
Bridging Software Languages and Ontology Technologies
Tutorial Summary

Fernando Silva Parreiras
Tobias Walter

Institute for Web Science and
Technologies, University of

Koblenz-Landau
D-56070 Koblenz, Germany

{parreiras,walter}@uni-koblenz.de

Christian Wende

Institute for Software- and
Multimedia-Technology, Dresden

University of Technology
D-01062 Dresden, Germany

c.wende@tu-dresden.de

Edward Thomas

Department of Computing Science,
The University of Aberdeen

Aberdeen AB24 3UE

e.thomas@abdn.ac.uk

Abstract
Current model-driven development approaches allow for a
more productive way of developing software systems. How-
ever, building tools and languages for software development
still suffer a neglect of semantics in modeling and metamod-
eling.

An interest to strengthen semantics in modeling and
metamodeling that gained scientific and commercial atten-
tion is the integration of ontology technology and software
development. Ontology formalisms for consistency valida-
tion and dynamic classification as well as semantic web tech-
nologies for enabling shared terminologies and automated
reasoning provide means for leveraging metamodeling and
language engineering.

This tutorial summary (1) enlightens the potential of on-
tology and semantic web technology for modeling and meta-
modeling in software development, positioning it among
modeling standards like UML, and MOF; and (2) illustrates
ontology-enabled software development with real applica-
tion scenarios in areas like software design patterns, domain-
specific languages and variability management.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques—Computer-aided
software engineering (CASE)

General Terms Design, Languages

Keywords Semantic Web, Ontology Technology, Software
Languages, UML, DSL, Model-Driven Development

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0240-1/10/10. . . $10.00

1. Introduction
Semantic web technologies comprises a stack of standard
and tools using metadata, logic and ontology languages,
i.e., languages to describe formally a domain of discourse.
Among ontology languages, the Web Ontology Language
(OWL) [17] is the most prominent for Semantic Web appli-
cations, providing a class definition language for ontologies.

Indeed, OWL provides important features complemen-
tary to class-based model design that improve software lan-
guages: it allows different ways of describing classes; it han-
dles these descriptions as first-class entities; it provides ad-
ditional constructs like transitive closure for properties; and
it enables dynamic classification of objects based upon class
descriptions.

OWL has been applied into software engineering for
many years in the form of Description Logic languages to
achieve improvements on the maintainability and extensi-
bility [9]. For example, the knowledge encoded in OWL
evolves independently of the execution logic, i.e., develop-
ers maintain class descriptions in the ontology and not in the
software. Moreover, developers may use class descriptions
to semantically query the domain. Semantic query plays an
important role where shared terminologies, interoperability
and consistency detection are required.

This tutorial summary addresses the following ques-
tion: What are the features and services provided by on-
tology technologies that can be used to improve software
languages? What are the applications of these features and
services in software language engineering?

We organize this tutorial summary as follows: Section
2 enlightens the potential of ontology and semantic web
technology for modeling and metamodeling of software lan-
guages, positioning it among modeling standards like UML,
and MOF. Section 2 illustrates ontology-enabled software
languages with real application scenarios in areas like soft-
ware design patterns, domain-specific languages, business
process modeling and variability management.

311

2. Ontologies in Software Languages
Class-based modeling languages (e.g. UML class diagrams
or MOF) and OWL comprise some constituents that are sim-
ilar in many respects like classes, associations, properties,
packages, generalization and instances [11].

Nevertheless, OWL offers a more expressive and extensi-
ble manner of modeling data and provides flexible ways to
describe classes and, based on such descriptions, it enables
type inference. Indeed, OWL provides various means for de-
scribing classes, which may also be nested into each other
such that explicit typing is not compulsory. One may denote
a class by a class identifier, an exhaustive enumeration of
individuals, property restrictions, an intersection of class de-
scriptions, a union of class descriptions, or the complement
of a class description.

For example, software developers can use reasoning ser-
vices (Sect. 2.2) to dynamically classify objects based on
conditions specified in class descriptions (Sect. 3.1). Lan-
guage users can count on explanation services (Sect. 2.2) for
debugging and learning domain concepts (Sect. 3.2). Lastly,
software developers might want to use class descriptions to
integrate software languages and use query answering for
retrieving information of multiple languages (Sect. 3.6).

Non-class-based modeling languages requires ad-hoc
transformations into OWL for taking advantage of reasoning
services. For example, while OWL contains elements like
classes, properties and individuals, a business process mod-
eling language contains elements like process, task, gate-
ways, activities, states, etc.

Applications of OWL ontologies in those cases usually
relies on satisfiability checking reasoning service to verify
whether the integrity of model elements is fulfilled in all pos-
sible states. For example, software product line developers
can carry out satisfiability checking to verify whether every
feature of the feature model is instantiable (Sect. 3.4). Pro-
cess modelers can verify whether a specific process model
refining an abstract one is valid, i.e., they can verify whether
the execution set of the abstract process model holds for ev-
ery execution set of the refined process model (Sect. 3.3).

2.1 Demystifying OWL

In this section, we compare how the Semantic Web and
Software Engineering worlds differ in terms of their world
assumption (respectively, open world versus closed world).
We show how an ontology can, either in whole (as locally
closed world) or in part (locally closed domain) be made to
behave under the closed world assumption. We also look at
negation as failure in the context of ontologies.

The Semantic Web adopts an open world assumption, this
extends to the ontology language OWL, and to the reasoners
and tools which work with it. In simple terms, this means
that any fact that cannot be proven to be true by the known
data, cannot be assumed to be false unless it is directly
contradicted by other data in the ontology. For example,

given an OWL axiom which states that all cows eat only
plants, and that sheep are animals (in DL syntax: Cows �
∀eats.P lant and Sheep � Animals), asserting that some
cow eats some sheep does not cause a contradiction, since
it has not been stated anywhere that animals cannot also be
plants (Animals �� Plants). In fact, a reasoner will infer
exactly this fact from the given knowledge.

It is possible in OWL to close the domain of a particular
class, by asserting that that class is equivalent to exactly the
set of all its members. This prevents the reasoner from in-
ferring that any other individual (either a named individual,
or an inferred individual) is a member of this class. A rea-
soner can be used to close the domain of a class or a prop-
erty, affecting the outcome of various reasoning tasks on the
ontology [16].

By closing the domain of an entire ontology, we can sim-
ulate a closed world assumption. This involves closing the
domain of every class and property in an ontology. This com-
pares to the closed world assumption in Software Engineer-
ing, but it has performance implications when closing the
domain of a complex ontology.

An alternative to closed world assumption is to use nega-
tion as failure (NAF) in the Semantic Web context. The re-
sults from using NAF can differ from using a true (locally)
closed world (or domain) approach, and a closed domain and
NAF can be combined in ontology reasoning to allow default
behaviour and other techniques to be performed (See [16]).

OWL2 comprises a family of description logic languages,
called profiles, which offer different levels of expressive-
ness and tractability. By using different language profiles
where different levels of performance and expressivity are
required, and by exploiting quality-guaranteed transforma-
tions between these languages, hybrid reasoners such as
TrOWL [16] can reduce the complexity of a given domain
model, increasing performance.

1. OWL2-QL The primary application for OWL2-QL are for
ontologies with large abox datasets. It supports storing
and querying this data using an SQL database, using
query expansion to perform complete query answering
with respect to the semantics of OWL and the tbox of the
ontology.

2. OWL2-EL OWL2-EL is a profile of OWL2 specifically
designed for high performance TBox reasoning. It sup-
ports consistency, classification, class expression sub-
sumption and instance checking in polynomial time (cf.
2NexpTime for OWL2-DL).

3. OWL2-RL OWL2-RL is the subset of OWL2 which
amenable to expression as a set of rules. These rules are
run over a set of ground facts (the concrete axioms given
in the ontology file) to infer every axiom which can be
derived from those facts under OWL2 RDF semantics.

4. OWL2-DL OWL2-DL can be regarded as the full expres-
sivity of OWL2 available under OWL2 direct semantics.

312

It is the most expressive profile in OWL2 and it corre-
sponds to the description logic SROIQ.

OWL presents complementary constructs to UML and
OCL, allowing, for example, property transitivity, which is
very useful for querying large and complex models.

By targeting different profiles of OWL2 to different as-
pects of a reasoning problem, improved performance can
be achieved. For example, taking a very large ontology,
classifying it, and performing query answering in OWL2-
DL may be too costly in time and memory. By trans-
forming that ontology into an OWL2-EL and OWL2-QL
representations, these tasks become much more tractable
(PTIME-complete and NLogSpace-complete, instead of
2NEXPTIME-complete).

2.2 Reasoning Services for Model Design

OWL ontologies can be operated on by reasoners providing
services like consistency checking, concept satisfiability, in-
stance classification and concept classification.

Reasoners provide the following standard reasoning ser-
vices:

Consistency Checking The reasoning service consistency
checking checks if a given model is consistent with re-
gard to their language metamodel.

Satisfiability Checking The satisfiability checking service
finds all unsatisfiable concepts in a given language meta-
model. A concept metamodel is unsatisfiable if it repre-
sents an empty set of instances.

Classification The classification service returns for a given
instance a set of metamodel concepts which contain/describe
the instance. The instance conforms to all concepts in the
result of the classification service. The classification ser-
vice is used to dynamically classify elements in models
to find its most specific type.

Subsumption The subsumption checking service checks
whether a concept is superconcept or subconcept of an-
other given (anonymous) concept.

In addition, some reasoners provide a set of non-standard
reasoning services:

Query Answering SPARQL [14] is a prominent query lan-
guage for querying OWL ontologies. SPARQL queries
are able to operate on both, the schema level (metamodel
layer) and on the instance level (model layer).

Explanation Services The generation of explanations for
inferences computed by a reasoner is now recognized as
highly desirable functionality. If the inference leads to
some inconsistency or unsatisfiable classes, the explana-
tion service results some debugging relevant facts and the
information how to repair the model.

3. Applications of Ontology Technologies in
Software Languages

3.1 Improving General Purpose Software Design
Patterns

In general, the Software Design Pattern deal with variation
and delegation of concepts in software models. However,
as already documented by [5], the Strategy Pattern has a
drawback. The clients must be aware of variations and of
the criteria to select between them at runtime. Hence, the
question arises of how the selection of specific classes could
be determined using only their descriptions rather than by
weaving the descriptions into client classes.

In [15], we present an approach to decouple class selec-
tion from the definition of client classes by exploiting OWL-
DL modeling and reasoning. It enables the identification of
patterns integrating UML class diagrams with software de-
sign patterns and OWL like, for example, the Selector Pat-
tern.

The application of the Selector Pattern presents the fol-
lowing consequences: (1) reuse – The knowledge repre-
sented in OWL-DL can be reused independently of platform
or programming language; (2) flexibility – The knowledge
encoded in OWL-DL can be modeled and evolved indepen-
dently of the execution logic; and (3) testability – The OWL-
DL part of the model can be automatically tested by logical
unit tests, independently of the UML development.

The application of our approach can be extended to other
design patterns concerning variant management and control
of execution and method selection. Design patterns that fac-
tor out commonality of related objects, like Prototype, Fac-
tory Method and Template Method, are good candidates.

3.2 Ontology-Based Domain-Specific Languages

Domain-specific languages (DSL) are used to model and de-
velop systems of different application domains. However,
there is an agreement about the challenges faced by current
DSL approaches: (1) tooling (debuggers, testing engines),
(2) interoperability, (3) semantics, (4) learning curve and (5)
domain analysis. Improving tooling enhances user experi-
ence while formal semantics is the basis for interoperability
and formal domain analysis.

In [18, 19], we propose an Ontology Based DSL Frame-
work that allows for defining DSLs enriched by formal class
descriptions. It allows DSL designers to check consistency
of the model and helps DSL users to verify and debug DSL
programs by using reasoning explanation. Moreover, novice
DSL users may rely on reasoning services to suggest domain
concepts according to the language definition.

The integrated metamodel MOF+OWL allows for a for-
mal and logical representation of the solution domain. Thus,
DSL designers count on an expressive language that al-
lows for modeling logical constraints over DSL metamodels.
Consistency of metamodels and constraints can be checked
by reasoners and inferences are clarified by explanation ser-

313

vices. The nature of the logical restrictions allowed by OWL
enables progressive evaluation of DSL program consistency.

Moreover, the integration MOF+SPARQL enables DSL
users to define SPARQL-like queries with the DSL meta-
model to query objects in DSL programs. These queries are
the interface between DSL user and reasoning services. For
example, a DSL user may use a query defined in the DSL
metamodel to query all classes that describe an object in the
DSL program.

3.3 Ontology-Based Analysis in Variability Modelling

In software product lines [13], feature models are used to
capture common and variable features in a family of re-
lated software products. Feature modeling originates from
the FODA study [8]. In addition to simple relationships in
hierarchical feature models as mandatory, optional, alterna-
tive or exclusive-alternative features several extensions were
proposed. Most notably are propositional cross-tree rela-
tions (requires, conflicts) [1], cardinality-based features and
groups [4], and feature attributes [3]. Using these constructs,
feature models impose several constraints and relationships
among features and, thus, specify all valid variants of the
product line. During variant configuration variant models se-
lect a subset of the features in a product line’s feature model
to specify a concrete product.

Analysis in variability modelling checks the consistency
of feature models, propositional feature terms and variant
models w.r.t. the constraints and relationships specified for
a concrete product-line and is an important area of research.
For a recent, extensive overview of existing approaches on
feature model analysis we refer to [2].

In this use case we discuss the application of ontology
technology to validate feature and variant models and pro-
vide guidance in variant configurations. Based on existing
approaches for the description logic based representation
and analysis of feature models [20] we cover the following
topics:

• Automated translation of hierarchical feature models
with propositional cross-tree relations to OWL ontolo-
gies that represent their structural and semantics con-
straints,

• Automated translation of propositional feature terms and
variant models to OWL ontologies,

• Application of OWL reasoning services to validate fea-
ture models, propositional feature terms, or variant mod-
els and to provide guidance in variant configuration,

• Integration of ontology-based analysis in variability mod-
elling with the model-driven technology using the tool
FeatureMapper [7],

• Exemplary applications of ontology-based variability
modelling in SPLE, and

• Open challenges and issues in analysis of variability
modelling.

3.4 Modeling and Querying Process Models with OWL

Process models capture the dynamic behavior of an appli-
cation or system. In software modeling they are represented
by graphical models like BPMN Diagrams or UML Activ-
ity Diagrams. The corresponding metamodels prove flexible
means to describe process models for various applications.
However, process models are often ambiguous with inappro-
priate modeling constraints and even missing semantics.

The process model in OWL gives an explicit description
of the execution order dependencies of activities [6]. Hence,
this information is used for process retrieval. A query de-
scribes the relevant ordering conditions like which activity
has to follow (directly or indirectly) another activity. For in-
stance a process that executes the activity FillOrder be-
fore MakePayment with an arbitrary number of activi-
ties between them, is given by the query process description
∃TOT.(FillOrder � ∃TOT.MakePayment). The transi-
tive object property TOT is used to indicate the indirect con-
nection of the activities. The result are all processes that are
subsumed by this general process description.

Besides ordering constraints, this semantic query pro-
cessing allows the retrieval of processes that contain spe-
cialized or refined activities. For instance the result of the
demonstrated query also contains all processes with subac-
tivities of FillOrder and MakePayment. The correspond-
ing class expressions in the OWL model are specializations
of the class expression given by the query expression. Fi-
nally, the usage of in the queries allows handling of modal-
ity for activity occurrences in a process, like a query that
expresses that the activity ShipOrder has to occur or might
occur.

3.5 Metamodeling

The UML allows for capturing information about multiple
views of systems like static structure and dynamic behavior.
Since it is hard to capture all aspects of software into only
one model, UML includes numerous types of diagrams to be
used according to the software development task.

Since the semantics of UML constructs is textually de-
scribed in the UML specification, it is hard to guarantee
the same behavior across multiple implementers. Moreover,
since UML enables multiple views of systems, it is impor-
tant to have a consistent view over all UML diagrams. We
have used the integration MOF+OWL [12] to model OWL
descriptions at the metamodeling level. Metamodeling with
OWL helps to disambiguate UML constructs and allow to
specify logical constraints only textually described yet.

We have analyzed the different types of relationships in
the UML2 Specification [10] and identified constraints that
could benefit from our approach. For example, where prop-
erty transitivity is required, e.g., in specifying constructs like
Activity, State, StateMachine and Transition, our approach

314

allows for defining additional operations that are not easily
expressible in OCL.

3.6 Enabling Linked Data Capabilities to Software
Languages

In the software development process, there are standards for
general-purpose modeling languages and domain-specific
languages, capable of capturing information about different
views of systems like static structure and dynamic behav-
ior. In a networked and federated development environment,
modeling artifacts need to be linked, adapted and analyzed to
meet the information requirements of multiple stakeholders.

We propose an approach for linking, transforming and
querying models expressed in MOF compliant languages,
including OMG standards and domain-specific languages.
We define structural mappings between MOF and OWL and
propose the usage of semantic web technologies for linking
and querying software models.

We show that the usage of OWL for specifying metamod-
els is a viable solution to achieve interoperability and shared
conceptualizations. The role of OWL is not to replace MOF
or the Object Constraint Language because OWL addresses
distinct requirements, specially concerning networked envi-
ronments. OWL should compose the spectrum of software
modeling languages in a unified architecture.

4. Conclusion
In tutorial summary paper we present an overview of the
main features of ontology technologies for software lan-
guages and exemplify this features and services with case
studies being developed under EU STReP MOST that use
ontology technologies.

References
[1] D. S. Batory. Feature models, grammars, and propositional

formulas. In J. H. Obbink and K. Pohl, editors, SPLC, volume
3714 of LNCS, pages 7–20. Springer, 2005.

[2] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature review.
Inf. Syst., 35(6):615–636, 2010.

[3] K. Czarnecki and C. Kim. Cardinality-based Feature Model-
ing and Constraints: A Progress Report. In OOPSLA05 Work-
shop on Software Factories, October 17, 2005, San Diego,
California, USA., 2005.

[4] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
Cardinality-based Feature Models and their Specialization.
Software Process: Improvement and Practice, 10(1):7–29,
2005.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley, Boston, MA, USA, 1995.

[6] G. Gröner and S. Staab. Modeling and Query Patterns
for Process Retrieval in OWL. In A. Bernstein, D. R.
Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and

K. Thirunarayan, editors, International Semantic Web Confer-
ence, volume 5823 of LNCS, pages 243–259. Springer, 2009.

[7] F. Heidenreich, J. Kopcsek, and C. Wende. Featuremapper:
mapping features to models. In ICSE Companion ’08: Com-
panion of the 30th international conference on Software engi-
neering, pages 943–944, New York, NY, USA, 2008. ACM.

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[9] D. L. McGuinness. Configuration. In F. Baader, D. Calvanese,
D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors, The Description Logic Handbook, chapter 12, pages
397–414. Cambridge University Press, 2003.

[10] OMG. Unified Modeling Language: Superstructure, version
2.1.2. Object Modeling Group, November 2007.

[11] OMG. Ontology Definition Metamodel (ODM) Version 1.0.
Object Modeling Group, May 2009.

[12] F. S. Parreiras and S. Staab. Using ontologies with UML class-
based modeling: The Twouse approach. Data & Knowledge
Engineering, In Press, Accepted Manuscript, 2010.

[13] K. Pohl, G. Böckle, and F. Van Der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques.
Springer-Verlag, 2005.

[14] E. Prud’hommeaux and A. Seaborne. SPARQL Query Lan-
guage for RDF. Technical report, W3C, 2008.

[15] F. Silva Parreiras, S. Staab, and A. Winter. Improving design
patterns by description logics: A use case with abstract factory
and strategy. In Modellierung 2008, volume P-127 of LNI,
pages 89–104. GI, 2008.

[16] E. Thomas, J. Z. Pan, and Y. Ren. Trowl: Tractable owl 2 rea-
soning infrastructure. In L. Aroyo, G. Antoniou, E. Hyvönen,
A. ten Teije, H. Stuckenschmidt, L. Cabral, and T. Tudorache,
editors, The Semantic Web: Research and Applications, 7th
Extended Semantic Web Conference, ESWC 2010, Heraklion,
Crete, Greece, May 30 - June 3, 2010, Proceedings, Part II,
volume 6089 of LNCS, pages 431–435. Springer, 2010.

[17] W3C OWL Working Group. OWL 2 Web Ontology Language
Document Overview. W3C Recommendation 27 October
2009, 2009.

[18] T. Walter, F. Silva Parreiras, and S. Staab. OntoDSL:
An Ontology-Based Framework for Domain-Specific Lan-
guages. In Model Driven Engineering Languages and Sys-
tems, 12th International Conference, MODELS 2009, volume
5795, pages 408–422. Springer, 2009.

[19] T. Walter, F. Silva Parreiras, J. Ebert, and S. Staab. Joint
Language and Domain Engineering. In Proc. of 6th Eu-
ropean Conference on Modelling Foundations and Applica-
tions , ECMFA 2010, Paris, France, June 15-18, 2010, LCNS.
Springer, 2010.

[20] H. H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan. Verifying
feature models using OWL. Web Semant., 5(2):117–129,
2007.

315

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

