Concurrent Object-Oriented Programming with Agents

Alessandro Ricci

University of Bologna, Italy
a.ricci@unibo.it

Abstract

ALOO is a novel approach to Concurrent Object-Oriented Pro-
gramming, integrating plain old objects with concurrency through
the adoption of agent-oriented first-class abstractions.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.1.3 [Programming
Techniques]: Concurrent Programming

Keywords Concurrent Object-Oriented Programming; Agents

1. Introduction

The conceptual integration of OOP with concurrency [2] — includ-
ing asynchronous and event-driven programming — is still an issue,
both from a conceptual and practical point of view. Proposals in the
state-of-the-art can be broadly classified in two opposite families.
On one extreme we have those proposals that keep essentially the
good old “mainstream” OOP with a support for multi-threading and
add ad hoc abstractions and mechanisms to simplify multi-threaded
and asynchronous programming. On the other extreme we have
proposals that revise the foundations, injecting concurrency at the
core of the object model. A main example is given by actors [1] and
related approaches like concurrent/active objects [6]. Each family
has some pros and cons and this leads developers to mix different
concurrent models in practice, for instance integrating actors, pas-
sive objects, and threads [5]. This makes programming quite tricky
and often leads to solutions with a poor design.

In this work we introduce a novel approach to Concurrent
Object-Oriented Programming based on a simple conceptual model
integrating plain old objects with agents, introduced as first-class
abstraction for modeling the active parts of the program. The model
is implemented in a language/platform called ALOO". and is based
on previous work done in the context of the simpAL project [3]—
where agent-oriented abstractions were introduced but without be-
ing integrated with objects. The ALOO name is the short version
of simpAL-OO.

A program (system) in ALOO is modelled as an organization of
task-driven autonomous agents that work together inside a shared

1'On ALOO web site (http://aloo.sourceforge.net) the interested
readers can find a technical report providing details about the language, as
well as a first prototype of the platform with simple examples.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s). Copyright is held by the owner/author(s).

SPLASH 13, October 26-31, 2013, Indianapolis, Indiana, USA.
ACM 978-1-4503-1995-9/13/10.
http://dx.doi.org/10.1145/2508075.2508095

89

Andrea Santi

University of Bologna, Italy
a.santi@unibo.it

environment represented by a set of objects, that they coopera-
tively use, observe, create. The organization abstraction is used to
explicitly define a collection of agents and objects, structured in
workspaces. Workspaces are logical containers defining a notion
of locality—in the case of organizations distributed over multiple
network nodes. In the simple example shown in Figure 1, the pro-
gram is given by a couple of Worker agents working inside a main
workspace, doing cooperatively a Counting task, sharing a Count
object. Classes implementing the interfaces are not reported.

The background metaphor underlying the approach is given by
human organizations where people (agents) work cooperatively by
exploiting resources and tools (objects), representing either instru-
ments or the results of their job.

On the one side, the approach shares some key features of
the actor model—decoupling of logical and physical concurrency,
strong encapsulation (of control) and modularity, abstraction level
avoiding locks and related low-level mechanisms, event-driven pro-
gramming without inversion of control. On the other side, it allows
for also exploiting features such as safe (without races) sharing
and use of passive objects, synchronous communication and coor-
dination without deadlocks due to wrong use of locks. Besides, the
agent model natively extends actors reactivity with a form of pro-
activity, which allows us to describe and more easily implement
goal/task-driven behaviours.

2. Agents and Objects in ALOO

Differently from threads and analogously to actors, agents in
ALOO are logical concurrent entities, so you can have thousands
of agents running on top of a few number of physical threads/pro-
cesses. Like actors, agents encapsulate a state, a behaviour and the
logical thread of control of such a behavior. Differently from actors,
agents are not only reactive but also pro-active, in the sense that
they are spawned with some explicit task to-do (e.g. a Counting-
Task in the example) — that could be shared/cooperative, not only
individual. As soon as they complete their task, they terminate—
so no garbage collection is needed. The type of an agent is called
role (e.g. Worker in the example), and allows to specify the list of
tasks that agents that declare to play that role must be capable to
accomplish.

The behaviour of an agent is governed by a control loop [4], re-
peatedly selecting and executing actions to accomplish its task(s),
possibly reacting to relevant events perceived from the environment
(the objects). The programmer encodes the practical knowledge to
accomplish tasks into plans, collected in scripts—that are inter-
preted and executed by the agent. Plans are similar to procedures,
with the important difference that they are not a simple sequence
of statements but a collection of action rules, each one specifying
when (condition, event) execute some action—that can be a further
block of action rules. Inside a plan the this-task variable refers to
the actual task (object) to accomplish, while this-env refers to the
object storing information about the system environment (including
e.g. standard output, referred by the stdout observable property).



interface Count {
count: int

inc() }
interface CountingTask { tool: Count }
role Worker { tasks: CountingTask }

agent-script WorkerScript plays Worker {
plan-for CountingTask {
jobDone: boolean = false
observing: this-task.tool as: t {
#completed-when: jobDone
/* a block repeating a sequence of actions */
{ #to-be-repeated
this-env.stdout.println(msg:
/* reactions */
every-time changed: t.count as: v => {
this-env.stdout.println(msg: "new value:
if (v > 1000){ jobDone = true }}

..working.."); t.inc()}

"+v)

};
this-env.stdout.println(msg: "job done.") }}

org-script SimpleExample {
workspace main {
c: Count <= new-obj CountImpl(count: 0)
t: CountingTask <= new-obj CountingTaskImpl(tool: c)
al: Worker <= new-agent WorkerScript task: t
a2: Worker <= new-agent WorkerScript task: t }}

Figure 1. A program example in ALOO.

Such a model has been devised so as to allow for effectively
implementing behaviours composed by structured workflows mix-
ing actions (sequence, parallel,..) and reactions to events [4], with-
out incurring problems like inversion of control or asynchronous
spaghetti. In the example, the plan for the CountingTask in Work-
erScript accounts for repeatedly incrementing the counter, logging
some msg on standard output (pro-active part); besides, every time
a new value of the count observable property of the counter is per-
ceived, the agent reacts by suspending what is doing (interrupt-like
behaviour), in order to print a message and do some checks for
eventually terminating the job. We believe that the capability of
easily expressing behavior integrating pro-activity and re-activity
is a key distinguishing feature of agents with respect to actors, ac-
tive objects and related abstractions existing in literature.

Objects in ALOO are passive entities, analogously to plain old
objects, with their own identity and independent existence from
agents. They encapsulate set of actions (analogous to methods) that
agents may invoke (e.g. inc() in the example) and a set of variables
called observable properties (e.g. count, tool), both part of the
object interface (i.e. type), representing object observable state that
agents can perceive in an event-driven fashion. Besides, objects
can have an inner, not observable state. Also tasks at runtime are
uniformly represented by objects with a proper interface.

3. Use, Observation and Safe Sharing

Conceptually, agent-object interaction is not based on message
passing (like in actors), neither on procedure call — but on action
invocation (by agents on objects) and perception of asynchronous
events generated by changes to objects’ observable state (see Fig-
ure 2). Agents interaction is always mediated by objects—used and
observed: direct communication among agents can be modeled on
top, using suitably designed communication objects like message
boxes, channels, blackboards and so on.

Actions executed inside an object can change its (observable or
not) state and possibly invoke other actions over other objects. To
make this interaction model effective, the object model has been
devised so as to enforce safe sharing, so that multiple agents can
work concurrently on the same shared objects without incurring

90

tasks/plans
in exec
SN

S
obs prop N
read access “\

tasks/plans
in exec

o

OBJECT(S)

observable events

Event queue

Figure 2. Agents and objects in ALOO

races. Similarly to monitors, inside an object, only one action can
be in execution at a time and the effect of action execution on the
object is made observable only when the action has completed.
Differently from processes with monitors, the interaction model
does not imply any (logical/physical) control coupling between
agents and objects. Action completion/failure can be perceived by
the agent as an asynchronous event, fetched by the agent control
loop.

Besides actions, a main part of the interaction model is given by
observation, which is natively supported by the model: an agent can
dynamically decide to observe some group of objects (observing:
construct) and, consequently, it automatically perceives an asyn-
chronous event for every atomic change of the observable state of
those objects, with guarantees about the ordering of events.

4. The Task Framework

Tasks are a key concept of the approach, founding agents’ pro-
activity and representing an important conceptual bridge to the
design level. Besides the enabling mechanisms for task handling
and management provided directly by the language, a Task Frame-
work (TF) is provided on top of it, including a domain specific lan-
guage to ease the description of complex tasks. The objective of the
framework is to ease the definition of complex cooperative tasks,
implementing a direct support for patterns of task organization and
coordination which are recurrent in concurrent programming.

References

[1] G. Agha. Concurrent object-oriented programming. Commun. ACM,
33(9):125-141, Sept. 1990.

[2] J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and distribution
in object-oriented programming. ACM Comput. Surv., 30(3):291-329,
1998.

[3] A. Ricci and A. Santi. From actors to agent-oriented programming
abstractions in simpAL. In Proc. of SPLASH ’12, pages 73-74, New
York, NY, USA, 2012. ACM.

[4] A. Ricci and A. Santi. Programming abstractions for integrating au-
tonomous and reactive behaviors: an agent-oriented approach. In Proc.
of AGERE!’12, pages 83-94, New York, NY, USA, 2012. ACM.

[5] S. Tasharofi, P. Dinges, and R. Johnson. Why do scala developers
mix the actor model with other concurrency models? In ECOOP’13,
Montpellier, France, July 1-6, 2013, 2013.

[6] A.Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent
programming in ABCL/1. In N. K. Meyrowitz, editor, OOPSLA, pages
258-268. ACM, 1986.





