
ATL: a QVT-like Transformation Language

Frédéric Jouault Freddy Allilaire Jean Bézivin Ivan Kurtev Patrick Valduriez

ATLAS (INRIA and LINA), Université de Nantes

{frederic.jouault,freddy.allilaire,jean.bezivin,ivan.kurtev}@univ-nantes.fr, patrick.valduriez@inria.fr

Abstract

In the context of Model Driven Engineering (MDE), models are the
main development artifacts and model transformations are among
the most important operations applied to models. A number of spe-
cialized languages have been proposed in order to specify model
transformations. The OMG has, for instance, adopted the QVT
specification. Apart from the software engineering properties of
transformation languages, the availability of high quality tool sup-
port is also of major importance for the industrial adoption and ul-
timate success of MDE. In this paper, we present ATL: a QVT-
like model transformation language and its execution environment
based on the Eclipse framework.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: specialized application languages

General Terms Languages

Keywords Model-driven engineering, model transformation, QVT,
ATL

1. Introduction

Model transformations play an important role in the Model Driven
Engineering (MDE) approach. Developing model transformation
definitions is expected to become a common task in model driven
software development. Software engineers should be supported in
performing this task by mature MDE tools and techniques in the
same way as they are currently supported by traditional IDEs, com-
pilers, and debuggers in their everyday programming work. One
direction for providing such support is to develop domain-specific
languages designed to solve common model transformation tasks.
A number of model transformation languages have thus been pro-
posed [1, 2, 3].

In this paper, we describe ATL (ATLAS Transformation Lan-
guage): a transformation language developed as a part of the
AMMA (ATLAS Model Management Architecture) platform [4].
We have built development tools for ATL on top of Eclipse. These
tools, along with documentation documents and examples are avail-
able in the ATL Eclipse/GMT subproject [5].

The paper is organized as follows. Section 2 presents ATL.
Section 3 describes the available tools and Section 4 concludes.

Copyright is held by the author/owner(s).

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.

ACM 1-59593-491-X/06/0010.

Figure 1. ATL launch configuration

2. ATL

ATL is applied in the context of the transformation pattern shown
in the upper part of Figure 1. In this pattern, a source model Ma is
transformed into a target model Mb according to a transformation
definition mma2mmb.atl written in the ATL language. These three
elements are models respectively conforming to the MMa, MMb,
and ATL metamodels. All metamodels conform to the metameta-
model (MOF in the context of OMG standards). Source and target
models and metamodels may be expressed in XMI. Metamodels
can also use the more convenient KM3 notation [6].

The transformation scenarios supported by QVT [2] (Query /
View / Transformation) are also supported by ATL [7]. Moreover,
a large part of QVT requirements are taken into account by ATL,
such as compatibility with MOF [8], XMI, and the use of OCL [9]
for navigation. Therefore, ATL is a QVT-like language.

ATL contains a mixture of declarative and imperative con-
structs. We encourage a declarative style of specifying transforma-
tions. However, developers may resort to the imperative features
if necessary. A more detailed presentation of the language and ex-
amples can be found in [10] and [5]. A more detailed and formal
specification of the ATL semantics can be found in [11].

719



Figure 2. ATL editor and debugger screenshot

3. ATL Development Tools

ATL Development Tools (ADT) is developed under the ATL
Eclipse/GMT subproject [5]. ADT is composed of the ATL trans-
formation engine and the ATL Integrated Development Environ-
ment (IDE): an editor, a compiler and a debugger.

3.1 Engine

The ATL engine is responsible for dealing with core ATL tasks:
compilation and execution. ATL transformations are compiled to
programs in specialized byte-code. Byte-code is executed by the
ATL Virtual Machine (VM). The VM is specialized in handling
models and provides a set of instructions for model manipulation.
The VM may run on top of various model management systems
such as the Eclipse Modeling Framework (EMF) [12].

3.2 Editing

The ATL editor supports syntax highlighting, error reporting, and
outline view (a tree-based representation of the ATL program). The
bottom left-hand part of Figure 2 shows this editor. The bottom
right-hand part shows the corresponding outline.

3.3 Building and Launching

The ATL compiler is automatically called for each ATL file in
each ATL project during the Eclipse build process. By default, this
process is triggered when a file is modified.

Executing an ATL transformation requires the declared source
and target models and metamodels to be bound to actual models.
Figure 1 gives a screenshot of ATL launch configuration wizard
and shows the correspondences between the user interface and the
operational context of the transformation. The four top arrows map
models and metamodels to their declarations whereas the bottom
arrows map the declarations to the corresponding files.

3.4 Debugging

ATL transformations may be debugged using the same configura-
tion used for launching. The only difference is that we now use
the Debug button (see Figure 2) instead of Launch. Transforma-
tions can be executed step-by-step or run normally. Execution stops
when an error occurs or a breakpoint is reached. The current context
may be analyzed using the variable view (see the top right part of
Figure 2). It enables simple navigation in source and target models
from the current context (rule or helper).

4. Conclusions

In this paper we presented ATL: a hybrid model transformation
language developed as a part of AMMA. ATL is supported by a
set of development tools built on top of the Eclipse environment:
a compiler, a virtual machine, an editor, and a debugger. ATL
allows both imperative and declarative approaches to be used in
transformation definitions depending on the problem at hand.

ATL is currently used or evaluated by more than 100 sites, aca-
demic and industrial. There is an initial library of ATL transforma-
tions and some documentation (a user manual, an installation guide,
and a starter guide) available in open source from the GMT Eclipse
project. The current state of ATL tools already allows solving non-
trivial problems. This is demonstrated by the increasing number of
implemented examples and the interest shown by the rapidly grow-
ing ATL user community.

Acknowledgments

This work is partially supported by ModelWare, IST European
project 511731 and by System@tic Paris-region, the french cluster
in complex system design and management.

References

[1] Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo,
A.: The Design of a Language for Model Transformations. Journal
of Software and System Modeling (2005) in review.

[2] OMG: MOF 2.0 Query / Views / Transformations RFP, OMG
Document ad/2002-04-10. (2002)

[3] Varró, D., Varró, G., Pataricza, A.: Designing the automatic
transformation of visual languages (2002)

[4] Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the
Large and Modeling in the Small. In Uwe Amann, Mehmet Aksit,
A.R., ed.: Proceedings of the European MDA Workshops: Founda-
tions and Applications, MDAFA 2003 and MDAFA 2004, LNCS
3599, Springer-Verlag GmbH (2005) 33–46

[5] ATLAS team: ATLAS Transformation Language (ATL) Home page,
http://www.eclipse.org/gmt/atl/. (2006)

[6] Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification. In:
Proceedings of 8th IFIP International Conference on Formal Methods
for Open Object-Based Distributed Systems, LNCS 4037, Bologna,
Italy (2006) 171–185

[7] Jouault, F., Kurtev, I.: On the Architectural Alignment of ATL and
QVT. In: Proceedings of ACM Symposium on Applied Computing
(SAC 06), model transformation track, Dijon, Bourgogne, France
(2006)

[8] OMG: Meta Object Facility (MOF) 2.0 Core Specification, OMG
Document formal/2006-01-01. (2006)

[9] OMG: UML OCL 2.0 Specification, OMG Document ptc/2003-10-
14. (2003)

[10] Jouault, F., Kurtev, I.: Transforming Models with ATL. In Bruel, J.M.,
ed.: Satellite Events at the MoDELS 2005 Conference: MoDELS
2005 International Workshops OCLWS, MoDeVA, MARTES, AOM,
MTiP, WiSME, MODAUI, NfC, MDD, WUsCAM, Montego Bay,
Jamaica, October 2-7, 2005, Revised Selected Papers, LNCS 3844,
Springer Berlin / Heidelberg (2006) 128–138

[11] Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.:
Extending AMMA for Supporting Dynamic Semantics Specifications
of DSLs. Technical Report 06.02, LINA (2006)

[12] Budinsky, F., Steinberg, D., Ellersick, R., Merks, E., Brodsky, S.A.,
Grose, T.J.: Eclipse Modeling Framework. Addison Wesley (2003)

720

http://www.eclipse.org/gmt/atl/

	1 Introduction
	2 ATL
	3 ATL Development Tools
	3.1 Engine
	3.2 Editing
	3.3 Building and Launching
	3.4 Debugging

	4 Conclusions

