
NOAO Imaging Metadata Quality Improvement
A Case Study of the Evolution of a Service Oriented System

Sonya J. Lowry
National Optical Astronomy

Observatory
l ow ry@n o a o .e d u

Phillip B. Warner
National Optical Astronomy

Observatory
pwarn e r@n o a o .e d u

Evan Deaubl
National Optical Astronomy

Observatory
d e a u b l @n o a o .e d u

Abstract
Due to the natures of legacy astronomical imaging metadata
acquisition and storage technologies and techniques at the
National Optical Astronomy Observatory, the challenge of
methodically improving the quality of such information has
been insurmountable until now. The diversity of the sources
and lack of cohesive effort along with technologies that en-
able silo style efforts have contributed to the current, dis-
organized state of the collection of astronomical imaging
information. By meeting these issues with a solution that
combines policy and technology support for implementing
master data management, use of transformations that en-
able continued improvements and a history of changes made,
and a modular architecture based upon services that are fed-
erated over a flexible, robust communications architecture,
the NOAO Archive System can assure improvements in the
quality of the imaging metadata now and into the future.

Categories and Subject Descriptors H.0 [Information Sys-
tems]: General; D.2.11 [Software Engineering]: Software
Architectures—Patterns (e.g., client/server, pipeline, black-
board)

General Terms Design

Keywords Astronomy, Data Quality, Integration, Meta-
data, SOA, Service Platform, Service-Oriented Architecture,
Transformation, Virtual Observatory

1. Introduction
Dealing with National Optical Astronomy Observatory’s
(NOAO) astronomical data poses some unique problems for
an information system. Such a system must manage new
and legacy data collected using multiple technologies and

formats and deal with the varying quality and reliability of
imaging metadata from the distributed data collection points
in a way that supports access under evolving Virtual Obser-
vatory (VO) protocols [4].

Possibly the biggest challenge is finding ways to incre-
mentally improve the quality of the imaging metadata[1]
used by astronomers to differentiate the images of interest in
their science from the terabytes of images stored within the
archive system. This document describes how we evolved
our system designed as a Service Oriented Architecture[11,
12] to solve this problem and thereby improved the way am-
ateur and professional astronomers access NOAO data.

In general, the NOAO Archive System collects astronom-
ical data via a data transport system at the mountain cache
locations, persists that data redundantly across locations in
both the Northern and Southern hemispheres, initiates file
tracking behaviors, extracts and stores imaging metadata
from header keyword values, and provides secure access to
the stored metadata and data products via Virtual Observa-
tory protocols.

Our data quality initiative extends the capabilities of the
archive system to include features for validating, correcting,
and regularizing the imaging metadata astronomers use to
query against our astronomical data products.

2. Context and Requirements
Metadata with high fidelity enables the discovery of datasets
throughout the VO in specific regions of interest, time-
domain searches, filtering on relevant bandpasses, etc. Un-
fortunately, legacy NOAO data acquisition systems provide
metadata that are quite heterogeneous across instruments,
both in form and content. In addition, the metadata are fre-
quently inaccurate or are missing altogether.

Data quality improvement is also orthogonally affected,
and further amplified by, the limitations of the data format
generally used in the astronomical community: the data and
metadata are combined into a single file using the Flexible
Image Transport System (FITS) Standard [18, 2]. Although
the standard is continuously being improved (albeit at a
glacial pace), improving the quality of metadata has not been

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

675



Figure 1. Four of the telescopes at Cerro-Tololo Inter-
American Observatory (Credit: NOAO/AURA/NSF)

given much consideration (if at all). Hence, we are only able
to use the standard for data transport. Further discussion of
this format is provided in §2.3 below.

The focus of this effort is to bring critical metadata for
all imaging instruments to a common standard for quality
and completeness, and to establish a robust base upon which
other value-adding processes (such as pipelines) can be built.

The goal is to evolve the NOAO Science Archive System
to improve the development and execution of standardized
operational processes and procedures that enable the valida-
tion of quality and completeness of essential imaging meta-
data, correct values when feasible, regularize the form and
the format of the metadata, add new metadata where needed,
tag all metadata with status information, and clearly docu-
ment all quality improvement activities in a verifiable way.

The legacy approach to this issue has been for system
operators to visually inspect collected FITS files for obvious
errors in a few critical keyword values and to manually
augment all copies of erroneous headers propagated through
the system from the previous night of observing.

The laborious nature of this approach prohibits the val-
idation and correction of more than a very few number of
keywords as the system collects images each night from sev-
eral sources in both the Northern and Southern hemispheres.
This approach to correction cannot sufficiently provide the
high reliability needed for effective scientific queries.

2.1 About NOAO and DPP
As a U.S. National Observatory operating a wide range of
telescope facilities distributed throughout the world, NOAO
is by definition one of the most significant data providers in
the U.S. astronomical “system” which includes both ground-
based and space-based facilities. This significance can be
quantified both in the variety of instruments supported as
well as the volume of data produced.

However, until recently, most of the data obtained at
NOAO and affiliated facilities was only captured for backup
purposes, e.g., in case principal investigators lost their own
data, using a tape-based system. In 2000, NOAO created the
Data Products Program (DPP) in order to establish a unified
data management infrastructure for the distributed observa-

tory facilities and their users. Our focus was on the general
tasks of capturing, archiving, and processing data coming
directly from NOAO telescopes and instruments [13].

2.2 Specific Challenges
The technical challenges that DPP faces include data capture
from legacy instruments up to 20 years old, the wide geo-
graphical distribution of facilities over three mountaintops
on two continents, and the non-uniform use of the facilities
by visiting astronomers, each with their own data acquisition
methodology[14].

One result of decades of such diversity is an enormous
collection of legacy data products, each potentially repre-
senting a unique model for imaging metadata and in many
cases, offering incorrect or missing values for scientifically
critical metadata elements.

Additionally, new challenges are being introduced by the
growth of the Virtual Observatory efforts and by new instru-
ment projects with expectations of greatly increasing data
volumes over what is currently experienced at NOAO facili-
ties [13].

DPP must find a way to make this legacy data fit within
the new models for data access with imaging metadata val-
ues that offer a high degree of reliability while scaling that
same solution to accommodate the growing volumes of fu-
ture data.

2.3 Key Functional Requirements
For the purposes of this document, astronomical information
is composed of image files made up of two parts; the pixel
data and the imaging metadata which describes the pixel
data and is often represented as FITS file headers with key-
word/value pairs representing each data element (see Figure
2).

This information is currently archived by the NOAO Sci-
ence Archive system which redundantly propagates the FITS
files and assimilates header content (imaging metadata) into
a relational database. The primary goal of this project is to
develop an automated system for performing transforma-
tions upon the imaging metadata in order to increase the
quality of the metadata with a quantifiable improvement in
reliability.

Due to the shear volume of legacy data and the daily
volume growth in the (current) range of tens of gigabytes, the
system must support data profiling efforts by automating the
identification of newly encountered ‘models’ in the form of
FITS files that may not display characteristics of previously
identified and mapped sources.

In practice, the system should, when it fails to classify a
file as a known type, place an unidentified or uncharacter-
ized file into a holding location for manual review. An op-
erator should then be able to define rules for uniquely clas-
sifying that file, validating its content, and configuring and
executing the appropriate transformations that will result in
improved quality for all imaging metadata of that type.

676



Figure 2. Logical representation of a Multi-Extension FITS
(MEF) File. The MEF is basically a FITS file that contains,
in the pixel data subset of the file, a set of FITS represen-
tations, each of which individually represent a single FITS
file. A single FITS file contains a header unit and a data unit.

When a known type is encountered by the system, the
appropriate transformation should be performed on the file
content and validation of the result should follow. This pro-
cess is potentially iterative and the solution should support
such a scheme.

Additionally, provenance information should be kept in
order to roll-back a transformation (if necessary), assign
some reasonable level of confidence to new values, feed
information back into the ongoing data profiling effort, and
most simply for reporting purposes.

The most challenging aspect of this work may well be the
distributed nature of potential transformation activities. Cer-
tainly, some algorithms for transforming the imaging meta-
data can be encapsulated in libraries or local services, but
there are some that cannot fit into such a paradigm. Rea-
sons for such specialization include political restrictions on
deployment options, technical limitations of legacy systems,
and dependencies between federated services.

A result of these restrictions and limitations is that some
of the most scientifically significant transformations must be
performed by sending FITS files to remote services (possi-
bly hosted by other members of the astronomical commu-
nity). This is complicated by the fact that much of the data
collected by our system has a period during which it is pro-
prietary and must be protected.

Further complications result from requirements to man-
age the state of a transformation over time, as there often
are dependencies between steps, and execution of steps may
introduce varying or unpredictable delays. An extreme ex-
ample is a step which requires human interaction, hence a
transformation can be held in a waiting state for long periods
of time, e.g., weeks while a specific operator is on vacation.

2.4 Key Non-Functional Requirements
Of utmost importance is that the system must rigorously
protect the data. This means not only protection against
accidental deletion or loss of data and imaging metadata
in transit, but also protection based upon a defined security
model.

Current NOAO policy includes making imaging metadata
publicly available; therefore, remote services which only
require that information can be used for transformations on
any imaging metadata.

However, when full FITS files are required, the service
must conform to the NOAO policy to protect the data from
unauthorized access. This can be accomplished by hosting
within the NOAO protected network or by adoption of VO
security services along with appropriate tunneling features
or similar security measures.

Additionally, the system must robustly perform transfor-
mations on the volumes of data collected without falling be-
hind. Not only must the system keep up with the existing
data volumes, but also with the expected volume growth as
new instruments come online and handle the correction of
legacy imaging metadata as it is incrementally added to the
system.

Furthermore, the data must be corrected and ready for
retrieval within a limited timeframe, as astronomers often
prefer to retrieve collected data the morning after their run.

3. Paradigms
The NOAO Science Archive system has adopted a num-
ber of complimentary paradigms each of which has proven
appropriate to our goals. The Service Oriented Architec-
ture (SOA)[11, 12] enables the robust distributed envi-
ronment needed to execute our location and organization-
ally constrained processes. Component Based Software
Engineering[8, 16] allows us to federate services within
our system. Enterprise Application Integration[3] is the
paradigm that guides our integration of legacy and third
party components as well as our data and metadata. Finally,
Metadata Master Data Management brings us the policies
and technologies needed to understand what constitutes a
true quality improvement.

3.1 Service Oriented Architecture
First and foremost, the system leverages the service oriented
paradigm which provides a set of reasonable attributes that
must be balanced in a distributed system. A successful Ser-
vice Oriented Architecture balances these attributes in a way
that best accomplished the goals of the system. It is criti-
cal to understand that there is no one solution that meets all
needs.

Various lists have been created that attempt to summarize
what constitutes the traits of a service oriented system. For
the purpose of the NOAO Science Archive, the list would
include: Reusability, Loose Coupling, Abstraction, Location

677



Transparency, Modularity, Interoperability, Relevance, Pro-
tocol Independence, Autonomy, Discoverability, and Com-
posability.

3.2 Component Based Software Engineering
Component based software engineering has a long, success-
ful history and should not be shucked simply because ser-
vices look interesting. In fact, the service oriented paradigm,
as a complementary concept, brings CBSE to a new level
and conversely, CBSE applied to SOA enables greater reuse
and improved flexibility in process definition.

The NOAO Science Archive capitalizes on both of these
concepts by making use of service federation. Services are
our components and federation gives us the ability to modify
workflows at a granular level in order to tweak the behaviors
of the higher level services understood by science/business
users.

3.3 Enterprise Application Integration
Legacy NOAO distributed environments make extensive use
of point to point connections and fail to integrate data effec-
tively or at all in some cases. The NOAO Science Archive,
while still suffering from an abundance of point to point con-
nections, is attempting to provide a more integrated environ-
ment that will improve over time.

EAI, while not suitable for all aspects of our system, does
provide some promise particularly in the data integration
arena. The astronomical community chose, many years ago,
to adopt the FITS file format which has led to a situation
where each instrument team develops a new data model
for the imaging metadata collected. The goal of our current
effort is to improve the quality of this information and doing
so depends upon an understanding of the data that can only
come from transforming it properly to a single model. EAI
gives us this ability.

3.4 Metadata Management and Master Data
In order to correctly validate and correct the imaging meta-
data we collect, we must organize an effort to reach some
agreement on the quality of our master data[10]. This mas-
ter data serves as metadata describing our system and so,
once policy has placed appropriate authority, can be man-
aged within our metadata management system[17].

The state of master data at NOAO has historically been
tragic as most master data has never been electronically
recorded and never assembled in any form. Some examples
include some instruments that have been used for decades
that have never been assigned names and lists of optical
filters that may, or may not, have descriptions dispersed
amongst web sites for various interested organization but
never collected and managed by any single group. The col-
lection and management of this master data is prerequisite to
any successful attempt to improve the quality of the imaging
metadata, as it makes up or serves as a dependency for most
of that content.

Figure 3. Layers of the Service Platform

4. Our Solution
The architectural approach currently used for our distributed
archive system is a Service Oriented Architecture. Our sys-
tem is an assembly of shared services that provide a platform
[6] of components for building service federations [7], a
shared metadata management system for managing ‘system’
metadata, and a communications infrastructure provided by
an enterprise service bus. The new data quality addition is
an extension to this system. We shall look individually at
how each of these was adapted to provide the data quality
subsystem.

4.1 Service Platform
Our service platform is made up of a set of variably reusable
service components. These services, either Basic Services
(logic- or data-centric) or Process Services, constitute the
middle tiers of a layered architecture (see Figure 3).

Logic-centric Basic Services provide access to some bit
of execution logic that may be used for classification, trans-
formation execution, or validation. Often, the logic itself
may be encapsulated within a library, our own or third-party
provided. Nevertheless, a service is required in order to pro-
vide request interception, potentially adding additional be-
haviors.

Data-centric Basic Services provide CRUD access to
data elements. Within our data quality system, these ele-
ments may include transformations, classification rules, or
other ‘system’ metadata objects used, for example, in the
configuration of both Basic and Process Services.

Process Services within our platform are responsible
for workflow execution via orchestration or choreography.
These services use Basic Services to accomplish a set of
business tasks. As such, this type of service is not designed
for high reuse.

Figure 4 presents a generalized view of service inter-
actions. As shown in the figure, Process services may use

678



Figure 4. Sequence describing the generalized interaction between services.

any number of Basic services, while Basic services are con-
strained to interoperate with other Basic services or low-
level system resources (e.g., a file system or database). A
logical outcome of this constraint is that Basic services must
inherently contain a well-defined set of responsibilities (or
a single responsibility), thereby increasing their reusability
within the system.

In order to solve our imaging metadata problems, we
needed to define a set of new Basic and Process Services
that will, when combined with some of our existing services,
provide the new features requested by both the customer and
the operations teams.

We identified a need for a Process Service that is respon-
sible for orchestrating the high level workflow of classifying
a file by data source, identifying and fetching the appropriate
transformation, executing that transformation, validating the
result, optionally iterating back to the beginning of the work-
flow, persisting the final result, and generating appropriate
reports. The atomicity of each of these activities led us to
identify the need for new Basic Services, each performing a
given activity with the possible assistance of other services.
All of these services are new to the system, but may still rely
upon existing services as part of a federation.

All imaging metadata must flow through this Process Ser-
vice. However, the metadata from each data source must be
processed using a specific combination of transformations.
These transformation workflows are executed at the level of
Basic Services. It is this lower level workflow that introduces
the potential for high distribution of services. The config-
uration and deployment of these services are described by
‘system’ metadata, which are stored in a database (accessi-
ble through a Data-centric Basic Service), and configuration
files.

Finally, we identified a need for a service or set of ser-
vices to provide the execution of these lower level transfor-
mations. Such services are designed to be configured by ex-

ternal information (as opposed to static configuration used
at load time). Therefore, new transformations using existing
services can be defined by operators at runtime.

4.2 Metadata Management
Metadata is an integral part of any software system, from the
description of the structure of messages to the description of
the structure of the database.

‘System’ metadata can include descriptions of data sources
(e.g., the data acquisition system at the telescope), software
components in the system, the structure of the FITS files
(e.g., Multi-extension FITS, Single-image FITS, spectra,
etc.) created by the various survey projects, image metadata,
any transformations performed on data and image metadata,
events in the system that together form an account of the
history, and anything else in the system we find useful to
manage.

For the purpose of imaging metadata quality improve-
ment, we have extended our metadata management to in-
clude new types of objects for describing rules for classify-
ing files, transforming the imaging metadata and mapping
it to the data model, recording the transformation activities,
and for validating the results.

We have also taken a step toward a more federated meta-
data management system by keeping this metadata physi-
cally close to the services that use it most, and providing ac-
cess by the extended system via basic, data-centric services.

An important benefit of the introduction of managed
metadata transformations is the ease with which an oper-
ator can define new transformations. As long as the sys-
tem provides the low level components needed, an operator
can create a new transformation that simply assembles these
components in the appropriate order, and with dependencies
that make sense for the intended data source. A graphical
user interface that provides a visual way to assemble these

679



Figure 5. Component Interactions. Components are as-
sembled functionally as bundles. Communications may be
within the bundle or between bundles.

components further simplifies the operation of the subsys-
tem.

4.3 Integration and Deployment
Linking the individual services together is an integral part of
assembling a cohesive system. Our initial approach accen-
tuated the flexibility of a service-oriented system, making
each service individually installable, exposing every service
on the network, and linked services using those network con-
nections. We quickly found that this led to performance bot-
tlenecks, increased integration complexity, and complicated
deployment procedures. This led us to discover ways where
we could greatly improve the simplicity of this process by
intentionally reducing the flexibility that is exposed to the
deployer.

The deployment architecture of our system includes the
use of deployment bundles which are physical groupings of
services with complementary functionality. This approach
reduces the complexity of the system for the operators re-
sponsible for installation and daily operations activities by
reducing the number of components they need to install and
configure. It also allows us to reduce local communications
overhead by using the simplest communications strategies
where feasible.

Many of the services in our improved imaging metadata
quality project can be co-locate. within a single bundle. The
Spring Framework [15] is used to configure these intrabun-
dle communications, avoiding the need to unnecessarily ex-
pose services on the network and subsequently keeping the
network communication at a minimum.

However, some of the services cannot be deployed on the
same node within the bundle, and others that are deployed
within the bundle may need to provide remote access to other

Figure 6. Communications Architecture.

system bundles, or even to external users. To provide these
communications capabilities, we use the Mule [9] enterprise
service bus (ESB), a middleware system that simplifies ex-
posing and linking services on the network.

Using the imaging metadata quality improvement project
as an example, the top level services identified may all be
deployed within the same bundle, therefore orchestration
at this level is managed by Spring configuration. However,
transformation objects must be accessible to components
outside the bundle, so a remote interface to those transforma-
tion services must be provided through the ESB. The lower
level transformation workflows are executed using a com-
bination of components, some living within the bundle and
some external to the bundle, meaning that those services are
integrated using a combination of both Spring and Mule, a
mode of operation well-supported by both frameworks.

However, once we had settled on this design and had
been using it for some time, we discovered that some system
communications violated the decoupling constraint of the
system architecture. This problem stemmed from: (1) the
use of Java interfaces to define service interfaces, requiring
a service to import the interface libraries of external services
on which it depended, and (2) the use of a common message
model based on Java objects that required services to link to
the shared library containing these classes.

We chose to migrate away from this design, and towards
a more generic, event-based approach to communications.

680



Figure 7. Logical representation of the Extract, Transform,
and Load (ETL) Service.

This increased decoupling between services in the system,
and placed responsibility for message translation and routing
in the communications layer of the system, where it was a
more natural fit.

Figure 6 represents one example of an implementation
of this design. A service that depends on another service
contains (owns) an interface that functions as an event to
a remote service. A java.lang.reflect.Proxy instance
is injected (using Spring) as the implementation of that in-
terface, which use a MessageSender to connect to a remote
service (using Mule) or a local service (by injection through
Spring), transforming the message if necessary. This is a
simple example; these events can be manipulated using the
full capabilities of the ESB implementation in question. This
has been successful for us in abstracting the service code as
much as possible from messaging details such as message
routing, format, and content.

4.4 ETL
Metadata enter the system in FITS files (in the FITS header;
see §2.3) and are not consistent with the internal storage
model. The obvious solution was to extract the informa-
tion from the FITS headers and transform them into a for-
mat compatible with the internal model. However, several
requirements serve as a barrier to simple conversion of the
FITS header model into the internal model. Examples of
such requirements include supporting queries on a single
model, adding metadata that do not exist in the FITS head-
ers, and repairing insufficiently formatted data or bad data.

One solution to this problem is to leverage an ETL[5]
(extract, transform, and load; Figure 7) system. The con-
cept of ETL has been used in data warehousing for decades.
Very simply, it is the extraction of information from a source
model, the transformation of that information in a prescribed
fashion, and loading the transformed information into a tar-
get model. For the NOAO Science Archive effort toward im-
proving imaging metadata quality, the ETL concept is lever-
aged to provide more advanced transformations.

The most challenging part of the ETL is the Transform
service. Consideration has been given to devise an extensi-

ble system that enables dynamic configuration of the trans-
formation workflow. We again chose Spring, which provides
for both ease of use and the ability to independently extend
the system, as well as its inherent capability to dynamically
load the workflows.

The Transform workflow (Figure 8) involves three main
components, namely the Get Transform Service, the Exe-
cute Transform Service, and the Process library (namely
the Process Manager). Get Transform Service is a Data-
centric Basic service that provides a Spring configuration
file containing the declaration of the Transform implemen-
tation and its associated metadata. These Transform Con-
figurations are dynamically generated by operational users,
through the graphical user interface (previously mentioned).

Execute Transform Service enables synchronous interac-
tion with the Transform after execution by the Process Man-
ager (i.e., to obtain the result). The Process Manager pro-
vides asynchronous, thread-managed, unresponsive execu-
tion of runnable components.

Execute Transform is initialized through the Spring con-
tainer, the configuration of which also contains abstract bean
references that are the atomic transformations which are ref-
erenced and configured in the specific transformation work-
flows. In essence, the base Spring configuration contains def-
initions of generally usable components; these components
are referenced by other Spring configuration files (specific to
the data source); these ’other’ configuration files are loaded
dynamically into the container, and load the base compo-
nents from the parent context.

5. Conclusions and Outlook
The NOAO Science Archive System design is known to be
theoretically easily evolved as new features are identified
and clarified. Fortunately, we’ve found that the service ori-
ented nature of the system does enable, in practice, the evo-
lution we had hoped for as we successfully incremented the
system to add a new subsystem for the quality improvement
of imaging metadata.

This new subsystem begins the federation of our ‘system’
metadata by providing a new node for managing the new
metadata objects introduced along with adding new basic,
data centric services for the management of these new meta-
data types.

Additionally, it adds new basic and process services that
perform the actual classification, transformation, and valida-
tion of the imaging metadata along with services that provide
support activities and orchestration.

This effort also helped us identify a process for intro-
ducing new features and illustrated some less than optimal
choices we had previously made about communication that
created too much coupling and so, inhibited system evolu-
tion.

Ultimately, the project is deemed a success in both pro-
viding the framework for the incremental quality improve-

681



Figure 8. Sequence describing the execution of a transformation.

ment of the imaging metadata and also for helping us to es-
tablish an effective process for future, incremental feature
additions to the NOAO Archive System.

As the system grows, concerns for discovery and ser-
vice lifecycle management will become critical. The use of
deployment bundles positions us to leverage OSGi imple-
mentations, such as Spring Dynamic Modules and Service
Component Architecture, and address scalability and dis-
tributability of the components of the system as these issues
move to the forefront. In support of these concerns, and to
be prepared for leveraging new frameworks that are more
appropriate for some components in our system (see next
paragraph), we will continue to investigate improvements to
migrate functionality that is more related to message routing
and transformation to the communications layer of the sys-
tem. This will allow our service code containing our business
logic to be applied in ways we are only beginning to envision
today.

Other future exploration includes consideration of grid-
based data and information storage. While this will certainly
impact the storage of the FITS files currently kept within
a distributed file system, it likely will also have a great
impact on the way the current database content is collected,
stored, and retrieved and also on the way transformations are
executed. Under consideration now is the Hadoop software
platform. This platform will enable the movement of the
remediation logic to the data itself and so, help improve the
data consistency and the performance of the framework.

Acknowledgments
We are grateful to the entire NOAO Archive Team and also
to the Operations and Science Stakeholders who provided
their valuable expertise. We would also like to thank the
ACM rehearsal staff for their assistance in our preparation.
A very special thank you goes to our shepherd, Einar Landre,
for his unwavering dedication and encouragement.

References
[1] D. C. A. Bultermann. Is It Time For a Moratorium

on Metadata? IEEE MultiMedia, October-November
2004.

[2] FITS: The Astronomical Image and Table Format.
http://fits.gsfc.nasa.gov/.

[3] J. Gable. “Enterprise application integration”. Informa-
tion Management Journal, 36(2), March,April 2002.

[4] International Virtual Observatory Alliance.
http://www.ivoa.net.

[5] R. Kimball and et al. “The Data Warehouse Lifecycle
Toolkit”. Wiley, 1998.

[6] S. Lowry and P. Warner. NOAO DMaSS Solutions Plat-
form: An Integrated Approach to Services. In Astro-
nomical Data Analysis Software and Systems XVI, vol-
ume 376, pages 135–138, 2007.

[7] J. McGovern, O. Sims, A. Jain, and M. Little. Enter-
prise Service Oriented Architecture: Concepts, Chal-
lenges, Recommendations. Springer, 2006.

[8] B. Meyer. Object-Oriented Software Construction, 2nd
ed. Prentice Hall, 1997.

[9] Mule Open Source ESB and Integration Platform.
http://www.mulesource.org.

[10] M. Oberhofer and A. Dreibelbis. An Introduction to
the Master Data Management Reference Architecture.
IBM Press, 2008.

[11] R. W. Schulte and Y. V. Natis. ‘Service Oriented’
Architectures, Part 1. [Report] Gartner.

[12] R. W. Schulte and Y. V. Natis. ‘Service Oriented’
Architectures, Part 2. [Report] Gartner.

[13] R. Smith, T. Boroson, and R. Seaman. The NOAO Data
Products Program: Developing an End-to-End Data
Management System in Support of the Virtual Obser-

682



vatory. In Astronomical Data Analysis Software and
Systems XVI, volume 376, pages 707–710, 2007.

[14] R. C. Smith, M. Dickinson, S. J. Lowry, C. J. Miller,
M. Trueblood, and F. Valdez. The NOAO End-to-End
Data Management System: An Overview. In Astronom-
ical Data Analysis Software and Systems XVI, volume
376, pages 615–618, 2007.

[15] Spring Framework. http://www.springframework.org.

[16] C. Szyperski. Component Software: Beyond Object-
Oriented Programming, 2nd ed. Addison-Wesley Pro-
fessional, Boston 2002, 2002.

[17] G. V. Tozer. Metadata Management for Information
Control and Business Success. Artech House, 1999.

[18] D. C. Wells, E. W. Greisen, and R. H. Harten. FITS
- a Flexible Image Transport System. Astronomy &
Astrophysics Supp. Ser., 44:363, 1981.

683


