
LEAN: Simplifying Concurrency Bug Reproduction
via Replay-supported Execution Reduction

Jeff Huang Charles Zhang
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
{smhuang, charlesz}@cse.ust.hk

Abstract
Debugging concurrent programs is known to be difficult due
to scheduling non-determinism. The technique of multipro-
cessor deterministic replay substantially assists debugging
by making the program execution reproducible. However,
facing the huge replay traces and long replay time, the de-
bugging task remains stunningly challenging for long run-
ning executions.

We present a new technique, LEAN, on top of replay, that
significantly reduces the complexity of the replay trace and
the length of the replay time without losing the determin-
ism in reproducing concurrency bugs. The cornerstone of
our work is a redundancy criterion that characterizes the re-
dundant computation in a buggy trace. Based on the redun-
dancy criterion, we have developed two novel techniques to
automatically identify and remove redundant threads and in-
structions in the bug reproduction execution.

Our evaluation results with several real world concur-
rency bugs in large complex server programs demonstrate
that LEAN is able to reduce the size, the number of threads,
and the number of thread context switches of the replay trace
by orders of magnitude, and accordingly greatly shorten the
replay time.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging—Debugging aids; Trac-
ing; Diagnostics

Keywords Concurrecy Defect, Execution Reduction, Re-
play

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tuscon, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

1. Introduction
1.1 Motivation
Bug reproduction is of critical importance for software de-
bugging. Yet, reproducing concurrency bugs is known to be
difficult due to scheduling non-determinism. The technique
of multiprocessor deterministic replay (MDR) is able to fully
reproduce previous executions, attracting a significant re-
search attention for debugging concurrent programs in the
multicore era [1, 5, 8, 9, 13, 17, 18, 22, 30]. As MDR aims
at faithfully reenacting an earlier execution, the core focus
throughout the decades of research has been on reducing the
runtime recording overhead while preserving the determin-
ism. Several recent work [8, 9, 17, 30] demonstrates that the
future of low overhead MDR is positive, via special hard-
ware design [8, 17] or even clever software-level approaches
[9, 30].

However, we argue that MDR alone is not often sufficient
for debugging. Even with a zero-recording-overhead MDR
support, the debugging task can remain stunningly challeng-
ing for concurrent programs. We identify two main reasons.
First, most real world concurrent applications are large and
complex. For any non-trivial real execution, the execution
trace could be huge and complicated, containing millions (or
even billions) of critical events [27] and hundreds of thou-
sands of thread context switches [10, 11]. Facing the ocean
of shared memory dependencies and thread interleavings, it
is very hard for programmers to locate the bug by inspect-
ing the huge amount of trace information, never to mention
the space needs for storing the trace. Moreover, the perfor-
mance of replay is often slow and hard to predict. As replay
typically requires enforcing the scheduling behavior, it is of-
ten significantly slower (5x-39000x [1, 22]) than the native
execution. For long running executions, the replaying phase
may never end within a bounded time budget. It is very frus-
trating for programmers to wait but without knowing when
the bug will be reproduced.

To make MDR more practical for supporting concurrent
program debugging, we advocate the simplification of the re-
play execution and the speeding-up of the replaying process,

451

for j =1:M
{
 expected = account.get()+i
 account.increment(i)

assert account.get()==expected

 expected=account.get()-i
 account.decrease(i)

assert account.get()==expected
}

fo
{

}

account.set(0);

for i=1:N
 fork Ti

for i=1:N
 join Ti

assert account.get()==0

Ti T0

A:

B: C:

Figure 1. A typical test case for stressing testing an account
function. A significant amount of computation in a buggy
execution of this program may be redundant.

so that programmers can locate and understand concurrency
bugs more effectively using a simplified reproducible buggy
execution. To achieve this goal, we propose LEAN, a con-
currency bug reproduction technique on top of MDR, that
significantly reduces the complexity (size, threads, and con-
text switches) of the replay trace and shortens the replay time
without losing the determinism.

1.2 Key Observation
Our key observation is that most computations in the buggy
execution are often redundant for reproducing the concur-
rency bug. As shown by Vaziri, Tip and Dolby [29], most
concurrency bugs are exhibited by only two threads and one
or two shared variables. The rest of the threads and shared
variable accesses, if not pre-requisite to understand the bug,
are redundant and can be removed from the execution. This
observation is also empirically confirmed by a comprehen-
sive study by Lu et al. [15] on real world concurrency bugs
showing that the manifestation of more than 96% of the ex-
amined concurrency bugs involves no more than two threads,
66% of the non-deadlock concurrency bugs involve only
one variable, and 97% of the deadlock concurrency bugs in-
volve at most two resources. This observation also reflects
the common wisdom demonstrated by years of industrial
experience (IBM ConTest [6], Stress testing [19] and Mi-
crosoft Chess [20]) that most concurrency bugs in practice
are triggered by a few threads and a small number of context
switches. For example, the stress testing for exposing con-
currency bugs typically forks as many threads as possible to
repeatedly execute the same code. However, with correct in-
terleaving, a few threads and repetitions are often sufficient
to trigger the bug.

To further elucidate this observation, consider a simple,
but common, test case for stress testing an account func-
tion in Figure 1. The parent thread T0 forks a number of
(N) children threads Ti (i = 1, 2, . . . , N), each of which re-
peatedly validates two account functions a number of (M)
times: increasing and decreasing the account by a certain
amount (i). There are three assertions (A,B,C) in the pro-
gram for the checking of correctness. When an assertion is

violated, in the worst case, the buggy execution trace con-
tains M threads (excluding T0) and M ×N iterations of in-
creasing/decreasing operations on the account. However, in
the best case, only two threads and two iterations are able to
reproduce the bug. For instance, the account increasing func-
tion maybe non-atomic, and an erroneous interleaving hap-
pened between the 5th and 10th iterations of threads T(2,3),
causing assertion A to be violated. To reproduce the error,
the 5th and 10th iterations of threads T(2,3) (plus the erro-
neous interleaving) are sufficient. The rest of the computa-
tion is redundant and can be eliminated from the execution
without affecting the bug reproduction.

1.3 Contributions
We propose a redundancy criterion to characterize the re-
dundant computation in a buggy trace. The criterion ensures
that, after removing a redundant computation, the resultant
execution is able to reproduce the same concurrency bug,
which preserves the debugging information but easier to rea-
son about as the amount of computation is greatly reduced.
Based on the criterion, LEAN simplifies the buggy execu-
tion by iteratively identifying and removing the redundant
computation from the original execution trace (skipping the
computation by controlling the execution) and, at the same
time, enforcing the same schedule between threads in the re-
duced execution as that in the original buggy execution. The
final result produced by LEAN is a simplified execution with
all the redundant computation removed.

The key challenge we address is how to effectively iden-
tify the redundant computation. We further categorize the re-
dundant computation into two dimensions: the whole-thread
redundancy and the partial-thread redundancy. The whole-
thread redundancy characterizes redundant threads of which
the entire computation is redundant. For example, all the
other threads except T(0,2,3) in our illustrating example are
redundant threads and all their computation can be removed.
The partial-thread redundancy characterizes the more fine-
grained redundant instructions as part of each individual
thread. For example, all the other iterations (except the 5th
and 10th) of threads T(2,3) in our illustrating example belong
to the partial-thread redundancy.

We develop two effective techniques based on delta-
debugging [38] to identify the whole-thread redundancy
and the partial-thread redundancy, respectively. To reduce
the search space of delta-debugging, we utilize the parent-
children relationship between threads to iteratively identify
the whole-thread redundancy using the dynamic thread hi-
erarchy graph. For the partial-thread redundancy, as it is
ineffective to enumerate every combination of the instruc-
tions for each thread, we combine an adapted multithreaded
program slicing technique [26] and a repetition analysis to
remove irrelevant instructions and to identify the redun-
dant iterations of computation. To further improve the effec-
tiveness, we also provide an easy-to-use repetition analysis
framework that allows the programmers to annotate repeti-

452

tive code segments of which some execution iterations are
potentially redundant. All those redundant iterations are then
automatically validated and filtered out by our technique.

Note that the redundancy criterion is black-box in na-
ture. It does not rely on any data or control dependency
information of the program, and is completely based on
the bug reproduction property. This allows us to explore
more simplification opportunities than those white-box ap-
proaches such as program slicing [7, 12, 21] that rely on the
program/system dependence graphs for removing the state-
ments that are irrelevant to the fault.

We have implemented LEAN on top of our replay sys-
tem LEAP [9] for Java programs. Our evaluation results
on a set of real concurrency bugs in popular multithreaded
benchmarks as well as several large complex concurrent
systems demonstrate that LEAN is able to significantly re-
duce the complexity of the reproducible buggy execution
and shorten the replay time without losing the determinism.
LEAN produces a simplified execution typically within 20
iterations that deterministically reproduces the concurrency
bug. LEAN is able to reduce the size of the replay trace by
as large as 324x, the number of threads and thread context
switches by 99.3% and 99.6%, and shorten the replay time
by more than 300x. We believe LEAN is able to significantly
improve the debugging effectiveness of MDR for reproduc-
ing concurrency bugs and to reduce the debugging effort for
concurrent programs.

We highlight our contributions as follows:
1. We present a trace redundancy criterion and charac-

terize two dimensions of redundancy for concurrency bug
reproduction with the MDR support.

2. We present a technique and the design of a tool proto-
type to automatically simplify the buggy trace by removing
the two dimensions of trace redundancy.

3. We evaluate our technique on a set of real concurrency
bugs in several large complex Java programs and the results
demonstrate the effectiveness of our technique.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the fundamentals of our trace redundancy cri-
terion; Section 3 presents our technique; Section 4 presents
our implementation and Section 5 presents a case study of
simplifying the reproduction of a real concurrency bug; Sec-
tion 6 reports our experimental results; Section 7 discusses
related work and Section 8 concludes this paper.

2. Fundamentals
The cornerstone of this work is a redundancy criterion for
characterizing the redundant computation in a buggy multi-
threaded execution w.r.t. to a concurrency bug. We first in-
troduce the common program modeling used by DMR tech-
niques to support concurrency bug reproduction and then
present our redundancy criterion based on the model.

2.1 Concurrent Program Execution Modeling
Debugging is often based on a reproducible buggy execu-
tion trace. A trace captures a concurrent program execution
as a sequence of events δ = 〈ei〉 that contains all the critical
computation (i.e., thread synchronizations and the read/write
accesses to the shared variables), in their execution order.
During execution, these events are monitored by MDR tech-
niques to support the deterministic replay. More formally, an
event e can be of the following forms [24]:

• FORK(σ,tp,tc) denotes a thread tp starts a thread tc while
executing the statement σ;

• JOIN(σ,tp,tc) denotes a thread tp waits for the termina-
tion of a thread tc while executing the statement σ;

• READ(σ,v,t) denotes that thread t reads a shared variable
v while executing the statement σ;

• WRITE(σ,v,t) denotes that thread t writes to a shared
variable v while executing the statement σ;

• ACQ(σ,l,t) denotes the acquisition of a lock l by thread t
while executing the statement σ;

• REL(σ,l,t) denotes the releasing of a lock l by thread t
while executing the statement σ;

• SND(σ,g,t) denotes the sending of a message with unique
ID g by thread t while executing the statement σ;

• RCV(σ,g,t) denotes the reception of a message with
unique ID g by thread t while executing statement σ.

As threads execute concurrently, events by different
threads may interleave. A preemptive interleaving occurs
if two successive events from the same thread in the trace
are interleaved by events from other threads, but they could
have been executed continuously without the interleaving.
Preemptive interleaving is non-deterministic, because it de-
pends on the behavior of the thread scheduler and the timing
variations between threads [22]. And because of the non-
determinism, preemptive interleavings are the root cause of
many concurrency bugs.

The schedule of an execution is the projection of the trace
on the thread ID, which captures all the preemptive inter-
leavings in the trace. If a schedule contains no preemptive
interleaving, we say it is sequential and, otherwise, non-
sequential. Since the schedule contains the execution order
information of all the critical computation across threads, it
can be used to deterministically reproduce the program exe-
cution [2].

Starting with an initial state Σ0 and, following a schedule
ξ, the program can reach a final state Σf . We say ξ exhibits
a bug if Σf satisfies a predicate, say φ, that denotes the bug.
The bug predicate is defined as follows:

DEFINITION 1. (Bug predicate) A bug predicate, φ, char-
acterizes the exhibition of a bug in the program execution
over the final program state. The bug is exhibited in the exe-
cution iff φ(Σf) is evaluated to be true.

453

Following different schedules, however, Σf may be dif-
ferent and may or may not satisfy φ. We call the bug a se-
quential bug if any sequential schedule is able to exhibit
it, and a concurrency bug if only a non-sequential schedule
can exhibit it. To reproduce a concurrency bug, essentially, a
MDR technique captures or computes the schedule ξ in the
buggy run and then enforces the same ξ in all replay runs to
exhibit the bug.

2.2 A Model of Trace Redundancy
From a high level view, LEAN simplifies the concurrency
bug reproduction by controlling the program execution to
skip instructions in the program that are redundant to re-
producing the bug. Generally speaking, an instruction (or
a group of instructions) as a part of the program execution
cannot be arbitrarily skipped, as it may result in two pos-
sible negative consequences: the program malfunctions, or
the bug disappears. The program might malfunction if the
skipped instruction is an indispensable part of the program
logic, while the bug might disappear if the skipped instruc-
tion is involved in the buggy interleavings that are related to
the bug. Either consequence will make the reduced execu-
tion not useful for debugging.

We propose a redundancy criterion for the concurrency
bug reproduction that ensures none of the two consequences
will happen if a redundant instruction is skipped. The ba-
sic idea is that, after removing the redundancy, the reduced
execution is still sufficient for understanding the bug, i.e.,
the same bug is reproduced. A subtle problem in defining
the criterion is that, in practice, we may not have such a bug
predicate φ as that defined in Definition 1. In practice, we of-
ten use assertions or rely on runtime exceptions to determine
whether a bug is exhibited or not. However, the assertions or
exceptions may be insufficient to distinguish between the be-
havior of the bug manifestation and the behavior of program
malfunction, in which case the program is no longer work-
ing properly as expected due to the removal of a necessary
instruction. For example, the assertion that characterizes the
bug in the original execution may always be violated after
removing a certain instruction. Although the reduced execu-
tion manifests the violation of the assertion, it is not useful
for debugging because the assertion is not able to character-
ize the same bug as that in the original execution.

We tackle this issue from the perspective of thread inter-
leavings. For a concurrency bug, essentially, it is some non-
deterministic buggy interleavings that cause the bug (assum-
ing the input is deterministic). For debugging, programmers
want to understand how the bug occurs with these buggy
interleavings. If the program executes sequentially and be-
haves correctly, the bug should not manifest. On the other
hand, if the program malfunctions after removing an instruc-
tion, either the program cannot proceed to execute the buggy
statement or the bug predicate φ is always satisfied regard-

less of the buggy interleavings. Therefore, we define the re-
dundancy criterion as follows:

DEFINITION 2. (Trace redundancy criterion) Consider a
trace δ that exhibits a concurrency bug (δ drives the program
to a state satisfying the bug predicate φ) and a subset E of
the events in δ. Let δ\E denote the trace δ with the events in
E removed. We define E is redundant if after removing the
events in E, the following two conditions are satisfied:

I. δ\E can still drive the program to a state that satisfies
φ;

II. any sequential schedule of the reduced execution does
not satisfy φ.

We assume φ characterizes a concurrency bug. The sound-
ness of this criterion is easy to follow. First, Condition I and
Condition II together ensure that the reproduced bug is a
concurrency bug, because φ is satisfied under the original
buggy schedule (excluding the events in E), but not a se-
quential schedule. Second, consider condition II, since φ is
evaluated but not satisfied (i.e., the bug does not manifest)
under a sequential schedule1, the program does not malfunc-
tion after removing the events in E. Otherwise, either φ is
not evaluated or φ is always satisfied. Hence, the same con-
currency bug is reproduced under Conditions I and II.

It is worth noting that the trace redundancy is not defined
over a single event but a subset of events in the trace, which
correspond to a group of instructions in the program execu-
tion. The reason is that redundant instructions are not inde-
pendent but may be closely related to each other. A group
of instructions may be redundant but any single instruction
of them may not. For example, suppose an erroneous inter-
leaving between the 5th and 10th iterations of threads T(2,3)

manifests the bug in Figure 1. The whole computation of
thread T1 is redundant, but any single instruction of T1 alone
is not. Without any dependence information between the in-
structions, removing the trace redundancy is essentially a
combinatorial optimization problem, which is exponential to
the number of instructions in the original buggy execution.

To facilitate more effective simplification, we further
characterize the redundancy into two dimensions:

• whole-thread redundancy - all computation of a certain
thread is redundant;

• partial-thread redundancy - redundant instructions as
part of each individual thread.

This categorization utilizes the thread identity relation-
ship between the computations. In practice, threads as sep-
arate control flows in the program are more likely to be in-
dependent to each other than the individual instruction. We
can skip all the computation of the redundant thread. Com-
pared to the whole-thread redundancy, the partial-thread re-

1 Note that we do not need to check all sequential schedules but checking
any one of them is sufficient to validate whether the concurrency bug is still
a concurrency bug or not.

454

dundancy examines the more fine-grained instructions lo-
cal to each individual thread. If an instruction by a certain
thread is redundant, we can skip it during the execution of
that thread. In our illustrating example, all the other threads
except T(0,2,3) are redundant, which belong to the whole-
thread redundancy, and most of the repetitions of threads
T(2,3) are redundant, which belong to the partial-thread re-
dundancy.

3. Automatic Redundance Removing
We propose two techniques to remove the trace redun-
dancy for simplifying the concurrency bug reproduction.
The first technique effectively validates and removes the
whole-thread redundancy by adapting delta-debugging [38]
using the thread hierarchy information. Sharing the essence
of delta-debugging, our technique produces a 1-minimal set
of threads [38] that are not redundant in the buggy execu-
tion. The second technique targets at effectively removing
the partial-thread redundancy related to irrelevant instruc-
tions and repetitions. It combines a dynamic multithreaded
slicing technique and a static repetition analysis to improve
the simplification efficiency, as well as a simple annota-
tion framework that integrates programmers’ hints to further
reduce the search space. The entire simplification process
is deterministic. There is no interleaving non-determinism
during simplification as we control all the thread scheduling
(including the non-preemptive ones) during the replay.

3.1 Removing Whole-Thread Redundancy
Our general idea to identify and to remove the whole-
thread redundancy follows the approach of hierarchical
delta-debugging [16, 38]. We use a bisection method to pick
candidate threads and test whether they can be removed from
the execution or not. More specifically, we control the pro-
gram to disable the selected candidate threads and validate
the reduced execution for the two conditions defined in our
redundancy criterion in Section 2.2. Our technique for re-
moving the whole-thread redundancy is fully automatic. It
does not require any user intervention.

There are two main challenges we address in our ap-
proach. First, threads may not be arbitrarily removed. For
example, if a parent thread is removed, all its descendants
are disabled. Second, after removing a redundant thread, we
must compute the schedule of the remaining threads (in or-
der to deterministically replay the reduced execution). Our
approach contains two core treatments to address these two
problems. First, we extract a dynamic thread hierarchy graph
of the original buggy execution (TH-Tree) and perform the
delta-debugging based on the TH-Tree, to make sure that if
a parent thread is disabled, all its descendent threads are dis-
abled. Figure 2 shows an example of the TH-Tree. For exam-
ple, if T1 and T3 are selected, all their descendants (shown
in the gray boxes in Figure 2) are also selected. Second, we
compute the schedule for the remaining threads by project-

T0

T1:1

T2

…

T2:2:1 …

T2:1 T2:2

T1 … T3

T1:2

T1:2:1 T1:2:2

T2:3

T2:3:1 …

Figure 2. An example of dynamic thead hierarchy graph
(TH-Tree). When T1,3 are selected, all T1,3 and their descen-
dents (gray color) are disabled.

ing the trace on the thread ID without the IDs of the selected
candidate threads and their descendants. The schedule is en-
forced in the validation run to test whether the bug can still
be reproduced or not. In this way, the thread schedule of the
remaining execution is the same as that in the original buggy
execution, which preserves the erroneous interleavings.

Algorithm 1 summarizes our algorithm. Given the orig-
inal buggy trace, it produces a simplified trace (execution)
containing only the 1-minimal set of threads that is able to
reproduce the bug. The 1-minimal property means that, all
remaining threads are necessary such that removing any one
of them would cause the reduced execution to fail to repro-
duce the bug. Our algorithm starts by iterating on the height
of the TH-Tree. In each iteration, we always pick the candi-
date threads with the same height. Starting from the threads
with height 1 (the main thread is of height 0), we first se-
lect the candidate threads (thread sets) to be validated for
the redundancy. If a parent thread is selected, its descendants
are all disabled. We then process the selected threads using
a delta-debugging algorithm, as shown in Figure 3. Each in-
vocation of delta-debugging computes the 1-minimal set of
threads (in the input threads denoted by cx) that are nec-
essary to reproduce the bug. The set cx in the ddmin al-
gorithm corresponds to the selected threads. The validate
procedure (Algorithm 2) corresponds to the test function in
delta-debugging. It tests whether the two conditions in the
redundancy criterion are both satisfied or not after disabling
the selected threads: (1) the bug is reproduced with the com-
puted schedule of the remaining threads; (2) the bug is not
reproduced with a sequential schedule. If both conditions are
true, it means that the selected threads are redundant and
they are removed from the execution. This process is re-
peated for all levels of threads in the TH-Tree, until no new
thread can be removed.

Unique thread identification In our algorithm, an ad-
ditional problem we need to address is how to consistently
identify threads across runs, as the validation run requires
matching the selected threads. We take a similar approach
as that in jRapture [25] to identify threads and their chil-
dren. The key observation is that each thread should create

455

Let validate and be given such that validate()=X(fail). The algorithm computes
=ddmin()=ddmin2(,2) such that , validate()=X, and is 1-minimal.

where = - , = , all are pairwise disjoint, and / .

Figure 3. The delta-debugging algorithm. The function validate return true if the two conditions in the redundance criterion
are both satisfied. For conciseness, the input trace is ignored in the ddmin algorithm.

Algorithm 1 RemoveWholeThreadRedundancy(δ)
1: Input: δ - the original trace 〈ei〉
2: Output: δ′ - the simplified trace with all redundant

threads removed
3: TH Tree ←ExtractThreadHierarchyGraph(δ)
4: height ← the height of (TH Tree)
5: for level ← 1 : height do
6: thread set ← get threads(TH Tree,level)
7: minimal threads ←DeltaDebugging(δ,thread set)
8: redundant threads ← (thread set \

minimal threads) and their descendents
9: remove redundant threads from TH Tree

10: remove all events by redundant threads in δ
11: end for
12: return δ

Algorithm 2 Validate(δ,disabled threads)
1: Input: δ - a trace 〈ei〉
2: Input: disabled threads - a set of disabled threads
3: δ′ ← remove all events by disabled threads in δ
4: ξ ←get schedule(δ′)
5: ξseq ←get sequentialschedule(δ′)
6: if IsBugReproduced(δ′,ξ) then
7: if IsBugNotReproduced(δ′,ξseq) then
8: return true
9: end if

10: end if
11: return false

its children threads in the same order, though there may not
exist a consistent global order among all threads. We there-
fore create a consistent identification for all threads based
on the parent-children order relationship. More specifically,
starting from the main thread (T0), each thread maintains
a thread-local counter for recording the number of children
it has forked so far. And everytime a new thread is forked,
it is identified with its parent thread ID associated with the
counter value. For instance, suppose a thread ti forks its
jth child thread, this child thread will be identified as ti:j .

The thread identifier in Figure 2 illustrates this identification
strategy. Note that the identification is performed only once
on the initial TH-Tree and remains consistent for all the sim-
plification runs.

3.2 Removing Partial-Thread Redundancy
To identify the partial-thread redundancy, we may directly
apply delta-debugging on the granularity of the individual
instructions. However, this naive approach is ineffective be-
cause enumerating and validating every combination of the
instructions for each individual thread could be very expen-
sive. To improve the efficiency, our technique combines the
multithreaded dynamic slicing with a repetition analysis to
identify the redundant computation local to each individual
thread. The dynamic slicing tracks the data and control de-
pendencies between instructions in the execution trace and
removes those instructions that are irrelevant to the bug. The
repetition analysis is a heuristic that targets at removing the
redundancy related to repetitions. To further improve the
effectiveness of repetition analysis, LEAN also provides a
simple framework that allows programmers annotating the
repetitive code segments, which significantly reduces the
search space of trace simplification. We next describe them
in detail.

3.2.1 Multithreaded dynamic slicing
The dynamic dependence graph (DDG) is the classical
model for slicing single-threaded executions, which cap-
tures the dynamically exercised Read-After-Write (RAW)
and control dependencies. Each node in the DDG represents
an execution instance of a statement (an instruction) while
the edges represent the dependences. For multithreaded exe-
cution, Tallam et al. [26] proposes a dynamic slicing model-
ing for data race detection. Their model extends the DDG to
consider the additional data dependencies on shared variable
accesses.

Our slicing model for concurrency bug reproduction is
similar to but more strict than the model by Tallam et al.
[26]. To guarantee the deterministic bug reproduction, in ad-
dition to the shared variable read/write dependencies, we
also need to consider the dependencies on synchronization

456

operations. Specifically, given the buggy execution, we con-
struct a multithreaded dependence graph (MDG) that con-
sists of the DDG for each individual threads as well as the
following dependence relations between the instructions ai
and aj by different threads:

• Synchronization dependencies

REL→ACQ: ai is the REL operation that releases the
lock acquired by the ACQ operation aj ;

FORK→START: ai is the FORK operation that forks
the thread whose START operation (a dummy instruc-
tion introduced as the first operation of a thread) is aj ;

EXIT→JOIN: ai is the EXIT operation of a thread (a
dummy instruction introduced as the last operation of
a thread) that the JOIN operation aj joins;

SND→RCV: ai is the SND operation that sends the
message received by the RCV operation aj ;

• Shared variable dependencies - ai and aj are consecutive
on the same shared variable:

WRITE→READ: ai is a WRITE and aj is a READ;

READ→WRITE: ai is a READ and aj is a WRITE;

WRITE→WRITE: both ai and aj are WRITE ac-
cesses.

Note that the WRITE→WRITE dependency must be in-
cluded in the MDG, to ensure the correctness of MDR [10].
Otherwise, a read in the replaying phase may return the value
written by a different write from that in the original buggy
execution, which may cause the failure of MDR.

Algorithm 3 shows our dynamic slicing algorithm for
removing the partial-thread redundancy. We first construct
the MDG that includes both the DDG for each thread in
the execution and the synchronization and shared variable
dependencies. Starting from the buggy instruction which
violates the bug predicate, we perform a backward analysis
that keeps only the instructions with a direct or a transitive
dependency relation to the buggy instruction. All the other
instructions are marked to be irrelevant to reproducing the
bug and are skipped in the simplified execution.

Algorithm 3 DynamicMultithreadedSlicing(δ,αf)
1: Input: δ - the full execution trace after removing all

redundant threads
2: Input: αf - the buggy instruction
3: Output: δ′ - the simplified trace
4: mdg ← ConstructMultithreadedDependencyGraph(δ)
5: mdg′ ← ReverseEdge(mdg)
6: relevant instructions ← DepthFirstSearch(αf) on

mdg′

7: δ′ ← remove the instructions from δ that are not in
relevant instructions

8: return δ′

3.2.2 Repetition analysis
Redundancy is often caused by repetitions. Specifically, we
observe that a large portion of redundant computation by
each individual thread is rooted by the repetitive code blocks
(RCBs) that contain repeated operations in loops. The oper-
ations inside a RCB are expected to execute a few iterations
upon the loop condition with no break operation. The loop
variable is often a primitive data (e.g., integers) that used as
a counter for counting the number of iterations so far. We
propose a static repetition analysis to identify RCBs in the
program. The RCBs are used as a pool of potential redun-
dant computation that we may simplify. Each execution iter-
ation of a RCB is considered as potentially redundant. After
validating the redundancy of an iteration using our redun-
dancy criterion, we can remove all computation of this iter-
ation from the execution.

Our repetition analysis is based on a simple intra-procedural
loop analysis. For each loop, we consider two conditions to
mark it as a potential RCB. First, the loop condition contains
only primitive or concrete data and the loop variable is only
incremented or decremented once in each iteration. Second,
there is no break operation inside the loop (exceptions are
allowed). Despite the simplicity, our experiments show that
this analysis is effective and efficient for identifying redun-
dant computation caused by RCBs.

Algorithm 4 RemoveRepetitionRedundancy(p,δ)
1: Input: p - the program
2: Input: δ - the trace after slicing
3: Output: δ′ - the final simplified trace
4: statements ← GetRepetitiveCodeBlocks(p)
5: threads ← get threads(δ)
6: for t in threads do
7: for σ in statements do
8: all iterations ← get iterations(δ,t,σ)
9: minimal iterations ←DeltaDebugging(δ,all iterations)

10: remove (all iterations\minimal iterations)in
δ

11: end for
12: end for
13: return δ

Algorithm 4 shows our algorithm for removing the partial-
thread redundancy caused by repetitions. This algorithm is
applied after slicing the buggy trace. We first identify the
RCB that contains potential redundant computation. We then
perform delta-debugging on each iteration of the RCB for
each thread, to validate the redundancy of the computation
corresponding to the iteration.

A framework for repetition analysis LEAN also pro-
vides an option for the programmers to annotate RCBs,
which can help significantly improve the effectiveness of our
automatic repetition analysis. Our general observation is that
programmers often have the knowledge of whether some

457

for j =1:M
{
@rcb-begin
 expected = account.get()+i
 account.increment(i)

assert account.get()==expected

 expected=account.get()-i
 account.decrease(i)

assert account.get()==expected
@rcb-end
}

Ti

A:

B:

Figure 4. Some iterations of the code block demarcated
by @rcb-begin and @rcb-end are specified as potentially
redundant.

Program
Hierarchical

Delta-Debugging Buggy trace

Remove
Whole thread redundancy

Dynamic
slicing

Remove
Partial thread redundancy

Repetition
analysis

Simplified
Buggy trace

Figure 5. An overview of LEAN

code blocks is repetitive or not (in particular, in writing the
test drivers). This piece of information is in fact easy for the
programmers to specify (e.g., using simple annotations), but
very difficult to identify by any automatic approach because
of the absence of the repetition criterion. More importantly,
without any further intervention, we can help programmers
automatically validate whether some executions of the RCBs
are redundant or not, and eliminate them from the buggy ex-
ecution if they are redundant.

Our framework is easy to use. Programmers simply mark
the beginning and the end of the RCB by @rcb-begin and
@rcb-end, respectively. For example, programmers may
mark the RCB for thread Ti in a way as shown in Figure
4. We then perform delta-debugging on each iteration of
the code, and filter out most redundant iterations. Also, this
framework is flexible. New annotations may be added after
each round of simplification, when programmers get more
information about the bug from the intermediate simplified
execution.

4. Implementation
To evaluate our technique, we have implemented LEAN on
top of LEAP [9], our MDR framework for applications writ-
ten in Java2. Figure 5 shows an overview of LEAN. Given
the target concurrent program and the buggy execution trace,
LEAN first removes the whole-thread redundancy from the

2 Our technique is general to concurrent programs written in any program-
ming language.

trace using our adapted hierarchical delta-debugging algo-
rithm (Algorithm 1). It then further simplifies the resultant
execution by removing the partial-thread redundancy using
our dynamic multithreaded slicing algorithm (Algorithm 3)
and the repetition analysis (Algorithm 4). The final output
produced by LEAN is a simplified buggy execution in which
all the redundant computation is skipped in the replayed ex-
ecution.

For the delta-debugging, we faithfully implemented the
algorithm described in Figure 3. Our slicing implementation
is based on the Indus framework [23], which we adapt for
dynamic multithreaded execution traces. In addition to the
data dependencies across threads, slicing also takes care
of all the data and control dependencies internal to each
individual thread in the execution.

For supporting MDR, LEAN collects in the trace the
following types of events in a global order: read/write ac-
cesses to shared variables, lock acquisition/release, thread
fork/join, and wait/notify events. To support recording long
running programs which produce large traces, LEAN does
not put the entire trace in the main memory but saves it to a
database.

To disable an instruction, we instrument the program to
insert control statements before the statement (Jimple state-
ment in Soot3) which corresponds to the instruction. For
example, to disable a thread, we insert control instrumen-
tation before Thread.start() and Thread.join() to make sure
that the disabled thread is not executed and joined by any
other thread. We distinguish the dynamic thread by assign-
ing a unique ID to each thread instance (explained in Section
3.1). For the partial-thread redundancy, we also maintain a
thread local counter for each annotated RCBs, to denote the
iteration instance of each thread in executing the RCB.

To control the thread schedule, we reuse the application-
level scheduler of LEAP. The thread IDs of all the events
in the trace form a global schedule. After disabling a thread,
we simply remove the thread ID from the global schedule. To
enforce a sequential schedule, we control the execution of a
thread until it terminates or cannot continue execution (i.e.,
waiting for a lock or joining for the termination of another
thread) and then randomly pick an enabled thread to pro-
ceed. For removing the partial-thread redundancy, we also
associate each event in the trace with its corresponding state-
ment in the program. User annotated RCBs are interpreted as
special statement blocks. To generate the remaining sched-
ule after disabling a certain iteration of a RCB, we first re-
move the corresponding events in the trace according to the
RCB and the per-iteration information, and then compute the
schedule by performing a projection of the remaining trace
on the thread ID.

3 http://www.sable.mcgill.ca/soot/

458

TableDescriptor {
 getObjectName(){

if (referencedColumnMap == null){
 …
}

 else{
 for (int i = 0; i <...; i++){
 referencedColumnMap.isSet(…)

 }
}

 }
}

setReferencedColumnMap(…){
 referencedColumnMap = null;
}

Figure 6. A real concurrency bug #2861 in Derby. The
thread interleaving following the solid arrow on the shared
data referencedColumnMap crashed the program with
NullPointerException.

5. A Case Study
In this section, we present a case study of a real concurrency
bug reproduction in Apache Derby DBMS4. We illustrate
how LEAN simplifies the bug reproduction w.r.t. the whole-
thread redundancy and the partial-thread redundancy in a
detailed view.

5.1 Description of Derby Bug #2861
Figure 6 shows the concurrency bug #2861 we study in the
Apache bug database5. The bug is concerned with a thread
safety issue in the org.apache.derby.iapi.sql.dictionary
.TableDescriptor class. The shared data referencedColumnMap
is checked for null at the top of the getObjectName

method and later dereferenced if it is not null. Due to an erro-
neous interleaving, another thread can set referencedColumnMap
to null in the setObjectName method and causes the pro-
gram to crash by throwing a NullPointerException. Fig-
ure 7 shows a driver program (also documented in the bug
database) for triggering the bug. Ignore all the gray areas
for the moment; these are statements inserted by LEAN. The
driver program starts N threads each creating (lines 41-45)
and then dropping (lines 48-51) a separate view against the
same source view, repeated M times. Because of the non-
determinism, the bug is very difficult to manifest with a
small N and M. In our experiment with N=2 and M=2 on an
eight-core Linux machine, we did not observe a single run of
failure after 1000 runs. With a larger number of threads and
repetitions, the probability of triggering the bug is increased.
When we set N=10 and M=10, we were able to trigger the
bug in three out of 1000 runs.

With the help of a MDR system such as LEAP, we are
able to deterministically reproduce the bug once it mani-
fests. The problem is that the bug reproduction run is too
complicated, with too many threads (11) and thread context
switches (6,439). The size of the execution trace (which con-
tains the critical events only) is as large as 94.1M, and it took
LEAP as long as 466 seconds to reproduce the bug. Given

4 http://db.apache.org/derby/
5 https://issues.apache.org/jira/browse/DERBY-2861

TestEmbeddedMultiThreading {
 main(String args[]){

int numThreads = Integer.parseInt(args[0]);
int numIterations = Integer.parseInt(args[1]);

//register the embedded driver and create the test database
EmbeddedDriver driver = new EmbeddedDriver();
conn = DriverManager.getConnection("jdbc:derby:DERBY2861");
stmt = conn.createStatement();
sql = "CREATE VIEW viewSource AS SELECT col1, col2 FROM
 schemamain.SOURCETABLE“
stmt.execute(sql);
stmt.close();

//create test threads
Thread[] threads = new Thread[numThreads];
for (i = 0; i < numThreads; i++)
 threads[i] = new Thread(new ViewCreatorDropper(
 "schema1.VIEW" + i, "viewSource", "*", numIterations));

//start test threads
for (int i = 0; i < numThreads; i++)
 threads[i].start();

//wait for threads to terminate
for (int i = 0; i < numThreads; i++)
 threads[i].join();

 }
}

ViewCreatorDropper implements Runnable {
 ViewCreatorDropper(String viewName, String sourceName,
 String columns, int iterations) {

m_viewName = viewName;
m_sourceName = sourceName;
m_columns = columns;
m_iterations = iterations;

 }
 run(…){

for (i = 0; i < m_iterations; i++)
{

 //create view
 stmt = conn.createStatement();
 sql = " "CREATE VIEW " + m_viewName + " AS SELECT "
 + m_columns + " FROM " + m_sourceName“;
 stmt.execute(sql);
 stmt.close();

 //drop view
 stmt = conn.createStatement();
 sql = " " "DROP VIEW " + m_viewName“;
 stmt.execute(sql);
 stmt.close();

}

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

if(shouldStartThread(threads[i]))
 threads[i].start();

if(shouldJoinThread(threads[i]))
 threads[i].join();

@rcb-begin

@rcb-end

if(shouldExecuteIteration(i))
{

}

Figure 7. A real world test driver for triggering the concur-
rency bug in Figure 6. The statements inserted by LEAN to
simplify the execution are shown in the gray areas.

such a bug reproduction run, it is still challenging for the
programmers to understand the bug by inspecting the trace.

5.2 How LEAN Simplifies the Bug Reproduction
LEAN simplifies the reproduction of this bug by removing
the redundant computation in the reproducible buggy execu-
tion. Although there are ten testing threads each of which re-
peats ten times in the buggy execution, we can observe that,
in the best case, two testing threads each with one iteration
is sufficient to trigger the bug. All the other eight threads and
nine iterations are redundant and can be removed from the
bug reproduction run.

459

Taking the original buggy execution as the input, LEAN
first identifies and removes the redundant threads in the
execution using Algorithm 1. Figure 8 illustrates the sim-
plification process. Because the dynamic thread hierarchy
graph in the buggy execution contains only one level of
threads, the entire simplification process invokes the delta-
debugging procedure only once, which directly applies on
threads T(1,2,...,10). To skip a thread, LEAN controls the exe-
cution of the program by inserting a condition checking be-
fore Thread.start() and Thread.join() (as shown in the gray
areas at lines 23 and 27 in Figure 7). A thread is not started or
joined if it is removed. After four rounds of simplification,
threads T(2,3) remain in the reduced execution and all the
other threads are removed. This process took 1,841 seconds
in our experiment. After removing the redundant threads,
75.1M(79.8%) of the events in the original buggy trace were
removed and the size of the remaining trace was reduced to
19M.

After removing the whole-thread redundancy, LEAN then
further processes the reduced buggy execution to remove
the partial-thread redundancy. It first performs the dynamic
slicing to remove irrelevant instructions using Algorithm 3.
As slicing tracks all the dynamic data dependencies across
threads as well as all the intra-thread data and control de-
pendencies in the remaining buggy execution, it took LEAN
553 seconds to finish the slicing process in our experiment,
and an additional 6.2M(6.6%) of the events were removed
from the trace. Similar to the control of threads, we simply
insert control statements before the irrelevant instructions to
skip their executions.

LEAN then continues to simplify the reduced buggy ex-
ecution by removing the redundant repetitions using Algo-
rithm 4. Our automatic repetition analysis successfully iden-
tified the RCB at lines 42-53 in the test thread, as demarcated
by @rcb-begin and @rcb-end at lines 41 and 54 in Figure
7. To control the execution of a certain iteration i of the RCB,
we insert a control statement before the RCB with i as the
input parameter (as shown in the gray area at line 40), deter-
mining whether the ith iteration is enabled or not. Figure 9
illustrates the simplification process for LEAN to remove the
redundant execution iterations of the RCB of threads T(2,3).
After ten rounds of simplification, the 7th iteration of T2 and
the 4th iteration of T3 remain and all the other iterations are
removed. This process took around 200 seconds in our ex-
periment. An additional 11.6M (12.3%) of the events were
removed and the size of the final buggy trace was reduced to
around 2.01M.

In total, it took LEAN 2,593 seconds to simplify the
original buggy execution. The final simplified execution was
able to reproduce the same bug and was significantly simpler
than the original buggy execution. The simplified trace size
was reduced by 47x (from 94.1M to 2.01M), containing
only 3 threads (T(0,2,3)) and 433 thread context switches,
and its replay time by LEAN was shortened by 46x (from

T0

T2 T1 T3 T4 T6 T5 T7 T10 T8 T9 Round Result

1 √ √ √ √ √ Y
2 √ √ √ Y
3 √ √ X
4 √ √ Y

Figure 8. Illustration of delta-debugging for removing the
whole thread redundancy. Ti denotes the ith test thread cre-
ated by the main thread T0. After four rounds of simplifi-
cation, threads T(2,3) remain and all the other threads are
removed.

I21 Round Result I22 I23 I24 I25 I26 I27 I28 I29 I210 I31 I32 I33 I34 I35 I36 I37 I38 I39 I310

1 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ N

2 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ Y

3 √ √ √ √ √ √ √ √ √ √ √ √ √ Y

4 √ √ √ √ √ √ √ √ √ √ √ √ N

5 √ √ √ √ √ √ √ √ √ √ √ √ Y

6 √ √ √ √ √ √ √ √ √ √ √ Y

7 √ √ √ √ √ √ Y

8 √ √ √ √ N

9 √ √ √ Y

10 √ √ Y

Figure 9. Illustration of delta-debugging for removing the
redundant repetitions for the remaining threads T(2,3). Iij
denotes the jth iteration of thread Ti where i=2,3 and
j=1,2,. . . ,10. After ten rounds of simplification, the 7th it-
eration of T2 and the 4th iteration of T3 remain and all the
other iterations are removed.

446 to 10.2 seconds). Moreover, all the instrumentations
and the thread scheduler in LEAN are transparent to the
programmers, such that the debugging task can be performed
on the simplified buggy execution in a normal debugging
environment.

6. Experiments
The goal of our technique is to improve the effectiveness
of the MDR support for debugging concurrent programs, via
removing the redundancy from the reproducible buggy trace.
Accordingly, our evaluation aims at answering the following
two research questions:

RQ1. Effectiveness - Is LEAN effective in simplifying real
buggy traces? How much reduction of the replay time
and the trace complexity (i.e., size, threads, and con-
text switches) can our approach achieve?

RQ2. Efficiency - How efficient is LEAN for identifying and
removing the trace redundancy?

All experiments were conducted on two eight-core 3.00GHz
Intel Xeon machines with 16GB memory and Linux 2.6.22
and JDK1.7.

460

Program
Original Trace Simplified Trace

Size #Thread #CS Replay Time Size #Thread #CS Replay Time
BuggyPro 460K 34 1,003 1.27s 13.2K(↓97.1%) 4(↓88.2%) 28(↓97.2%) 39ms(↓97%)
Tsp 44.1M 5 9,190 280s 22.1M(↓49.9%) 3(↓40.0%) 4,588(↓50.0%) 115s(↓58.9%)
ArrayList 1.72M 451 2,381 6.5s 6.4K(↓99.6%) 3(↓99.3%) 10(↓99.6%) 20ms(↓99.7%)
LinkedList 2.20M 451 2,564 7.2s 6.8K(↓99.7%) 3(↓99.3%) 10(↓99.6%) 22ms(↓99.7%)
OpenJMS 128.9M 36 7,287 606s 1.82M(↓98.5%) 7(↓80.5%) 415(↓94.3%) 16.3s(↓97.3%)
Tomcat 38.2M 13 3,543 206s 1.26M(↓96.7%) 4(↓69.2%) 111(↓96.9%) 3.3s(↓98.4%)
Jigsaw 20.1M 11 2,322 154s 416K(↓98.0%) 3(↓72.7%) 64(↓97.2%) 2.4s(↓98.4%)
Derby 94.1M 11 6,439 466s 2.01M(↓97.8%) 3(↓72.7%) 433(↓92.5%) 10.2s(↓97.6%)

Table 2. Experimental results - RQ1: Effectiveness

Program SLOC Input/#Threads#Iterations
BuggyPro 348 race exception/33/-
Tsp 709 map4/4/-
ArrayList 5,979 not-atomic bug/450/-
LinkedList 5,866 not-atomic bug/450/-
OpenJMS-0.7.7 262,842 order violation bug/20/10
Tomcat-5.5 339,405 bug#37458/10/10
Jigsaw-2.2.6 381,348 NPE bug/10/10
Derby-10.3.2.1 665,733 bug#2861/10/10

Table 1. Evaluation benchmarks

6.1 Benchmarks
We quantify our technique using a set of widely used third-
party concurrency benchmarks with known bugs. We con-
figure the program inputs to generate buggy traces of dif-
ferent sizes and complexity. To understand the performance
of our technique on real applications in practice, we also in-
clude several large concurrent server systems in our bench-
marks. The first column in Table 1 shows the benchmarks
used in our experiments. BuggyPro is a multithreaded bench-
mark from the IBM ConTest benchmark suite [6], ArrayList
and LinkedList are open libraries from Suns JDK 1.4.2, and
Tsp is a parallel branch and bound algorithm for the travel-
ling salesman problem from ETH [31]; The remaining four
benchmarks are real server systems. OpenJMS-0.7.7 is an
enterprise message-oriented middleware server, Tomcat-5.5
is a widely used JSP and Servlet Container, Jigsaw-2.2.6
is W3C’s leading-edge web server platform, and Derby-
10.3.2.1 is a widely used open source Java RDBMS from
Apache. Column 2 (SLOC) reports the source lines of code
of our evaluation benchmarks. The sizes range from a few
hundred lines to over 600K lines of code. Column 3 (In-
put/#Threads#Iterations) reports the input data (the bug, the
number of threads, and the iterations, if available) configured
in the recorded execution of the benchmark.

6.2 RQ1: Effectiveness
The goal of our first research question is to evaluate how ef-
fective our technique is for simplifying the buggy execution
traces of real concurrent programs. To generate the data nec-
essary for investigating this question, we proceed as follows.

For each benchmark, we first run it multiple times with ran-
dom thread schedule until the bug manifests and use LEAN
to collect the corresponding buggy trace of each run. For
each trace, we then apply our technique to produce a simpli-
fied trace with the redundancy removed. During the simplifi-
cation process, we first remove the whole-thread redundancy
and then the partial-thread redundancy (consists of both slic-
ing and the repetition analysis). The whole process is fully
automatic with no user intervention. We measure the per-
centage of trace size reduction with respect to the two dimen-
sions of redundancy. We also quantify the final simplification
results in terms of the reductions of the trace size, the num-
ber of threads and the number of thread context switches, as
well as the replay speedups. To demonstrate the simplifica-
tion effectiveness of our approach, we also compared LEAN
with an execution reduction technique ER [27] that uses the
dependence graph for the simplification.

Table 2 reports our final simplification results. Columns
2-5 (Size, #Thread, #CS, Replay Time) report the size of
the original trace, the number of threads, the number of
thread context switches (including both non-preemptive and
preemptive ones) in the original trace, and the replay time
of the original trace, respectively, while Columns 6-9 report
the corresponding statistics of the simplified trace. As the
table shows, the size of the original trace ranges from 460KB
(BuggyPro) to more than 128MB (OpenJMS) on disk, which
take from 1.27 seconds to more than 10 minutes to replay to
reproduce the bug. The original trace is also of significant
complexity w.r.t. the number of threads and the number
of context switches, ranging from 5 threads in Tsp to 451
threads in ArrayList and LinkedList, and from 1,003 context
switches in BuggyPro to 9,190 context switches in Tsp.
LEAN was able to greatly reduce the trace complexity for
all the concurrency bugs in our experiments. The trace size
is reduced by 49.9% (2x) in Tsp to as large as 99.7% (324x)
in LinkedList, the number of threads is reduced by 40% to
99.3%, and the number of context switches is reduced by
50% to 99.6%. Moreover, the replay time is also greatly
shortened after simplification, ranging from 58.9% (2.4x) in
Tsp to 99.7% (327x) in LinkedList. In the four large server

461

Program Whole Redundancy
Partial Redundancy

Slicing Repetition
BuggyPro 445K(96.9%) 1.8K(0.2%) -
Tsp 21.7M(49.2%) 0.4M(0.7%) -
ArrayList 1.71M(99.6%) - -
LinkedList 2.19(99.7%) - -
OpenJMS 100.8M(78.2%) 7.3M(5.7%) 20.0M(15.5%)
Tomcat 23.6M(61.9%) 4.2M(11.0%) 9.1M(24.0%)
Jigsaw 16.0M(79.4%) 0.91M(4.5%) 2.7M(13.4%)
Derby 75.1M(79.8%) 6.2M(6.6%) 11.6M(12.3%)

Table 3. Decomposed effectiveness on trace size reduction

applications, the replay time is consistently shortened by
around 98% (64x).

Table 3 reports the simplification effectiveness w.r.t. each
of the three components in terms of the trace size reduc-
tion. Column 2 reports the percentages of the whole-thread
redundancy reduced by the hierarchical delta-debugging
(HDD), while Columns 3-4 report that of the partial-thread
redundancy, reduced by the slicing and the repetition anal-
ysis, respectively. In the small benchmarks, the percentage
of whole thread redundancy ranges from 49.2% to 99.7%.
LEAN did not identify much partial thread redundancy in
these small benchmarks. Slicing removes only 0.2% and
0.7% redundancy, respectively, in BuggyPro and Tsp. For
the real server programs, the percentage of whole-thread
redundancy ranges from 61.9% to 79.8%. For the partial-
thread redundancy, slicing and repetition analysis are both
more effective than that for the small benchmarks. Slicing
removes 4.5% to 11% redundant computation in the four
large server programs, while the percentage of redundancy
removed by the repetition analysis ranges from 12.3% to
15.5%. We note that the amount of redundancy in the buggy
traces is closely related to the number of threads and the
number of repetitions configured as input to the program.
With more redundancy in the buggy trace, LEAN would
have better simplification ratio. Nevertheless, we believe our
result is representative as our experimental setup reflects the
typical concurrency testing scenarios in the development cy-
cle (such as the effective random testing in the IBM ConTest
tool [6] and the stress testing in Chess [20]).

Comparing with the ER [27] The execution reduction
(ER) technique proposed by Tallam et al. [27] also aims at
reducing the trace size, for supporting the tracing of long
running multithreaded programs. ER works by tracking a dy-
namic dependence graph of the execution events. The events
are grouped into regions and threads such that the size of the
dependence graph can be reduced. By analyzing the depen-
dence graph, ER removes the regions of events or threads
that are irrelevant to the fault. As ER relies on the dynamic
dependence graph, it cannot remove the redundant compu-
tation that has data/control dependencies to the fault. While
LEAN relies on the redundancy criterion and the dynamic

Program ER LEAN

BuggyPro 2.1% 97.1%
Tsp 0.0% 49.9%
ArrayList 2.9% 99.6%
LinkedList 3.0% 99.7%
OpenJMS 10.2% 98.5%
Tomcat 6.9% 96.7%
Jigsaw 4.6% 98.0%
Derby 2.5% 97.8%

Table 5. Comparison between LEAN and ER

verification, it is able to explore more simplification oppor-
tunities.

We compared the simplification effectiveness on the trace
size reduction between LEAN and ER. Table 5 shows the
result. For our evaluation benchmarks, LEAN is much more
effective than ER. ER does not find many irrelevant events
(the percentage of simplification ranges from 0.0%-10.2%),
because almost all threads have data dependencies between
each other on shared variables, while LEAN can effectively
remove the redundant threads and the repetitive computation
through the hierarchical delta-debugging and our repetition
analysis.

6.3 RQ2: Efficiency
The goal of our second research question is to assess if our
approach is efficient in simplifying the buggy trace. Since
LEAN works in a black-box style (applying delta-debugging
except for the dynamic slicing part) to iteratively simplify
the trace, it may take a long time (many rounds) to produce
the final simplification. As in each round it requires two re-
play runs to validate the redundancy (for the two redundancy
conditions in our criterion), the efficiency of LEAN is an im-
portant concern for the usefulness in practice. Hence, during
the trace simplification, we also record the number of delta-
debugging rounds (for dealing with both the whole-thread
redundancy and the partial-thread redundancy) and measure
the time needed for each of the three components of LEAN
to produce the final simplified trace. As we use the repetition
analysis to identify the RCBs, we also report the statistics of
the repetition analysis result to assess its usefulness in im-
proving the simplification effectiveness of LEAN.

Table 4 shows the experimental results for our research
question RQ2. Columns 2-3 and 5-6 report the number of
simplification rounds (including the failed runs) and the
time taking LEAN to remove the whole-thread redundancy
and the redundant repetitions, respectively, from the original
trace (the same trace as that in Table 2). Generally, the num-
ber of rounds is dependent on the amount of redundancy,
while the simplification time is dependent on the amount of
redundancy as well as the length of the original trace. For the
small benchmarks, LEAN took 2 to 18 rounds for validating
the whole-thread redundancy, which took 8 to 99 seconds of
the execution time. For the large systems, since their traces

462

Program
HDD Slicing Repetition RCB

#Rounds Time Time #Rounds Time All Real
BuggyPro 6 8s 155ms - - 4 0
Tsp 2 199s 12s - - 3 0
ArrayList 18 55s 2s - - - -
LinkedList 18 58s 2s - - - -
OpenJMS 13 4,265s 330s 11 152s 1 1
Tomcat 5 1,082s 308s 12 55s 1 1
Jigsaw 4 630s 210s 10 37s 1 1
Derby 4 1,841s 553s 10 200s 1 1

Table 4. Experimental results - RQ2: Efficiency

are much larger, LEAN took 4 to 13 rounds and 630 to 4,265
seconds to remove the whole-thread redundancy, and 10 to
12 rounds and 37 to 200 seconds to remove the redundant
repetitions. Column 4 reports the time needed for slicing
the trace (including both the construction time of the mul-
tithreaded dependence graph (MDG) and the analysis time
for slicing the MDG). Because slicing considers all the in-
structions in the buggy execution, it is more expensive for
large server programs (which have longer and more complex
traces) than that for the small benchmarks. The slicing time
for the four large server programs in our experiments ranges
from 210 to 553 seconds.

Summary Compared to the original replay time, the sim-
plification time is typically 4x-8x longer (except Tsp, which
is in fact shorter). However, considering the significant trace
simplification ratio, we believe the time cost is acceptable
(even for the large systems). Moreover, as the simplifica-
tion task is fully automatic (transparent to programmers)
and can be easily parallelized, programmers do not need
to worry about the simplification procedure. For very long
running executions, programmers may also choose to set a
time bound for the simplification. When the simplification
does not finish within the time bound, programmers can still
have the partially simplified trace (sharing the spirit of delta-
debugging).

On the aspect of repetition analysis, Columns 7-8 report
the total number of identified RCBs and the number of real
RCBs among them in each benchmark. For the small bench-
marks, our analysis identified 4 RCBs in BuggyPro and 3
in Tsp, but none of them are truly redundant. Our analysis
does not report any RCB in LinkedList and ArrayList. For
the large systems, our analysis successfully identified all the
RCBs in the test drivers. In testing real concurrent systems,
there is often a large number of repetitions (in order to in-
crease the bug finding possibility). We note that the repeti-
tion analysis plays an important role in effectively reducing
this kind of partial-thread redundancy, though (as our result
suggests) the precision of our repetition analysis is not opti-
mized.

7. Related Work
Concurrency bug reproduction has attracted extensive re-
search efforts in the multicore era. However, there is little
research that targets at simplifying the concurrency bug re-
production. We discuss several key related work in this sec-
tion.

Thread interleaving simplification Chio and Zeller [3]
first proposed a delta-debugging technique to isolate failure-
inducing thread schedules in concurrent programs. The pro-
posed technique is useful for identifying the context switch
points that might cause the bug. Jalbert and Sen [11] first
proposed a dynamic trace simplification technique that uses
replay to reduce the thread context switches in the buggy
trace. Our SimTrace [10] algorithm further improves the ef-
ficiency of trace simplification by statically exploring the
trace dependence graph. In general, these techniques do not
reduce the redundant computation in the replayed execution
or the trace.

Program slicing Program slicing [28, 34, 39] has been
widely used for debugging, that determines which parts of
a program are relevant to a given program point of inter-
est (i.e., the buggy statement). A number of efficient ap-
proaches [7, 12, 21] are also proposed for slicing concurrent
programs. Essentially, slicing relies on the program/system
dependence graphs (PDG/SDG) for the simplification, and
it cannot simplify beyond the data and control dependencies
in the program or the trace. Differently, our notion of redun-
dancy is based on the bug reproduction property, which is not
limited by the PDG/SDG, allowing us to explore more sim-
plification opportunities. For instance, a computation may
still be redundant even if it has data or control dependency
to the buggy state, as long as without it the same bug can
be reproduced. Weeratunge et al. [33] also propose a novel
dual slicing approach to locate and explain the root cause of
a concurrency failure by comparing the failing and correct
schedules. Different from dual slicing, our approach aims at
producing a simplified buggy execution, without the need of
a correct schedule.

Multiprocess deterministic replay MDR has witnessed
significant progress in recent years. The state of art software-
only approaches, DoublePlay [30] supports low overhead

463

full-program replay by offloading the recording processes
to extra cores, and our MDR system LEAP [9] enables the
lightweight recording using a new type of local order to track
the shared memory dependency. Many hardware approaches
are also proposed to greatly reduce the recording overhead
with special hardware design. Rerun [8] exploits episodic
memory race recording to achieve efficient logging (around
4B per 1000 instructions), while DeLorean [17] promises
much smaller log sizes and higher replay speeds by inves-
tigating the total sequence of chunk commits.

Offline search To further reduce the overhead to make
concurrency bug reproduction applicable for the produc-
tion use, researchers have also explored the idea of offline
search with only partial runtime information. PRES [22]
presents a feedback-based approach to use an intelligent
replayer during diagnosis time to explore the unrecorded
non-deterministic space. ODR [1] and Respec [13] develop
lightweight online solutions and rely on offline search to
achieve output-determinism (which is sufficient for bug re-
production). ESD [37] further reduces the runtime tracing
overhead by symbolically exploring the complete thread
scheduling decisions via execution synthesis. Weeratunge
et al. [32] present an approach to generate a failure inducing
schedule by comparing the core dumps at offline (utilizing
the execution indexing technique [36]).

Replay log reduction and checkpointing Lee et al. [14]
develop a novel log reduction technique that selectively
records extra information and utilizes it to achieve reduc-
tion. A key ingredient of their work is the unit-based loop
analysis (similar to our repetition analysis) that reduces re-
dundant loop iterations based on unit annotation for loops.
Another direction to simplify bug reproduction is through
checkpointing [4, 35, 40]. By memoizating the program state
that is near the buggy execution point, these techniques can
help significantly reduce the replay time. A limitation of
checkpointing for debugging is that it only reproduces a par-
tial causal chain to the bug. In cases of bugs that contaminate
program state from the beginning of the execution, program-
mers may need the full execution history to locate the root
cause of bug.

8. Conclusion
Debugging concurrent programs has been a long-standing
challenging problem. We have presented a novel technique
LEAN to simplify the concurrency bug reproduction by re-
moving the redundant computation from the buggy trace
with the replay-supported execution reduction. Our experi-
mental results show that LEAN is able to significantly re-
duce the complexity of the reproducible buggy execution
and shorten the replay time. With LEAN, we believe the ef-
fectiveness of debugging concurrent programs can be greatly
improved.

Acknowledgement
We thank the anonymous reviewers for their constructive
comments. This research is supported by RGC GRF grants
622208 and 622909.

References
[1] Gautam Altekar and Ion Stoica. ODR: output deterministic

replay for multicore debugging. In SOSP, 2009.

[2] Jong-Deok Choi and Harini Srinivasan. Deterministic replay
of java multithreaded applications. In SPDT, 1998.

[3] Jong-Deok Choi and Andreas Zeller. Isolating failure-
inducing thread schedules. In ISSTA, 2002.

[4] William R. Dieter and James E. Lumpp Jr. A user-level
checkpointing library for posix threads programs. In FTCS,
1999.

[5] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetter-
man, and Peter M. Chen. Execution replay of multiprocessor
virtual machines. In VEE, 2008.

[6] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug
patterns and how to test them. IPDPS, 2003.

[7] Dennis Giffhorn and Christian Hammer. Precise slicing of
concurrent programs. Automated Software Engg., 2009.

[8] Derek R. Hower and Mark D. Hill. Rerun: Exploiting episodes
for lightweight memory race recording. In ISCA, 2008.

[9] Jeff Huang, Peng Liu, and Charles Zhang. LEAP: Lightweight
deterministic multi-processor replay of concurrent Java pro-
grams. In FSE, 2010.

[10] Jeff Huang and Charles Zhang. An efficient static trace sim-
plification technique for debugging concurrent programs. In
SAS, 2011.

[11] Nicholas Jalbert and Koushik Sen. A trace simplification
technique for effective debugging of concurrent programs. In
FSE, 2010.

[12] Jens Krinke. Context-sensitive slicing of concurrent pro-
grams. In ESEC/FSE, 2003.

[13] Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan,
Satish Narayanasamy, Peter M. Chen, and Jason Flinn. Re-
spec: efficient online multiprocessor replayvia speculation and
external determinism. In ASPLOS, 2010.

[14] Kyu Hyung Lee, Yunhui Zheng, Nick Sumner, and Xiangyu
Zhang. Toward generating reducible replay logs. In PLDI,
2011.

[15] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from mistakes: a comprehensive study on real world
concurrency bug characteristics. ASPLOS, 2008.

[16] Ghassan Misherghi and Zhendong Su. Hdd: hierarchical delta
debugging. In ICSE, 2006.

[17] Pablo Montesinos, Luis Ceze, and Josep Torrellas. Delorean:
Recording and deterministically replaying shared-memory
multi-processor execution efficiently. In ISCA, 2008.

[18] Pablo Montesinos, Matthew Hicks, Samuel T. King, and Josep
Torrellas. Capo: a software-hardware interface for practical
deterministic multi-processor replay. In ASPLOS, 2009.

464

[19] Madan Musuvathi and Shaz Qadeer. Chess: systematic stress
testing of concurrent software. In Proceedings of the 16th
international conference on Logic-based program synthesis
and transformation, 2007.

[20] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard
Basler, Piramanayagam A. Nainar, and Iulian Neamtiu. Find-
ing and reproducing heisenbugs in concurrent programs. In
OSDI, 2008.

[21] Mangala Gowri Nanda and S. Ramesh. Interprocedural slicing
of multithreaded programs with applications to java. ACM
Trans. Program. Lang. Syst., 2006.

[22] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin,
Rini Kaushik, Kyu H. Lee, and Shan Lu. PRES: probabilis-
tic replay with execution sketching on multi-processors. In
SOSP, 2009.

[23] Venkatesh Prasad Ranganath and John Hatcliff. Slicing con-
current java programs using indus and kaveri. Int. J. Softw.
Tools Technol. Transf., 2007.

[24] Koushik Sen. Race directed random testing of concurrent
programs. In PLDI, 2008.

[25] John Steven, Pravir Ch, Bob Fleck, and Andy Podgurski.
jrapture: A capture/replay tool for observation-based testing.
In ISSTA, 2000.

[26] Sriraman Tallam, Chen Tian, and Rajiv Gupta. Dynamic
slicing of multithreaded programs for race detection. In ICSM,
pages 97–106, 2008.

[27] Sriraman Tallam, Chen Tian, Rajiv Gupta, and Xiangyu
Zhang. Enabling tracing of long-running multithreaded pro-
grams via dynamic execution reduction. In ISSTA, 2007.

[28] Frank Tip. A survey of program slicing techniques. Journal
of Programming Languages, 1995.

[29] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating
synchronization constraints with data in an object-oriented
language. In POPL, 2006.

[30] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester,
Jessica Ouyang, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. Doubleplay: parallelizing sequential logging
and replay. In ASPLOS, 2011.

[31] Christoph von Praun and Thomas R. Gross. Object race
detection. In OOPSLA, 2001.

[32] Dasarath Weeratunge, Xiangyu Zhang, and Suresh Jagan-
nathan. Analyzing multicore dumps to facilitate concurrency
bug reproduction. In ASPLOS, 2010.

[33] Dasarath Weeratunge, Xiangyu Zhang, William N. Sumner,
and Suresh Jagannathan. Analyzing concurrency bugs using
dual slicing. In ISSTA, 2010.

[34] Mark Weiser. Program slicing. In TSE, 1984.

[35] K. Whisnant, Z. Kalbarczyk, and R. K. Iyer. Micro-
checkpointing: Checkpointing for multithreaded applications.
In IOLTW, 2000.

[36] Bin Xin, William N. Sumner, and Xiangyu Zhang. Efficient
program execution indexing. In PLDI, 2008.

[37] Cristian Zamfir and George Candea. Execution synthesis:
a technique for automated software debugging. In EuroSys,
2010.

[38] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolat-
ing failure-inducing input. TSE, 2002.

[39] Xiangyu Zhang and Rajiv Gupta. Cost effective dynamic
program slicing. In PLDI, 2004.

[40] Lukasz Ziarek and Suresh Jagannathan. Lightweight check-
pointing for concurrent ml. J. Funct. Program., 2010.

465

