per-
spective, this is comparable to source code that just consists
of assignments. Other features that can be found in source
code such as method calls, conditions, loops, etc. were not
part of the natural text.

What we varied is the number of object identifiers and
their similarity. By varying the number of nouns we tried to
mimic the idea of methods with different numbers of param-

10

eters (or local variables). Next, we varied the similarity of
nouns. By making the nouns more similar we tried to mimic
situations that can be found in source code where different
parameters have similar names.

Finally, we varied the kind of information that had to be
extracted from the text. Instead of asking questions such
as “what does the code do” or “what is the output of the
code”, we asked for associations between object identifiers
and other described criteria. Applied to actual source code
this means that we asked, to what object a certain field is as-
signed (question 1), respectively what fields or assignment
belong to a certain object (question 2). By showing differ-
ences between both questions with respect to the measure-
ment, we have shown that there are different effects depend-
ing on what exactly has to be known from the code.

7. Threats to Validity
The experiment suffers from a number of threats to validity.

Generalizability to source code: The most obvious one
is that we used natural texts instead of source code. It is
unclear whether the results can be generalized to source
code – a similar situation holds for example for the Binkley
study [1]. But even in case the texts should be comparable
to source code, it is still a very restricted kind of code where
only object identifiers and assignments appear.

Imprecise measurement: Next, the measurements are
quite imprecise (without knowing exactly how imprecise
they are): starting and stopping the timer was done by hand.
Although we are aware of this general threat, we think that
this approach makes it easy to run the experiment because
no special equipment is required to collect the data.

Text styles: In order to make the texts comparable, we
made explicit the kind of text style we used. We are not
aware to what extent there are other influencing factors such
as the ordering of the object identifiers in the text, the way
how criteria of such identifiers appear in the text, etc. The
same objection holds for the text length: we are not aware
to what extent the chosen length of the text introduced addi-
tional confounding factors.

Text similarity: We built different texts for the different
number of identifiers and different similarities. This also has
to do with the decision to perform within-subject measure-
ments: too similar texts would probably increase the carry-
over effects when switching from one task to the other. How-
ever, it is possible that the texts differed with respect to some
other confounding factors. In fact, we have found such indi-
cators by the users’ feedback and the measured interaction
that made us change the analysis.

Differences in reading strategies: The eye tracking
studies by Crosby and Stelovsky [4] and by Busjahn et al. [3]
indicated different reading strategies by different groups of
participants (at least for source code). Due to our restricted
measurement (time measurement) we are not able to detect
to what extent the results were driven by different reading

strategies. However, we actually achieved differences caused
by the different treatments. I.e. although we are not able to
find better explanations for why there were such differences,
the measurements say that there are such differences. From
the perspective of source code readability this means that
the experiment was able to detect influencing factors but
provided no data that permit to reason about why these dif-
ferences appeared.

No additional help for reading: Finally, we should men-
tion that the participants did not get any tools that are in-
tended to help them reading the text. In regard to source code
we know that modern IDEs provide abilities such as high-
lighting opening and closing brackets or highlighting the ap-
pearances of marked identifiers in the code. We think that
such tools help people reading and understanding code, but
we are not able to say how large this effect actually is. Hence,
it should be up to future studies to check the possible effect
of such tools on the readability of source code. At least, we
think that such tools could have helped our participants in
the experiment: since words from the text were mentioned
in the questions, we assume that even simple find-functions
known from arbitrary modern text editors would have had a
measurable effect.

8. Lightweight Experimentation: An
Alternative to Pilot Studies?

While the previous sections described and discussed the
experiment from the perspective of the original research
question (readability of source code in general, and possible
effect of the number of identifiers and their similarity), it
is still necessary to discuss the very initial question in more
detail: Can the here proposed approach be used as a template
for other programming experiments?

From the perspective of effort for designing and running
the experiment, the experiment can be considered as a suc-
cess: it was relatively easy to design the experiment and to
collect data from a number of subjects. For each single sub-
ject it required in the average less than 10 minutes to par-
ticipate in the experiment. This means, that collecting data
from 32 subjects was done in less than six hours – even
if the subjects were sequentially tested. If we compare this
to programming experiments such as the ones reported in
[5, 6, 8, 10, 11, 13, 19], this is an extraordinary small num-
ber: in programming experiments, a single subject typically
requires 2-3 hours, others even 4 hours and more (see [23]).
I.e. in a sequential execution of the experiment, the data col-
lection for the lightweight experiment required between 4%
and 8% of the time required for the data collection in com-
parable full-blown programming experiments.4 The design
of the experiment also required relatively low effort: The
construction of the whole experiment required less than one

4 Assumed 2 hours respectively 4 hours per subject for full-blown experi-
ment and 10 minutes for lightweight experiment.

11

week. This means that in about six working days the experi-
ment was constructed and the data collected.

However, we must ask ourselves, whether the collected
data is valid from the perspective that the collected data
gives insight into the original domain. Of course, it can
be doubted whether the achieved results have anything to
do with reading and understanding source code in general.
However, what we can do is to compare the results of the
study with the study by Buse and Weimer. They concluded,
based on an experiment with 120 programmers that “the
number of identifiers and characters per line has a strong
influence on our readability metric [...]. It would appear that
just as long sentences are more difficult to understand, so
are long lines of code” [2]. This means that the results of
Buse and Weimar with respect to the number of identifiers is
quite comparable to the here produced results – but the here
produced results are retrieved with low costs. Hence, at least
for the given research question there is an indicator that not
arbitrary numbers have been generated, but numbers that do
actually give insights into the original research question.

Of course, the executed experiment does something that
is not directly comparable to typical programming experi-
ments: the participants just had to read something and to re-
spond to some questions. I.e., the participants were not re-
quired to construct something in the experiment (such as the
construction of source code that solves a certain problem).
We absolutely think that this is a potential restriction so far
and we do not have a direct answer to this problem: we think
that in order to build an experiment that requires people to
construct a solution to a problem would require to design
a completely different experiment. We are not aware so far
whether it is possible at all to translate such constructive pro-
gramming tasks to a different domain. However, we think
that it is worth to think about possible ways. For example, the
mentioned programming experiments [5, 6, 8, 10, 11, 13, 19]
did not require participants to develop code that includes
conditionals or loops. It might be the case that such experi-
ments can be translated to natural texts as well, such as that
references to text elements should be written by participants
(the mimic method calls).

However, when designing the experiment, we also be-
came aware that we needed to address problems that we
probably do not have (at least not to the same extent) in pro-
gramming. While writing the texts, there was the need to dis-
cuss different styles of texts, different words, etc. Here, we
had the feeling that the new domain brought in additional
problems as well – and there might be situations where such
problems are larger than the ones that need to be solved by
the experiment.

Finally, we should be even more critical with the whole
approach. The typical argument by people running con-
trolled experiments is often, that they doubt that the dis-
cipline of software science is based on any solid empirical
foundation. If we now propose to build such a foundation

by translating the original research question to a different
domain, there could be a very strong argument against such
an approach:

This is pseudo-science, because it does not study the
original research question, but studies something that
can be considered as (the trial of) an analogy that might
or might not give insights to the original question.

In fact, this is a really serious objection and we must not
be too eager to ignore it. Yes, there is the great danger that by
translating the research question to another domain, we lose
any relationship to the original research question. Hence, we
should be more than skeptical with results gathered purely
from experiments that are translated to a different domain.
Hence, we think that such lightweight experiments should
only be used as small steps in the research process: situa-
tions where it is desirable to run a (small) experiment and
where the results of such an experiment give some guidance
about how the next (small) step in the research process could
look like. However, in the very end of the research process,
there should be (still) a controlled trial that actually checks
whether a given hypothesis in the domain of software sci-
ence holds – and this trial should be executed in the domain
of software science. I.e., we share the doubt that only the
execution of lightweight experiments will (probably) not be
able to give enough insight in software science – but they
could play a part in the process.

More precisely, our interpretation of the present experi-
ment is that we gathered evidence that the number of identi-
fiers and (with weaker evidence) their similarity play a role
in readability. Based on that, we should now start designing
a larger experiment. The pilot for such an experiment would
no longer focus on the research question in order to check
whether the underlying hypothesis holds – instead, the pilot
would concentrate more on whether or not the experimental
procedure works out.

9. Conclusion
We think that the here presented experiment could be used as
a starting point for lightweight experiments in software sci-
ence that can be used to gather insights in our field without
investing too much in the process of experimentation. More
precisely, we think that the experiment can be used espe-
cially as a starting point for experiments about the readabil-
ity and understandability of source code where the effort for
running such experiments is much lower than in traditional
programming experiments.

However, we should not forget that the way how mea-
surements are performed in this experiment are much more
restrictive than for example eye-tracking measurements as
used by Busjahn [3] that permit not only to identify an ef-
fect, but to reveal possible explanation models for such an
effect. However, just identifying factors that do influence the
readability and understandability of code would be already a

12

huge help for the programming community or the software
engineering community in general.

Additionally, we think that the proposed approach of per-
forming lightweight experiments also contains a number of
risks – namely that the results gathered from such exper-
iments cannot be translated back to the original research
question. Hence, while we would like to encourage other re-
searchers to think about such lightweight experiments, we
also would like to warn that it is not the intention of this
paper to propose such experiments as an alternative to tradi-
tional programming experiments. They should only be used
as “additional studies” (used in early stages in experimenta-
tion in order to detect possible factors) – the overall evalu-
ation of hypotheses should still be done within the studied
domain. We think that such larger experiments can be exe-
cuted after a longer chain of rather cheap experiments. We
think that in that way it is possible to gain more benefit out
of experimentation in comparison to for example the exper-
iment series such as [5, 6, 8, 10, 11, 13, 19] where we think
that the effort for running such experiments is rather high.

We think that especially in the area of program syntax
or programming language syntax, there is a larger opportu-
nity to run such lightweight experiments and that in the area
of syntax there is a large gap that still needs to be filled.
While there are studies available about things such as identi-
fier style (full names, abbreviations, camel case, underscore
style, etc.) there is still a huge gap in knowledge with re-
spect to what exactly identifiers should express (what is a
good name for an identifier?) or identifier styles for different
elements (variables vs. parameters vs. method names), etc.
Here, the execution of lightweight experiments such as the
one described in this paper could help – because it seems
plausible that such questions are closely related to the ques-
tion how people read text (and not so much, how people read
source code).

In general, this paper’s contribution is to give a differ-
ent perspective on experimentation than what’s currently
found in the literature. We hope that in that way we show
researchers opportunities to run experiments, who are cur-
rently rather reluctant to run any controlled trial.

References
[1] David Binkley, Marcia Davis, Dawn Lawrie, and Christo-

pher Morrell. To camelcase or under_score. In The 17th
IEEE International Conference on Program Comprehension,
ICPC 2009, Vancouver, British Columbia, Canada, May 17-
19, 2009, pages 158–167, 2009.

[2] Raymond P. L. Buse and Westley Weimer. Learning a metric
for code readability. IEEE Trans. Software Eng., 36(4):546–
558, 2010.

[3] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha E.
Crosby, James H. Paterson, Carsten Schulte, Bonita Sharif,
and Sascha Tamm. Eye movements in code reading: relaxing
the linear order. In Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension, ICPC

2015, Florence/Firenze, Italy, May 16-24, 2015, pages 255–
265, 2015.

[4] Martha E. Crosby and Jan Stelovsky. How do we read algo-
rithms? a case study. Computer, 23(1):24–35, January 1990.

[5] Stefan Endrikat and Stefan Hanenberg. Is aspect-oriented pro-
gramming a rewarding investment into future code changes?
A socio-technical study on development and maintenance
time. In Proceedings of the 2011 IEEE 19th International
Conference on Program Comprehension, ICPC ’11, pages 51–
60, Kingston, CA, 2011. IEEE Computer Society.

[6] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and An-
dreas Stefik. How do api documentation and static typing af-
fect api usability? In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 632–
642, New York, NY, USA, 2014. ACM.

[7] Norman E. Fenton and Shari Lawrence Pfleeger. Software
Metrics: A Rigorous and Practical Approach. PWS Publish-
ing Co., Boston, MA, USA, 1998.

[8] Lars Fischer and Stefan Hanenberg. An empirical investiga-
tion of the effects of type systems and code completion on api
usability using typescript and javascript in ms visual studio. In
Proceedings of the 11th Symposium on Dynamic Languages,
DLS 2015, pages 154–167, New York, NY, USA, 2015. ACM.

[9] M. Fowler and K. Beck. Refactoring: Improving the Design
of Existing Code. Object Technology Series. Addison-Wesley,
1999.

[10] Stefan Hanenberg. Doubts about the positive impact of
static type systems on programming tasks in single devel-
oper projects - an empirical study. In ECOOP 2010 - Object-
Oriented Programming, 24th European Conference, Maribor,
Slovenia, June 21-25, 2010. Proceedings, LNCS 6183, pages
300–303. Springer, 2010.

[11] Stefan Hanenberg. An experiment about static and dynamic
type systems: doubts about the positive impact of static type
systems on development time. In Proceedings of the 25th
Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA
2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, pages
22–35, 2010.

[12] Stefan Hanenberg. Faith, hope, and love: An essay on soft-
ware science’s neglect of human factors. In Proceedings of
the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA
’10, pages 933–946, New York, NY, USA, 2010. ACM.

[13] Stefan Hanenberg, Sebastian Kleinschmager, and Manuel
Josupeit-Walter. Does aspect-oriented programming increase
the development speed for crosscutting code? an empirical
study. In Proceedings of Empirical Software Engineering and
Measurement (ESEM) 2009, pages 156–167, 2009.

[14] Johannes C. N. Hofmeister. Influence of identifier length
and semantics on the comprehensibility of source code. De-
partment of Psychology, University of Heidelberg, Germany,
2015.

[15] N. Juristo and A.M. Moreno. Basics of Software Engineering
Experimentation. Springer, 2001.

13

[16] Antti-Juhani Kaijanaho. Evidence-based programming lan-
guage design : a philosophical and methodological explo-
ration. University of Jyväskylä, Finnland, 2015.

[17] Dawn Lawrie, Christopher Morrell, Henry Feild, and David
Binkley. What’s in a name? a study of identifiers. In Pro-
ceedings of the 14th IEEE International Conference on Pro-
gram Comprehension, ICPC ’06, pages 3–12, Washington,
DC, USA, 2006. IEEE Computer Society.

[18] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde Ruby,
and David R. Cok. How the design of JML accommodates
both runtime assertion checking and formal verification. Sci.
Comput. Program., 55(1-3):185–208, 2005.

[19] Pujan Petersen, Stefan Hanenberg, and Romain Robbes. An
empirical comparison of static and dynamic type systems on
api usage in the presence of an ide: Java vs. groovy with
eclipse. In Proceedings of the 22Nd International Confer-
ence on Program Comprehension, ICPC 2014, pages 212–
222, New York, NY, USA, 2014. ACM.

[20] B. A. Sheil. The psychological study of programming. ACM
Comput. Surv., 13(1):101–120, 1981.

[21] Ben Shneiderman. Software Psychology: Human Factors in

Computer and Information Systems. Winthrop Publishers,
August 1980.

[22] Andreas Stefik and Susanna Siebert. An empirical investi-
gation into programming language syntax. Trans. Comput.
Educ., 13(4):19:1–19:40, November 2013.

[23] Andreas Stuchlik and Stefan Hanenberg. Static vs. dynamic
type systems: An empirical study about the relationship be-
tween type casts and development time. In Proceedings of the
7th symposium on Dynamic languages, DLS ’11, pages 97–
106, Portland, Oregon, USA, 2011. ACM.

[24] Walter F. Tichy. Should computer scientists experiment more?
IEEE Computer, 31:32–40, 1998.

[25] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A.
Heinz. Experimental evaluation in computer science: A quan-
titative study. Journal of Systems and Software, 28(1):9–18,
1995.

[26] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson,
and Björn Regnell. Experimentation in Software Engineering.
Springer, 2012.

14

