

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH’13, October 26–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-1995-9/13/10…$15.00.

Ultimate Architecture Enforcement
Custom checks enforced at code-commit time

Paulo Merson
Federal Court of Accounts (TCU)

Brasília, Brazil
pmerson@acm.org

Abstract
Creating a software architecture is a critical task in the develop-
ment of software systems. However, the architecture discussed
and carefully created is often not entirely followed in the imple-
mentation. Unless the architecture is communicated effectively to
all developers, divergence between the intended architecture
(created by the architect) and the actual architecture (found in the
source code) tends to gradually increase. Static analysis tools,
which are often used to check coding conventions and best prac-
tices, can help. However, the common use of static analysis tools
for architecture enforcement has two limitations. One is the fact
that design rules specific to a software architecture are not known
and hence not enforced by the tool. The other limitation is more of
a practical issue: static analysis tools are often integrated to the
IDE or to a continuous integration environment; they report viola-
tions but the developers may choose to ignore them. This paper
reports a successful experience where we addressed these two
limitations for a large codebase comprising over 50 Java applica-
tions. Using a free open source tool called checkstyle and its Java
API, we implemented custom checks for design constraints speci-
fied by the architecture of our software systems. In addition, we
created a script that executes automatically on the Subversion
software configuration management server prior to any code
commit operation. This script runs the custom checks and denies
the commit operation in case a violation is found. When that
happens, the developer gets a clear error message explaining the
problem. The architecture team is also notified and can proac-
tively contact the developer to address any lack of understanding
of the architecture. This experience report provides technical
details of our architecture enforcement approach and recommen-
dations to employ this or similar solutions more effectively.

Categories and Subject Descriptors D.2.11 Software Architec-
tures; D.2.9 Management: software quality assurance.

Keywords software architecture; architecture conformance;
architecture enforcement; static analysis; Java; checkstyle.

1. Introduction
Creating a software architecture is a critical task in the develop-
ment of software systems because the structures in the design will
dictate whether the system will exhibit good modifiability, per-
formance, interoperability, and other qualities. Software architec-
tures are created every day in IT departments and software com-
panies around the world based on previous experience of the
architects as well as knowledge codified as architecture patterns,
design patterns, and tactics. These architectures are often dis-
cussed and reviewed with the stakeholders. Incrementally, the
software architecture is handed to developers who translate the
design diagrams into code. Once in place, the code becomes the
main artifact of a software project (“code is king!”).

In software projects of reasonable size, several people do write
code. Often times, these people are geographically distributed. It’s
also common for new developers to join software projects when
the software system is partially implemented and/or rolled out.
The newcomers are readily assigned features to implement, or
bugs to fix. Many times they write code before they understand
the overall architecture. Developers of large software systems are
like the XV century explorers who tried to “connect”, say, Portu-
gal to India, but didn’t have the big picture (of Earth!) and ended
up finding unexpected pathways, often not optimal.

When software development and maintenance involves several
developers and spans months or years, a common phenomenon
can happen: the actual architecture found in the source code
diverges from the intended architecture, which was the diligent
work of the architects. This problem, often introduced involuntar-
ily by developers who write code non conformant to the architec-
ture, is influenced by different factors:
• whether the architecture documentation is effectively commu-

nicated to developers;
• turnover among developers, since newcomers may be required

to write code before they have a good understanding of the ar-
chitecture;

• pressure to quickly fix bugs and deliver new features, which
leads developers to take shortcuts in the code disregarding the
architecture;

• size of the system (the larger the codebase, the more likely
developers don’t see the big picture);

• presence of sub-teams of developers, possibly outsourced; and
• degree of accountability for creating code that violates the

design constraints.

153

The disconnect between the code and the intended architecture
may also occur due to changes in the architecture itself. Long after
the implementation is created, the intended architecture may be
modified to tend to new requirements and technology innovations.
This evolution of the architecture is natural and welcomed. How-
ever, in many cases refactoring the old code in order to comply
with the new design is too expensive. The once-compliant old
code is left as is and now it doesn’t conform to the (new) architec-
ture anymore.

When the discrepancy between the architecture and the source
code grows uncontrolled, problems arise. First off, maintainability
is impaired. The introduction of code dependencies (shortcuts) not
permitted by the architecture makes the code brittle, hard to un-
derstand and to change. But consequences can go beyond that.
Design decisions in the intended architecture aimed at achieving
certain qualities, such as reliability, security, modifiability, per-
formance, portability, and interoperability. If the code departs
from that architecture, these qualities can be negatively affected.

This paper describes our experience creating an approach
based on static analysis to watchfully check that source code is
only added to the codebase if it follows the design rules and other
constraints defined in the software architecture. Section 2 will
discuss how to address the architecture conformance challenge in
general. Section 3 briefly describes the environment where this
experience took place. Section 4 is a quick introduction to the
checkstyle tool and how to create custom checks using the check-
style Java API. Section 5 gives an overview of the types of cus-
tom checks created so far in our organization. Section 6 describes
how we made architecture conformance an automatically enforced
requirement for source code added to our subversion repository.
Section 7 describes the results and lessons learned in this experi-
ence. Section 8 provides some conclusions and final thoughts,
including a discussion of the limitations of the approach.

2. How to avoid code and architecture disparity
To keep the source code compliant with the software architecture
over time, there are two important things to be done: one is to
properly communicate the architecture to the developers, and the
other is to actively check that the source code follows the intended
design.

2.1 Communicating the architecture to stakeholders

The architecture of a software system is the set of structures
needed to reason about the system, which comprise software
elements, relations among them, and properties of both [2]. De-
scribing and communicating the software architecture to all stake-
holders is an encumbering task. It involves: documenting the
different structures as multiple views; recording information
needed by the stakeholders about the software elements and their
relations; describing the relevant software interfaces; creating
structural design diagrams and complementing them with behav-
ior documentation, such as UML sequence diagrams and state-
machine diagrams; recording the rationale for the design deci-
sions; and keeping the documentation up-to-date.

Creating effective software architecture documentation is im-
portant not only to avoid that developers create code that doesn’t
follow the architecture. The architecture documentation is the-
blueprints for creating the code, is the primary indicator of the
quality attributes of the system (e.g., performance, availability,
modifiability), and guides incremental development plans, alloca-
tion of tasks, procurement of software and hardware. However,
the focus of this paper is not on documenting and communicating
the architecture to developers—for that we refer the reader to the

work of Paul Clements and colleagues [2]. This paper will explore
automated architecture conformance analysis, introduced next.

2.2 Automated architecture conformance analysis

One can manually review the code to check that it conforms to the
intended architecture. Indeed, architecture conformance can be
one of the goals of code reviews. However, manual reviews are
time consuming. Also, the reviewer is not always well versed in
the architecture, and the architect is not always available to par-
ticipate in code reviews. Thus, architecture conformance is more
often verified using automated tools.

The tools commonly used in industry for architecture enforce-
ment employ static program analysis. Examples include: Check-
style, FindBugs, Fortify, JDepend, Lattix, Lint, NDepend, PMD,
Sonar, and Understand [12]. Some tools give you a reverse-
engineered depiction of the actual architecture found in the code,
so that you can visually compare it with the intended architecture.
In other tools you can even indicate that a dependency between
modules A and B is not allowed, and the tool will let you know
whenever that dependency rule is violated.

Adding static analysis to continuous integration is important to
ensure the quality of the code remains at a good level, or at least
to ensure it is not deteriorating. However, the common practice of
continuous conformance verification has two limitations.

One limitation of static analysis as performed in many organi-
zations is that it is restricted to the checks available out-of-the-box
in the static analysis tools. Although the tools usually give you the
ability to turn on/off, configure thresholds, and change the sever-
ity of each check, these built-in checks are always generic. They
are oblivious to the architecture of your software system; they are
unaware of the many design constraints, infrastructure services,
and idiosyncrasies specific to your software projects.

The other limitation is the fact that violations may find their
way into the codebase despite the finger pointing of the tools.
Sometimes the number of violations creeps up to hundreds or
thousands; sometimes there is no accountability for violations
added to the codebase; sometimes management does not want to
allocate time and effort to fix the violations (“after all, addressing
these violations doesn’t represent progress towards delivering
functionality to the customers”). As a result, violations tend to be
ignored. This problem can be attenuated when the static analysis
tool offers a classification of the violations. In such cases, the top
priority or critical violations are not acceptable, but the lower
priority ones may remain unheeded.

The approach presented in this paper solves these two limita-
tions.

3. Context of our development organization
The experience described in this paper took place at the IT de-
partment of the Brazilian Federal Court of Accounts (TCU). TCU
has over 50 Java EE applications and several shared libraries
developed in house. The Java codebase consists of approximately
2.2 million physical LOC spread across 15 thousand source files.

The common denominator platform for all these applications is
a cluster of JBoss EAP application servers and an Oracle data-
base. Yet, some applications access different small data reposito-
ries and interact with other software systems, both internal and
external to the organization.

To a great extent, these applications are built using the same
frameworks and libraries, have nearly the same quality attribute
requirements, offer similar data-centric functionality, and share
the same runtime environment. Because of this similarity, refer-
ence architectures [4] have been established over the years. Cur-
rent reference architectures prescribe a layered architecture, MVC

154

and other architectural patterns, and constrained use of a few
specific frameworks. Any application may specialize and deviate
from the reference architecture if necessary, but otherwise design
constraints are prescribed to all Java applications.

The development team consists of 57 full-time employees.
Their development skills and experience vary tremendously, since
the recruiting process does not require previous experience with
Java or any specific technology. Part of the development team,
there are also 24 interns working part-time. The internship pro-
gram takes computer science undergraduate students for a period
of six months to two years. The development work force will soon
grow, since a contract is about to be signed for outsourcing some
of the software development effort.

3.1 Architecture conformance undertaking

The small group within the software development organization
responsible for the reference architectures has always strived to
see the architecture being followed in the implementation of the
various applications. This group has spent significant effort to
document the reference software architectures and to communi-
cate them to all developers, including new hires and interns,
through presentations and one-on-one coaching.

In the past, this group resorted to source code lexical searches
based on regular expressions and code reviews to spot architecture
conformance problems. Success was very limited. In 2011, we set
out to create a mechanism based on static analysis tools to enforce
our own architecture constraints and coding guidelines. We evalu-
ated four different static analysis tools for Java and chose check-
style for its Java-based API for creating custom checks. This
choice has showed to produce effective results at a low cost. The
remaining of this paper describes some technical details, results of
this experience, and lessons learned.

4. Checkstyle API
Checkstyle is a free open-source static analysis tool for Java [5].
Like other tools, out of the box it can analyze the source code for
coding conventions and numerous programming best practices.
Unlike most tools though, Checkstyle offers a Java API that al-
lows the implementation of custom code analyses.

A check is a Java class that is invoked when Checkstyle is
parsing a Java file. The check is given that file’s AST and can
inspect each token and look for constructs that represent a viola-
tion of some sort. Using the Checkstyle API, we can create cus-
tom checks. For example, let’s say your architecture uses data
access objects (DAO) [6] to access the database. Suppose in your
architecture, a class could be recognized as a DAO class by the
“Dao” prefix—other common options would be extending an
abstract Dao class, or using a specific annotation, such as @Dao or
@Repository. Now suppose your architecture dictates that only
code in the “service” layer can use DAO classes, and classes in
the service layer belong to a package namespace
com.mycompany.service.*. Figure 1 shows the code for the
custom check that enforces that rule.

 Checkstyle uses the Visitor design pattern [7] to invoke the
checks while traversing a Java program AST. Each check is a
visitor that has a single entry point method called visitToken.
This method takes as argument the AST where the root is the
token just parsed in the Java program. The visitToken method
typically has an if-else-if or switch-case construct to identify what
type of token it received and execute the part of the analysis logic
that applies to that type of token. As an optimization, a check can
declare which types of tokens it’s interested in. The example in
Figure 1 is only interested in package definitions (Token-
Types.PACKAGE_DEF) and references to identifiers (Token-
Types.IDENT), so checkstyle only calls visitToken on this
check when it parses tokens of these types.

Figure 1. Example of a checkstyle custom check.

/**
 * Classes prefixed by Dao can't be used
 * outside com.mycompany.mysystem.service.*
 */
public classCheckNonServiceUsesDao extends Check {
 private boolean inServiceLayer;
 @Override
 public int[] getDefaultTokens() {
 return new int[] {TokenTypes.PACKAGE_DEF, TokenTypes.IDENT};
 }
 @Override
 public void visitToken(DetailAST aAST) {
 if (aAST.getType() == TokenTypes.PACKAGE_DEF) {
 inServiceLayer = false;
 String packageName = fullyQualifiedPackage(aAST);
 if (packageName != null &&
 packageName.startsWith("com.mycompany.mysystem.service")) {
 inServiceLayer = true;
 }
 } else if (aAST.getType() == TokenTypes.IDENT && !inServiceLayer) {
 if (aAST.getText().startsWith("Dao")) {
 log(aAST.getLineNo(),
 "Classes outside the service layer can't call Dao classes");
 }
 }
 }
}

155

The checkstyle API provides several methods used in the im-
plementation of custom checks, including:
• findFirstToken: for the current AST node, returns the first

child (in pre-order) of a given token type.
• getNextSibling, getPreviousSibling,

getFirstChild: allow navigation around the AST.
• branchCointains: returns true if the AST rooted at the cur-

rent node contains a node of a given token type.
We have enhanced the API by creating a few other methods,

which have been submitted as contributions to the checkstyle
sourceforge project [5]. Two of the API methods we created are:
• findFirstAstOfType: returns the first node (in pre-order)

within an AST of a given token type. Different from
findFirstToken, this method searches the root node and the
entire tree, not only the direct children.

• findAllAstsOfType: returns the list of all nodes of a given
token type found within a given AST traversed in pre-order.
A key benefit of checkstyle over other approaches is that the

custom analysis is implemented using Java—there is no need to
learn another language or syntax for specifying an analysis rule.
Another benefit is that checkstyle gives you the flexibility to
inspect any syntactic element of a Java program, even comments.
Other approaches used for architecture conformance analysis,
such as AOP [8], are limited to inspecting class definitions,
method definitions, method calls, and other specific points in a
Java program.

5. Custom checks at TCU
We have created 40 checkstyle custom checks so far. The

checks are divided into three categories: architecture confor-
mance, coding guidelines, security constraints.

5.1 Architecture conformance checks

We have created 19 custom checks that verify design constraints
defined in the reference architectures. These checks enforce: the
layered architecture; specific class inheritance or interface realiza-
tion that is required from certain types of modules; proper place-
ment of business logic, data access logic, UI logic; proper use of
infrastructure and “util” software elements; naming of certain
types of modules as defined in the architecture; and disallowed
dependencies in general.

The custom check in Figure 1 is an example of architecture
conformance check that can help to enforce a layered architecture,
such as the one seen in Figure 2. That custom check along with
similar checks can make sure usage dependencies that violate the
design (shown by dashed lines in Figure 2) are not created. We
have written several custom checks like that.

Another example of architecture conformance check is related
to class inheritance. For instance, in our reference architecture, a
design constraint dictates that stateless session beans [1] must be a
subclass of a given abstract class. This abstract super class trans-
parently introduces exception handling, auditing, and transaction
management services in all subclasses. Thus, we created a custom
check that identifies that the analyzed class is a stateless session
bean and makes sure that that class is a subclass of the aforemen-
tioned abstract class.

5.2 Coding guideline checks

We created other 12 custom checks that enforce coding guidelines
that are specific to our organization. These guidelines span vari-

ous aspects of Java programming, including: exception handling,
resource release to avoid resource leaks, proper placement of
JUnit tests, thread programming traps.

An example of coding guideline that we enforce using a cus-
tom check is that threads cannot work on previously created trans-
actional objects. In our reference architecture, we identify by
inheritance, Java annotation or package namespace all the objects
that carry a transactional context. Some applications employ the
“introduce concurrency” tactic [3] by spawning threads for back-
ground processing. We created a custom check that makes sure
the constructor of a thread does not receive as a parameter an
object that holds transactional context. This check prevents two
threads from operating on the same transaction and causing a
runtime error.

5.3 Application security checks

A couple of years ago we had the opportunity to analyze part of
our codebase using a static analysis tool called Fortify, which
specializes in detecting security vulnerabilities in application
programs. Although Fortify is very useful to improve application
security, it has the limitations discussed in Section 2.2—the secu-
rity checks the tool applies are generic and unaware of specific
elements in our architecture. So we decided to implement custom
checks that deal with security vulnerabilities. Some are generic
and others target elements of our home-grown software infrastruc-
ture that are security sensitive.

We developed 9 custom checks that enforce security con-
straints in Java applications. These checks prevent vulnerabilities
such as: SQL injection in JDBC and Hibernate programming,
execution of external programs on Java web applications, hard-
coded passwords, and security critical classes or methods that can
be subclassed or overridden.

6. Next step: prevent new violations
Section 2.2 discusses two limitations of the common use of static
analysis tools to automate conformance checks. The second limi-
tation is that violations reported by automated checks can be
ignored by developers, and unfortunately often they are. We
solved this limitation in our organization with a mechanism that
runs the checks when the developer attempts to commit a source

Figure 2. Layered architecture showing dependencies that could
be enforced by architecture conformance checks.

156

file to the code repository. This mechanism denies the operation if
there are violations.

A Subversion (svn) hook is a program that can be configured
in the subversion repository [13]. The hook is automatically in-
voked when there is a commit operation. We created a pre-commit
hook that runs our checkstyle custom checks on the Java source
files that are the subject of the commit operation. If any of the
checks detects a violation, the commit operation fails and the user
gets an error message indicating the source file, line number, and
a description of the problem.

The svn pre-commit hook does not allow developers to ignore
violations. The violations are either fixed or out of the codebase.

6.1 Notification of violations

As soon as the svn hook was in place, developers began to get
error messages upon svn commit attempts. We realized we needed
to keep track of these failed code commit attempts, not only to
have a sense of the number of attempts, but more important to
explain the enforced rule and indicate a solution to the developers.

We configured the svn hook to send an email to the architec-
ture team whenever a developer tries to commit source code that
violates the architecture. This email message allows the architec-
ture team to pro-actively contact the developer and help address
the issue. Figure 3 shows the overall flow that takes place when a
code commit attempt violates a custom check. (The diagram is a
simplification, since the loop is executed for each custom check,
not only one.)

7. Results and lessons learned
There are two general approaches that architecture teams follow
to try to enforce the architecture. One is to act as the “architecture
police” to make sure developers are following the published archi-
tecture. The other is to mentor and work closely with developers
to make sure they understand and naturally follow the architec-

ture. It may look like automated checks that bar source-code
commit attempts because of violations fall within the first ap-
proach. In our experience, it’s the opposite. The email notifica-
tions mentioned in Section 6.1 are the answer. They expose lack
of understanding of the architecture to which we can respond
immediately. We contact the developer to further explain why and
how does his/her code violate the architecture. These email mes-
sages have been incredibly effective in raising awareness of the
architecture and coding best practices.

Today the custom checks that execute prior to any svn commit
operation quite frequently deny the introduction of violations in
our Java codebase. More precisely, in a period of 12 months more
than 400 commit attempts resulted in an error message to the code
committer due to a custom check violation. Based on the specific
violation in these attempts, the architecture team has sent ap-
proximately 40 email messages to developers with further clarifi-
cation; in other instances a quick chat clarified matters. A couple
of times this personal follow-up with the code committer ended up
in revisions to the custom checks. However, the vast majority of
cases resulted in the code being fixed by the developer.

The experience has been successful. At this point, we can
quickly develop a custom check when a new design constraint is
devised. There were some hurdles we had to overcome that could
have been avoided. Following are some recommendations based
on our experience.

7.1 Recommendations

In these two years working with custom checks, we adopted some
practices to make the most out of the checks. Probably the most
important guideline is to adopt an architecturally-evident coding
style [9], which is translated into the first three recommendations
in the list.
1. Use naming conventions that define different prefix or suffix

for different types of classes and interfaces. This idea is quite

Figure 3. UML sequence diagram of a code commit attempt that has a violation and architect follow up email.

157

common in Java and other development platforms. For exam-
ple, exception classes in Java by convention have suffix “Ex-
ception”, the controller classes in applications crated with the
Spring MVC framework usually use suffix “Controller”.

2. When a naming convention that establishes a prefix or suffix
for classes is not adequate for some reason, define a conven-
tion for the package namespace. For example, if not all classes
in the presentation layer can be identified by strict name pre-
fixes or suffixes, we could define that all of them should be in
a package namespace that ends in “presentation”.

3. If a naming convention is not adequate for packages either,
define Java annotations that qualify the classes. For example,
we could identify the classes that represent data entities
mapped to relational database tables because they necessarily
have the @Entity annotation.

4. Once established, divulge the existence of code verification at
commit time to all developers, and then on to any newcomers.
Indicate the benefits and try to get their buy-in. Make sure to
open space for suggestions. Some of the checks we created
were suggested by application developers.

5. Create and nourish the unit tests for your custom checks, and
enhance them with new code idioms found along the way.

6. Create a mechanism for easily configuring exceptions. It
should give you the ability to configure projects, packages or
classes over which the custom checks should not be run.

7. Keep track of the number of violations found for each check.
When you first implement it, write down the date and the total
number of violations. If you are able to fix all violations, write
down another checkpoint with the date that total number came
down to zero. If you were not able to fix all violations, when-
ever you run the check over the entire codebase, take note of
the number of violations, so you can assess if that number is
under control. If you use the Sonar platform, you can use the
time machine mechanism [10].

8. Make sure software architects understand the potential of the
custom checks even if they don’t understand the technical de-
tails. Then try to establish the following mindset among the
architects: whenever you make a design decision that is re-
flected in the Java code, ask yourself whether that decision can
be enforced via a custom check, and what conventions should
be defined to make the custom check feasible. For example,
suppose some business classes in your application need to
support simple “undo” on operations that change state. The ar-
chitect decides to use the Memento design pattern [7] to im-
plement undo. Keeping in mind that a custom check can en-
force the proper use of Memento, the architect just needs to
define a means to identify those business classes. So, an extra
decision could be that business classes that require undo must
have annotation @UndoEnabled.

9. In addition to custom checks that can be executed at code
commit time, enable the static analysis tool built-in checks in
the developers IDE and/or in the continuous integration envi-
ronment.

7.2 Process followed for each check

We have created custom checks that analyze the code for various
kinds of rules. In common, all checks went through the same work
process, which is described below and summarized in Figure 4:
1. The first step is to envision the rule and express it in terms of

syntactic elements in the Java code.

2. Next the corresponding custom check is implemented using
the checkstyle Java API.

3. The custom check is then executed against the entire codebase
to generate an html report showing all violations. Sometimes
there’s only a handful, sometimes there are thousands of them.
In this step we often find false positives that take us back to
steps 1 and 2, that is, we refine the rule statement and its im-
plementation as a custom check.

4. The most laborious step is to manually fix the violations in the
codebase. In fact, this step involves a go/no-go decision with
respect to fixing the violations. In some situations, that task is
not feasible. The ideal situation is when we can take the time
to fix the violations and move on to the next step.

5. Once the number of code violations for a particular custom
check is down to zero (or a small number of violations in leg-
acy code), the check is enabled in the svn pre-commit hook.
As described in Section 6, the pre-commit hook will ensure
that new violations will not be added to the codebase from
then on.

6. Even when we can’t fix all the violations, the check can still
be enabled in the pre-commit hook. In this case, we either en-
able it only for “svn add” operations (new code) or we adapt
the check to ignore the few modules with violations (they’re
considered exceptions to the rule).
The downside of a no-go decision for fixing the violations is

step 4 is that the rule cannot be added to the pre-commit hook.
Otherwise, developers will not be able to make any changes to
classes that contain violations. Violations that stay in the codebase
tend to creep up due to copy and paste programming [11]. To
minimize this propagation of violations, our pre-commit hook
treats svn add and svn update operations differently. Thus, rules
that were not fixed in the overall codebase are still enforced for
svn add operations. However, many developers quickly found out
a trick to bypass the svn add conformance check. I will let it to the
reader to find out what that trick is.

Figure 4. Process followed for defining, implementing and ena-
bling a custom check.

158

8. Conclusions
The codebase of an active software project is like a shapeless,
living entity that is subject to frequent, localized modifications
and additions. Lack of conformance between the as-designed
architecture and the as-built architecture can easily happen and
indeed is a problem faced by many software development teams.
For many years, I’ve studied and tried out various solutions to this
problem. This paper described the first solution I see that is simple
to implement, scales up to all codebase, allows for continuous
verification, and is powerful and flexible. At TCU we have tack-
led the problem with static analysis of the code. To verify some
design constraints in the code, a simple lexical analysis would
suffice. For other constraints, contextual information (semantic
information) is needed. We have created custom checks using the
checkstyle tool, which offers a Java API that uses the Visitor
design pattern and gives us the ability to create AST-based verifi-
cations with contextual information.

Checkstyle checks also have limitations. The most inconven-
ient one is that a check logic only sees the tokens within the
source file being analyzed. A check can’t verify, for example, that
a given class is a grandchild of a specific class—it can only see
the immediate superclass because of the extends keyword pre-
sent in the type declaration. (One can use introspection to over-
come this particular limitation, but that alternative incurs other
limitations.) Checkstyle in particular is limited to parsing Java
artifacts, so custom checks cannot verify design and implementa-
tion constraints on xhtml, jsp, wsdl, xsd, or any other non Java
artifacts. Another limitation of checkstyle checks and static analy-
sis in general is that they cannot detect patterns of interaction that
rely on polymorphism, late binding, or introspection. For dynamic
interactions, we would need a profiling tool, code coverage tool,
or worse, code instrumentation. However, dynamic analysis is not
suitable for continuous verification because the environment
where the verification takes place can be set up to read source
files (static analysis), but typically does not have all the infrastruc-
ture pieces required to execute the programs.

The pairing of checkstyle checks with the pre-commit svn
hook was an important addition to the solution. The pre-commit
hook not only curbs violations in the source code repository, but
also (discreetly) names the developers who need further clarifica-
tion about architecture or implementation rules.

In addition to architecture enforcement, we have successfully
used checkstyle checks to enforce proper exception handling, use
of design patterns, security guidelines for application develop-
ment, and other good Java development practices. I invite the

reader who works with Java development to try out the approach
described in this paper.

Acknowledgments
I want to thank Jefferson da Silva and Frederico Ferreira for in-
valuable help in exploring the checkstyle API, implementing
many different custom checks, and—the hardest task—fixing
violations in the code by the thousands. I’m also grateful to
Marcelo Pacote and Fabiana Ruas for the continuous support to
this project.

References
[1] Enterprise JavaBeans 3.1, Final Release. Sun Microsystems, No-

vember 2009.
[2] Clements, P., F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.

Merson, R. Nord, and J. Stafford. Documenting Software Architec-
tures: Views and Beyond, Second Edition. Addison-Wesley, 2010.

[3] Bass, L., P. Clements, R. Kazman. Software Architecture in Practice,
Third Edition. Addison-Wesley, 2013.

[4] Garland, J., and R. Anthony. Large-Scale Software Architecture: A
Practical Guide Using UML. John Wiley & Sons, 2003.

[5] Checkstyle project: http://checkstyle.sourceforge.net/
[6] Fowler, M. Patterns of Enterprise Application Architecture. Addi-

son-Wesley, November 2002.
[7] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley,
November 1994.

[8] Merson, P. Using Aspect-Oriented Programming to Enforce Archi-
tecture. Software Engineering Institute, CMU/SEI-2007-TN-019,
September 2007.

[9] Fairbanks, G. Just Enough Software Architecture. Marshall &
Brainerd, 2010.

[10] Mallet, F. "Sonar Time Machine: replaying the past". Blog post
available at www.sonarsource.org/sonar-time-machine-replaying-
the-past. January 2009.

[11] "Copy and Paste Programming". Available at:
http://c2.com/cgi/wiki?CopyAndPasteProgramming

[12] "List of tools for static code analysis". Available at:
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis.

[13] Collins-Sussman, B., B. Fitzpatrick, and C. Pilato. "Version Control
with Subversion". Available at: http://svnbook.red-
bean.com/en/1.7/svn.reposadmin.create.html#svn.reposadmin.create.
hooks.

159

