

An Extensible Framework for Tracing Model Evolution in SOA

Solution Design

Renuka Sindhgatta

IBM India Research Laboratory

Bangalore, India

renuka.sr@in.ibm.com

Bikram Sengupta

IBM India Research Laboratory

Bangalore, India

bsengupt@in.ibm.com

Abstract

Existing tools for model-driven development support auto-

mated change management across predefined models with

precisely known dependencies. These tools cannot be easily

applied to scenarios where we have a diverse set of models

and relationships, and where human judgment and impact

analysis are critical to introducing and managing changes.

Such scenarios arise in model-based development of service

oriented architectures (SOA), where a plethora of high-level

models representing different aspects of the business (re-

quirements, processes, data) need to be translated into service

models, and changes across these models need to be carefully

analyzed and propagated. To support the process of model

evolution, we present an extensible framework that can auto-

matically identify possible changes in any MOF-compliant

model. Changes across different model types can be easily

related through a user interface and via rules that are pro-

grammed at specified plug-in points. At runtime, when an

instance of a model is changed, the framework performs fine-

grained analysis to identify impacted models and elements

therein. It also allows analysts to selectively apply or reject

changes based on the specific context and summarizes the

incremental impact on downstream elements as choices are

made. We share our experience in using our framework dur-

ing the design of a SOA-based system that underwent several

changes in business models, necessitating changes in the as-

sociated service design.

Categories and Subject Descriptors D.2.2 [Software En-

gineering]: Design Tools and Techniques

General Terms Documentation, Design, Verification.

Keywords Model Driven Development; Model Transforma-

tion, Change Impact; Business Process; Service Design

1. Introduction

Service Oriented Architecture (SOA) helps in realizing busi-

ness processes by assembling a set of services, where-in each

service provides the functionality required for accomplishing

a business task. SOA development methods [1, 2] propose a

set of steps that help in identifying, specifying and realizing

services. A Model Driven Development (MDD) approach

for developing SOA solutions provides a common platform

(based on conceptual models) for business analysts and ap-

plication architects to exchange views and share understand-

ing. High-level models representing the business domain are

translated into a service model, which in turn is refined into

lower-level design models (class diagrams, sequence dia-

grams etc) followed by implementation. A set of dependent

models thus need to evolve through the development process.

 At IBM Research, we are actively engaged in building

tools and methodologies for enabling service-orientation. Our

work is informed by the experiences we gather while working

with IBM software architects on field engagements related to

SOA. Such engagements typically begin with detailed model-

ing of the business domain, including the competencies and

functions, business requirements, processes and enterprise

information models. As these models evolve, abstract service

specifications are derived from them, and are then refined

over a period of time with more detailed specifications of

operations, service messages and components. Frequently,

these activities proceed hand-in-hand, with periodic sync-ing

on major releases, when all changes to the various business

models since the last release need to be consistently propa-

gated to the service models. Once the business and service

models start to stabilize (typically after 4-5 iterations), work

on detailed design begins. While the volume of business-

driven changes start to diminish thereafter, the impact of any

change (e.g. necessitated by a new requirement) is signifi-

cant and can cause major rework of the stable service mod-

els, and the design elements derived from them, thereby

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA.
Copyright © 2009 ACM 978-1-60558-768-4/09/10…$10.00.

647

necessitating careful analysis when introducing such a

change.

Analyzing and propagating change across the many in-

ter-dependent models spread over multiple layers, is thus a

major activity in any MDD-based development of SOA. At

the detailed design level, inter-model relationships are well-

understood and there is sufficient tool-support for auto-

mated change management [14], and indeed, much of prior

research has also focused on the same [4, 5]. For example,

class diagrams and sequence diagrams are usually co-

developed on a single tool, with sequence diagram lifelines

and messages being created directly from classes and meth-

ods therein – thus a change in a method signature directly

impacts the corresponding message in a sequence diagram.

However, at the business and service layers, we discovered

critical gaps in available tool support for change manage-

ment. Different aspects of the business e.g. business proc-

esses, use cases, data etc are often modeled by different

roles (business analysts, information architects, IT archi-

tects) using specialized tools [15, 16, 17] that may not inte-

grate seamlessly with each other or with tools used for

service and lower-level design. Some tools [13, 14] do al-

low business and service models to be created, or imported

from other tools, but since these models are conceptually

different, they become silo-ed with distinct modeling pro-

files created for them, with at best some coarse traceability

links across the models and no native tool support for fine-

grained change management or impact analysis. Model

Transformations [6, 7] automatically transform a target

model when a source model is changed and typically work

well across low-level design and implementation elements

with very precise inter-dependencies. However, they do not

meet the needs for change propagation across more abstract

business and service models, where human judgment is

often necessary to select the right change alternative based

on the business context and adopted SOA methodology,

and impact analysis is critical prior to taking a decision to

introduce a change.

These factors pose significant challenges for SOA prac-

titioners, particularly because the number of business and

service model elements can be very large in practice. For

example, during our engagements, we have come across

systems where process models, used as a primary input for

identifying key services and their specifications, have over

50 processes that are progressively refined. Each such

process consists of several tasks that consume or create data

entities relevant to the enterprise; the sequence of tasks or

the data can undergo changes in response to new business

requirements. In the absence of adequate tool support, busi-

ness analysts and architects use their domain understanding

to analyze and manually propagate all such business

changes downstream, but given the size of most of these

models, this activity is labor-intensive and error-prone.

Subsequently, substantial investment has to be made in

(manual) model validation activities, often carried out by a

separate quality team, to ensure that all the models are con-

sistent. Needless to say, the overall approach is highly inef-

ficient. Thus, change management across the business-

service layers in SOA development calls for a mechanism

that (i) supports more flexibility in adapting to diverse

business and service models and their relationships, (ii)

provides greater automation for fine-grained change

analysis and propagation across the models, while (iii)

allows interactivity in support of human judgment and in-

cremental impact analysis.

 Towards that end, we present a change management

framework that addresses these challenges and has been

motivated by our experiences in model-driven development

of SOA solutions as described above. An overview of some

of these models, and change management scenarios across

them are presented in Section 2 to set the context. The key

novelties of the framework are its flexibility and extensibil-

ity. As long as the models imported into the framework

adhere to Meta-Object Facility (MOF) compliant meta-

models [9], it can automatically generate all possible types

of change the model elements can undergo, and supports an

intuitive user interface using which change types across

different categories of models may be linked. This flexibil-

ity is an important feature as the type of business models

from which service models are derived may vary according

to the methodology employed or the specific engagement

context, and the platform should allow new categories of

models to be incorporated when needed. At runtime, when

an instance of a model is changed, the tool performs fine-

grained analysis to identify impacted elements. Rules that

help identify these elements are programmable, and can be

incorporated into the framework through defined plug-in

points. The framework also allows analysts to selectively

apply or reject changes based on the context and summa-

rizes the incremental impact on downstream elements as

such choices are made. Technical details about the frame-

work are provided in Section 3. We have instantiated the

framework with some of the models and rules we have typi-

cally seen being used in SOA engagements and used it to

manage the evolution of a SOA system that underwent sev-

eral changes in the business process models, requiring

changes in the associated service design. This case study is

reported in Section 4. Section 5 presents some of the les-

sons learnt. Related work is discussed in Section 6, while

Section 7 concludes the paper.

2. SOA Modeling Context

We illustrate the SOA modeling context with a widely used

method for deriving services – Business Process Decompo-

sition. We explain how the business and service entities, as

648

well as detailed design elements, are modeled and related.

Finally, we discuss limitations in existing tools when it

comes to managing changes across these models.

2.1 Business Modeling

A business process is a repeatable sequence of activities for

delivering a service or a product to a stakeholder. A meta-

model for a business process is shown is Figure 1. A Proc-

ess consists of Node, that could be a Task or ControlNode,

a NodeEdge and (sub)Process. Each Node has Input and

Output, the NodeEdge representing the flow of data be-

tween a source Node and a target Node. Data is modeled as

a BusinessEntity, which represents a business object rele-

vant in the given domain. A business entity is refined by

linking it to an entity in the logical data model (information

model). An entity contains a set of typed attributes, which

may include other entities and also has relations relevant to

the enterprise undergoing SOA transformation. Note that a

business process is likely to contain organization roles and

events but for simplicity, we have not included them in the

meta-model. Similarly, the logical data meta-model is also

condensed highlighting only the key elements.

Figure 2 shows the example of a business process that

provides an insurance quote for a vehicle. The figure de-

picts the steps (tasks) involved in authenticating the user,

validating the policy information entered by the user and

verifying if the risk can be accepted before deciding on

issuing the quote to the user or notifying of rejecting the

policy.

Note that apart from process and information models,

there are other business models that are often useful in de-

fining services. These models depend on the method used

for service identification. For example, use cases models

may be used to represent business functional requirements

that serve as a source for service identification. Again, there

are models [19] for representing the structure of the busi-

ness in terms of domains, competencies and functional ar-

eas, which may be used to group together services once

they are derived. For brevity, we do not provide details of

these, but focus mostly on process and information models

in this paper.

2.2 Service Modeling and Detailed Design

 The business models provide the main inputs for the Ser-

vice Model. A meta-model for the services layer is shown

in figure 3. The meta-model comprises of a CandidateSer-

vice indicating a functionality that is a candidate for being

realized as a Service. A CandidateService that fulfills a Ser-

viceCriterion is identified as a Service. A Service com-

prises of ServiceOperation with Input and Output

Messages. A set of Services is realized by a ServiceCompo-

nent. A CandidateService also can be realized by a Func-

tionalComponent (e.g. Java components). The

ServiceComponent here refers to the Component defined in

the Service Component Architecture SCA standard [11].

 A subset of the Service model for the example process

model in Figure 2, is given in Figure 4. All the Tasks of the

process model are initially defined as CandidateServices in

the Service Model. A Service criterion is applied on each

of the candidate services and a candidate service is either

defined as a Service or realized as a Functional Component.

In the example, the CandidateServices RetrieveLocationDe-

tails, RetrieveCreditHistoryDetails and CalculatePremium

are identified as Service and the other CandidateServices

are implemented as Functional components. The Calculate-

Premium Service is realized by the PolicyManager Ser-

Business Process Metamodel

Logical Data Metamodel

Business Process Metamodel

Logical Data Metamodel

Figure 1. Business Process and Logical Data Metamodel

Figure 2. Example Business Process Model

649

viceComponent. Policy and User are the data (messages)

that are used by the operations of the service elements.

A service is realized by a ServiceComponent through a

set of classes. For each ServiceOperation there is an Inter-

action/Sequence diagram created detailing the interaction

between the classes. Figure 4 depicts the class diagram for

the service component PolicyManager. Since class dia-

grams and sequence diagrams are part of the well-known

UML standard, we do not provide their detailed description

here.

2.3 Managing Changes across the Layers

There is significant relationship between the business, ser-

vice and detailed design layer entities that needs to be un-

derstood and used as the basis for change management

across these layers. Usually, Tasks from the business proc-

ess models form good candidates for services. Service op-

erations are derived by identifying the functionality of the

task the service is associated with. The business entities are

transformed into service messages: the input and output

business entities of the task become the input and output

parameters of the service operation. Sometimes, however, a

newly added business entity in the information model is

realized more naturally as a (information) service – a ser-

vice providing the basic CRUD (create, read, update, de-

lete) operations on the entity. Some types of services are

derived by analyzing business use case models such as ser-

vices providing process performance reports, audit reports.

These are often termed as visibility services with use cases

as their primary inputs. A set of service components usually

realizes a business functional area, and the component

boundaries may change on business reorganization. Control

nodes (Fork, Join) in the process model are used in the

definition of service compositions and define BPEL [20]

when translated to code. Similar to the Service meta-model,

a service composition meta-model containing service flow,

operations and messages is defined and semantically linked

to the process model. Thus a change in the process model

control flow impacts the associated service composition

model and derived BPEL code. Finally, a change in the

Service model may necessitate changes in the detailed de-

sign elements. For example, a change in one of the services

realized by a Service Component may impact the class dia-

grams implementing the component. Similarly, a service

operation change may lead to a change in an associated

interaction diagram.

2.4 Limitations in Current Tools

 Given the complex dependencies between the business,

service and design models, any change originating in the

business layer needs to be carefully analyzed and propa-

gated, so that all dependent models are updated in a consis-

tent manner. For example, let us suppose that in the

Insurance Quote Issue process model (Figure. 2), there is a

a) Service Model

b) Class Diagram

a) Service Model

b) Class Diagram

Figure 3. Service Metamodel

Figure 4. Example Service Model and Service Design

650

new requirement that mandates the processing of previous

claim history. There is a new specification of Premium that

needs to be provided by CalculatePremium task. There is

also the need to send a quotation document that contains

details of the quote in a given format. The changes made by

the business analyst are:

• Add new task RetrieveClaimHistory to retrieve previous

claim after RecordPolicyDetails and in parallel to Re-

triveCreditHistoryDetails

• Create a new BusinessEntity named QuotationDocument

that contains details of the quote

• Create a new BusinessEntity named Premium

• Change the Output of CalculatePremium task that pro-

vide Premium as the output

• Change in the input and output of the task IssueQuota-

tion that takes in the Premium as input and provides

QuotationDocument as output

To address the above business changes, the architect

would have to analyze and create a new candidate service to

retrieve claim history, create new service messages corre-

sponding to QuotationDocument and Premium business

entities, and modify the input/output messages for services

that correspond to CalculatePremium and IssueQuotation

tasks. Moreover, if Quote information is used by several

other Insurance applications, then it could potentially be

used as an Information Service that other applications

would use for accessing or updating – this is a decision the

architect needs to take when introducing the change. Fi-

nally, for each change made at the service layer, the corre-

sponding changes at the detailed design layer would need to

be carried out.

Clearly, this is a non-trivial task and if carried out manu-

ally, the process is bound to become very laborious and

error prone. Unfortunately, current tool support for analyz-

ing and propagating changes across the different modeling

layers in SOA design is fairly limited. Some tools [13, 14]

can coarsely compare business/service model versions and

detect that changes have occurred, but they are unable to

filter out the important changes that will impact related

models, classify changes according to types, or suggest

consequent changes. These tools provide much more intel-

ligent support for change management across class dia-

grams, sequence diagrams etc. within the design layer, but

for other models, what they provide analysts are the results

of a basic “diff” operation across models, including changes

in documentation, package restructuring etc., most of which

will not have a bearing on design of the services. The im-

plicit semantic relationship between the business, service

and design layer models as explained above, cannot be eas-

ily captured using these tools. It is left to the analysts to sift

through the results of model comparison, detect important

changes and manually propagate the changes to impacted

elements. Note that some of the tools support automated

model-to-model transformation techniques (e.g. MOF 2.0

Query/View/Transformation (QVT) [6]) for change propa-

gation. However, these techniques do not provide opportu-

nities for impact analysis prior to making a change, or allow

user judgment in selectively applying/rejecting change al-

ternatives at runtime. Hence they work well only for de-

tailed design models with one-to-one mapping between

elements, where the focus is mainly on automation and

there is no need for human judgment and analysis

3. An Extensible Framework for Tracing
Changes across Models

We will now outline a framework for tracing changes

across different types of models that addresses many of the

challenges discussed above. Our approach has been moti-

vated by the following design considerations. First, the

framework needs to be extensible; it should not be hard-

wired for a fixed set of model types, but should allow users

to incorporate new types of models and dependencies with

relative ease. Second, change detection and propagation

within the framework should be efficient; the impact of a

change can be detected or analyzed at multiple levels, but

these should be grouped together with facilities for drill-

down for finer-grained analysis as needed. Finally, the

framework should be interactive; at run-time, users should

have the option to selectively apply or reject changes based

on the context, and view the incremental impact of those

decisions on downstream artifacts.

 The overall process of tracing changes across multiple

types of models is supported within the framework as a

sequence of two steps – Specifying Changes and Managing

Changes. This is shown in Figure 5. The steps for specify-

ing changes are

• Given a meta-model, atomic change elements represent-

ing all possible change types are automatically deter-

mined.

UML Profile
(Mprofile)

Change Specification

Change Elements
Definition

Change Actions

Minst Model
Comparison
Framework

Change Analysis

Minst’

Change
Elements

User

Managing Changes

UML Profile
(Mprofile)

Change Specification

Change Elements
Definition

Change Actions

Minst Model
Comparison
Framework

Change Analysis

Minst’

Change
Elements

User

Managing Changes

Figure 5. Change Analysis and Propagation Framework

651

• Hierarchical relationship between atomic change ele-

ments are automatically identified to help analyze

changes at multiple levels

• Change actions linking change elements of one meta-

model to the change elements of a dependent meta-

model are defined by a user through an interface, and

through localized programming of rules at defined ex-

tension points.

The above steps can be performed in an “offline” mode,

based only on the meta-models underlying the model ele-

ments of interest. At runtime, when the actual model ele-

ments undergo changes, the steps involved in managing the

changes are

• Automatic comparison of two versions of a model and

classification of the changes into atomic changes by

identifying the change elements

• Identification of the change impacts on the dependent

models using change actions.

• Upon selection of applicable change elements by the

user, incremental analysis of the impact of the change

elements on dependent model elements.

We will now explain the above steps in more detail.

3.1 Specifying Changes

 This represents the pre-processing steps that needs to be

done only once per meta-model (to identify and relate

change elements within the meta-model) and once for every

pair of dependent meta-models (to relate change elements

across meta-models and generate change actions).

3.1.1 Identify Change Elements for a Meta-Model

Given a meta-model, we define all changes to the meta-

model instance as ChangeElement. A change element ce,

when applied on an instance of the model element m c M

(meta-model instance) results in m’. For each change ele-

ment, a change parameter is defined. As each change ele-

ment is associated to the attribute of the model element that

changes, the attribute forms change parameter p such that

ce (m, p) = m’. For example a change element ‘Change-

TaskName’ referring to a change in the name of a Task,

would require a change parameter – the string value for

changing the name.

3.1.2 Identify Dependencies between Change Elements

Change Elements within a meta-model instance have de-

pendencies. Identifying these dependencies helps in deter-

mining the order in which the change elements can be

applied on a Model M to get the version M’. The depend-

encies may be automatically arrived at using the dependen-

cies of the model elements. A subset of dependencies

between change elements for the business process meta-

model (Figure. 1) are depicted in Figure 6. Each leaf node

represents a change to the corresponding model element

attribute or property. The non-terminal nodes represent

change elements that occur only when the leaf node change

elements are present e.g. ‘ChangedProcessModel’ \

‘ChangedTask’ \ ‘AddTaskInput’ i.e. a change in a busi-

ness process may be induced by a change in a constituent

task, which in turn may be caused by the addition of a new

input to the task. Thus the impact of a change may be con-

sidered at multiple levels of granularity.

3.1.3 Define Change Actions Representing Impact of
Changes

A change action defines the impact of a change element on

other model elements – either in the same model or a de-

Change Process Model

Add Process

Delete Process

Change Process

Add Process

Add Node

Change NodeEdge

Change Process Name

Change Task

Change Task Name

Add Task Input

Delete Task Input

Change Task Input

Add Task Output

Delete Task Output

Change Task Output

Change NodeEdge

Add Source Node

Delete Source Node

Change Source Node

Add Target Node

Delete Target Node

Update Target Node

Change BusinessEntity

Add Attribute

Delete Attribute

Change Attribute

Change BusinessEntity

Change Process

Add BusinessEntity

Delete BusinessEntity

Delete Process

Change Process

Delete Node

Change Node

Add NodeEdge

Delete NodeEdge

Change Node

Change BusinessEntity

Change Name

Change Type

Change Name

Change Process Model

Add Process

Delete Process

Change Process

Add Process

Add Node

Change NodeEdge

Change Process Name

Change Task

Change Task Name

Add Task Input

Delete Task Input

Change Task Input

Add Task Output

Delete Task Output

Change Task Output

Change NodeEdge

Add Source Node

Delete Source Node

Change Source Node

Add Target Node

Delete Target Node

Update Target Node

Change BusinessEntity

Add Attribute

Delete Attribute

Change Attribute

Change BusinessEntity

Change Process

Add BusinessEntity

Delete BusinessEntity

Delete Process

Change Process

Delete Node

Change Node

Add NodeEdge

Delete NodeEdge

Change Node

Change BusinessEntity

Change Name

Change Type

Change Name

1. Name=AddBusinesEntityAction
Input Change Element = AddBusinessEntity
pre-condition = None
Output Change Element = AddCandidateService, AddServiceMes-
sage

2. Name=ChangeInputOfTask
Input Change Element = ChangeTaskInput
Output Change Element = ChangeService, ChangeServiceOperation,
ChangeInputParameter
pre-condition =
CandidateService isLinkedTo Task AND (Input BusinessEntity is-
LinkedTo ServiceMessage)

3. Name=Change of Service Operation
Input Change Element = ChangeServiceOperation
Output Change Element= Change Lifeline, ChangeMes-
sage(InteractionDiagram)
pre-condition = Service isLinkedTo Lifeline AND ServiceOperation
isLinkedTo Message(InteractionDiagram)

Figure 6. Change Elements and Dependencies for Busi-

ness Process Metamodel

Figure 7. Example Change Actions

652

pendent model. A change action takes a set of input change

elements of a model, validates the input change elements

against a set of pre-conditions and generates a set of associ-

ated output change elements. A change action cax can be

represented as an inference rule that verifies a set of (pre-)

conditions on change elements in the source model

(ces1,…cesn) and infers the resulting change elements in the

target model (cet1, …cetm).

tmtt

snsnssss

x
cecece

cecondcecondcecond
ca

,...,

},...{}{,}{

21

2211
=

Example change actions between process, service and de-

sign model change elements are shown in Figure 7. A

change action could result in one or more output change

elements provided the stated pre-conditions are met.

3.2 Managing Changes

Once the change elements and change actions are specified,

the next step is to detect, analyze and propagate changes

across the models. These steps are explained next.

3.2.1 Detect Changes in a Model Instance

Given a model and its modified version, the changes are

detected by comparing them. The basic support for this is

available in most modeling tools such as Rational Software

Architect [14]. However, the detected changes need to be

interpreted and classified into atomic change elements;

changes that do not relate to defined change elements need

not be considered for analysis and propagation. The com-

posite change elements are built using the dependencies

between the atomic change elements.

3.2.2 Identify Change Actions and Analyze Impact

Given the list of change elements, the applicable list of

change actions is identified. The algorithm works such that

the array of change elements CE containing the source

model changes is retrieved. All the possible change actions

CA containing change elements of CE as input elements are

retrieved. For each change action, the pre-conditions are

verified. The execution requires extracting the target ele-

ment and change parameters for creating the output change

element. It is possible to transitively study the impact of the

newly created output change elements. In such case, the

algorithm is re-run till there are no more change elements

added to CE. It may also be required for the user to do an

incremental analysis, in which case, only based on the

user’s input, further change actions are executed. This oc-

curs, for example, when there may be more than one possi-

ble change action for a given change element, requiring the

user to make a choice.

AnalyzeImpactFor CE= {ce1,…,cen}
1 Do
2 Get CA= {ca1,…,can} where ceic INPUT(caj)
3 For each caj c CA

4 verify preCondition(caj)
5 getTargetElementAndParameter (cei)
6 create cek c OUTPUT (caj)
7 Add cek to CE
8 End for
9 Until (No changes to CE)

 Apart from the downstream ripple effect of change from

the business to the service layer, there is often a need for bi-

directional change propagation. In the domain of SOA, this

happens, for example, when services – as re-usable entities

- are used to support multiple business tasks. A change to a

task results in a change to the service. This change to the

service would in turn impact the other dependent task sup-

ported by the same service. To realize this, change actions

for the reverse direction may also be defined during the

change specification phase. A default pre-condition is

tested that prevents cyclic execution of change actions. This

requires each change element to keep a list of the source

change elements that caused it. The pre-condition checks if

the model element of the input change element is different

from model element of the output change element.

Finally, once all the relevant change elements across the

different model artifacts have been generated, the end-to-

end impact of the top-level changes is known. The analyst

can then choose to apply the selected changes on the appro-

priate model elements. The change elements in our frame-

work have been designed to automate this process, since the

type of change to apply, the change parameter, and the

model element on which to apply the change are already

captured within each change element. This completes the

process of managing changes across the different model

layers.

3.3 Implementation

Rational Software Architect (RSA) [14] provides a mature

environment for designing SOA solutions and is built over

the Eclipse platform supporting plug-in development. Our

change analysis and propagation framework is an RSA

plug-in. The UML representation of the key design ele-

ments of the plug-in is presented in Figure 8. The Chan-

Change Analysis & Propagation Plug-in

Extensions for custom change
analysis

Change Analysis & Propagation Plug-in

Extensions for custom change
analysis

Figure 8. Extensions for Change Analysis

653

geElement stores details of the model element it is associ-

ated with, the parameter and the source change that caused

it. It also contains the dependency (parent-child relation-

ship). The ChangeAction contains the input and output

ChangeElement(s). ChangeLink at runtime identifies the

model element in the target model to which the change

element needs to be associated with. It also processes the

parameter of the source change elements and creates the

change parameter of the target change element. The pre-

conditions are validated by implementations of IPrecondi-

tion. In our implementation, we used EMF APIs [13] to

validate the pre-conditions (IPrecondition) and extract re

Rejected Changes

Selected Service Model Changes

Process Model Changes

Selected Service Design Changes

Editing Change Elements

Design of Change Actions

Summary of Change Impact

Rejected Changes

Selected Service Model Changes

Process Model Changes

Selected Service Design Changes

Editing Change Elements

Design of Change Actions

Summary of Change Impact

Figure 9. Change Specification and Analysis Framework

654

lated model elements and parameters (IChangeLink). How-

ever, it can also be an OCL [12] expression.

Figure 9 shows screenshots from our framework imple-

mentation. First, UML profiles of interest (e.g. “Business-

Model.epx”, “ServiceModel.epx”) are uploaded and

automatically analyzed to detect all possible change ele-

ments. The user may select the change types of interest and

those not selected are removed from further analysis (“Edit-

ing Change Elements”). Next, the user defines change ac-

tions; the input and output change elements are specified

and appropriate implementations of IPrecondition and

IChangeLink may be linked at this stage. Finally, a user can

select two versions of the model and invoke the analysis.

The model versions are compared and change elements are

detected. For example, in Figure 9, changes made to the

process model “ProcessQuote” are identified. All the possi-

ble resultant changes on “ProcessQuoteServiceModel” are

computed and presented. The user selects few of the

changes, which are considered for further analysis. The user

discards changes to the Service “RetrieveCreditHistoryDe-

tails” as it is an existing implemented service that cannot be

changed. Similarly, “Add Candidate Service (Premium)” is

discarded as the user wants to implement the business entity

as a message and not as an information service. This change

does not appear in the class or the sequence diagrams re-

lated to calculatePremium service. The impact analysis tabs

refer to cascading impact analysis. Each tab refers to a

change in a model and its impact on the dependent model -

Process Model change impact on Service Model and Ser-

vice Model change impact on design model. A summary of

the change elements indicating the number of types of

changes is also presented.

4. Case Study

We applied our change impact analysis framework on a

SOA design project developing services for Maintenance of

Monitoring Equipment functional area in the Chemical and

Petroleum Domain. The objective of the project was to

identify reusable services in the business domain and to

further design and implement them. Table 1 lists the devel-

opment artifacts, the role of the users building the artifacts

and the tools used. Process models were authored using

Websphere Business Modeler [15] and Logical Data model

modeled in Rational Data architect [16]. Both the models

can be imported into RSA for service identification. The

Service Model is built using the SOMA-ME [2]. RSA fur-

ther supports UML 2.1 and model transformations. Its

UML to SOA transformation transforms UML design arti-

facts to generate BPEL, XSD and WSDL. We use this

transformation to create the code artifacts from the UML

Service Model.

The process model consisted of 10 processes each con-

taining an average of 4-5 tasks. It went through several mi-

nor refinements and 3 major releases in 5 months time

period. We extracted the models after the first check-in and

at the major releases of the models. The model changes

were identified, analyzed for impact and then propagated,

all using our tool. The key change elements were defined

Table 1 Artifacts, Roles and Tools used in SOA Solution
Development

Development

Artifact

Role Tool

Business Process

Model

Business

Analyst

Websphere Busi-

ness Modeler

Logical Data

Model

Information

Architect

Rational Data Ar-

chitect

Service Model IT Architect Rational Software

Architect (with

Service Model

Profile)

Service Design IT Architect Rational Software

Architect

Service Imple-

mentation

Web service

developer

Websphere Inte-

gration Developer

Business Process Model Changes

0

5

10

15

20

25

V1-2 V2-3 V3-4

Versions

#
 o

f
C

h
a

n
g

e
s

Add Process Add Task Add Task Output

Add Task Input Delete Task Input Delete Task output

Change Task Name Change Business Entity Add Business Entity

Others

Service Model And Design Changes

0

5

10

15

20

25

30

35

40

V1-2 V2-3 V3-4

Versions

#
 o

f
C

h
a
n

g
e
s

Add Candidate Service Add Service
Add Operation Delete Service
Add Message Change Operation Input/Output
Change Message Change Candidate Service Name
Add Component Others
Add Class Diagram Add Interaction Diagram
Change Interaction Diagram

Figure 10. Changes across different versions of Process,

Service and Design Models

655

by us in consultation with the architect. The change actions

were also defined based on the understanding of the seman-

tic linkages between the process model, logical data model

and the service model. We identified 20 change actions for

business process model and service model. There were 3

information services defined using the logical data model

having 23 Entities.

Figure 10 shows the classification of changes across dif-

ferent versions of the process, service and design models.

Only the key change elements have been highlighted in the

figure (as the total number of change element types is high).

The figures indicate a majority of the changes happen dur-

ing one or two intermediate versions (in our case version 3).

From then on, the models become relatively stable and the

changes are primarily related to packaging and documenta-

tion (under “Others”).

In the first revision of the service model, the impact of

the process model changes on the service model was limited

to 25 changes. As the service model in its initial version

only contained the list of candidate services, the impact of

changes was low. Only two types of changes were recorded

– Addition of candidate services and Addition of service

messages. ‘Add Task’ change in the process model caused

‘Add Candidate Service’ in the service model. There were

two additional Candidate services that were added as a re-

sult of using the use cases and information model. ‘Add

Task Input’ and ‘Add Task Output’ did not result in any

change to the Service model as the model in its initial ver-

sion did not have services and their specification defined.

However, as the service model evolved, service and ser-

vice operations definition increased the number of impacted

elements in the next revision, where around 100 changes

were recorded. ‘Add Task Input’ and ‘Add Task Output’

changes in the process model led to ‘Change Operation

Input/Output’ for the services that had the operations de-

fined. Further, several messages and operations were de-

fined during this version. This version also has the design

level changes – addition of components, changes to class

and interaction diagram.

In the final revision of the service model, there were a

total of 60 changes, 35 of the changes were due to addition

of descriptions (documentation) to services and messages.

The other 25 changes were due to modifications made to

messages, changes to the class and sequence diagrams and

changes to operations. As we see, most of the changes are

related to the design elements.

The analysis performed by our tool based on defined

change elements allowed us to quickly zoom in on the

change types that really matter to the architects. The ability

to select or reject a change was useful as some changes re-

quired manual decision making. Change actions helped in

automatically propagating the impact of selected change

elements. Finally, model validation activities post change

management is made largely redundant, as change propaga-

tion is based on rules designed by the architects themselves,

and additionally, user inputs are taken at runtime whenever

required. All of these lead to significant gains in productiv-

ity.

5. Lessons Learnt

We will now briefly outline some of the lessons we learnt

from our experiences in developing and using the frame-

work.

5.1 Constraints based Change Analysis

 There are certain scenarios, where a change to the service

specification may not be possible – for example when using

a third-party service, it may not be possible to vary the im-

plementation of a service. There may also be regulatory

compliance (HIPAA, Sarbanes-Oxley) that mandate some

specifications to be adhered to, and consequently, prohibit

certain changes. It would be useful if such information can

be defined and stored in the process or service models as

constraints. Subsequently, variations of a process model

that cannot be realized by ‘in-variant’ services can be

pointed out to the architect during the change analysis. A

set of alternate change element(s) can be provided to the

user. For example, if a user is cannot make changes to a

service or its operation, a list of relevant change elements

such as ‘Add Service’, ‘Add Operation’ can be provided

and the change can be propagated. This will help ensure all

changes have been propagated to the dependent models.

5.2 Model Comparison

Model comparison frameworks use merge/match and dif-

ferencing technique to identify changes between two ver-

sions of a model. We discovered that these matching

techniques vary in different tools. RSA uses unique model

identifiers to identify matching element. While the compari-

son framework is accurate as it relies on these unique IDs,

in scenarios where model identifiers change (as a result of

importing and exporting into different formats), the com-

parison fails. On the other hand, Eclipse EMF Compare

uses name, type, content and relations to match the model

elements of two versions. This offers more flexibility, al-

though it can fail in the (rare) scenario where all these at-

tributes change substantially. While our current framework

uses RSA’s model comparison techniques, in future, we

would like to evaluate use of the Eclipse Compare frame-

work in more detail.

5.3 User Experience

While the interactivity offered by the tool in terms of ac-

cepting user inputs and incrementally propagating change is

useful, the overall user experience can be improved. For

example, an architect, before applying a change, would like

to analyze what has caused the change. While the list of

source and target change elements are provided by the

656

framework for user inspection, the correspondence between

pairs of these is not directly evident at present. Also, in

some cases, it will be useful to record the reason for accept-

ing/ rejecting a change, for example, why a new business

entity is (not) being realized through an information ser-

vice. A log of these design decisions will help other archi-

tects in further evolving the system. We will be

incorporating such features in future versions of the frame-

work.

6. Related Work

Briand et. al define Horizontal Impact Analysis (HIA) and

Vertical Impact Analysis (VIA) for UML Models [5]. HIA

focuses on changes and impacts at the same level of ab-

straction, and this corresponds to change impacts within a

model, whereas VIA focuses on changes at one level of

abstraction and their impacts at another level of abstraction

(e.g. classes and sub-classes). In their initial work [4], the

authors suggest a detailed analysis of the changes, organ-

ized in change taxonomy, to precisely study how changes

propagate. Change impact analysis rules are defined that

help in analyzing the impact of a change. Impact analysis is

done in the context of UML class, sequence and state chart

diagrams. Similarly, recent work by Ravichandar et. al [10]

on change propagation defines a set of inferences rules be-

tween use cases, sequence diagrams and service specifica-

tion (class diagram). The relationship between use cases

and sequence diagrams is identified and rules that propa-

gate the changes are defined. With reference to SOA design

and development, a relevant work on managing changes in

SOA-based solutions [3] discusses how to model the impact

of a change in one design artifact upon the others. The au-

thors discuss generic guidelines for assessing changes

(variations) and their impacts to the related artifacts.

In contrast to the above approaches which primarily ex-

plore change rules in the context of specific types of mod-

els, the main goal of our work is to provide an extensible,

efficient and interactive framework for identifying and

propagating fine-grained changes across arbitrary model

types (adhering to the MOF standard) and performing in-

cremental impact analysis of changes. We have shown how

the framework may be configured to trace changes across

business, service and design layers, leveraging the MOF

profiles of the relevant models, and by defining change ac-

tions based on the semantic relationships between these

layers. In particular, the detailed study of change relation-

ships between process, data and service models (Section 2)

is another useful contribution of this work, since prior art

has mainly focused on change propagation rules between

design elements ([4, 5]), or on coarse-level relationships

between process and service models as defined by Maz-

zoleni et. al. [18].

7. Conclusions

In this paper, we have presented a change analysis and

propagation framework motivated by our experiences in

model-driven development of SOA solutions, involving a

variety of business, service and design models. The frame-

work, developed as plug-in to the IBM Rational Software

Architect (RSA), is extensible and can automatically iden-

tify possible change types in any MOF-compliant model.

Changes across different model types can be easily related

through a user interface and via rules that are programmed

at specified plug-in points. At runtime, when an instance of

a model is changed, the framework performs fine-grained

analysis to identify impacted models and elements therein.

It also allows analysts to selectively apply or reject changes

based on his/her understanding of the context and summa-

rizes the incremental impact on downstream elements as

choices are made. We have shared our experience in using

the framework during the design of a SOA-based system

that underwent several changes in business models, necessi-

tating changes in the associated service design. In future,

we also plan to extend support of the tool for defining link-

ages between service model and test cases that would allow

an end-to-end analysis of the impact of a change in the

business requirement on the design, implementation and

testing of Services.

References

[1] Ali Arsanjani, Abdul Allam: Service-Oriented Modeling and

Architecture for Realization of an SOA. IEEE International

Conference on Services Computing. pp 521, 2006

[2] Zhang L-J et al. SOMA-ME: A platform for the model-driven

design of SOA solutions, IBM Systems Journal, Vol 47,

Number 3, 2008.

[3] L.-J. Zhang, A. Arsanjani, A. Allam, D. Lu, and Y.-M. Chee.

Variation-oriented analysis for SOA solution design. IEEE

International Conference on Services Computing, pp. 560–

568, 2007.

[4] Briand L. C., Labiche Y., O'Sullivan L. and Sowka M.,

Automated Impact Analysis of UML Models, Journal of Sys-

tems and Software, vol. 79 (3), pp. 339-352, 2006.

[5] Briand L.C., Labiche Y, and Yue T. Automated Traceability

Analysis for UML Model Refinements. Technical report,

Carleton University, TR SCE-06-06, Version 2, 2006.

[6] Query/View/Transformation. QVT-Merge Group, version 2.0

(2005-03-02), 2005. http://www.omg.org/cgi-

bin/apps/doc?ad/05-03-02.pdf

[7] Ivkovic, I. and Kontogiannis, K. Tracing Evolution Changes

of Software Artifacts through Model Synchronization. In

Proceedings of the 20th IEEE international Conference on

Software Maintenance, pp. 252-261, 2004.

657

[8] Anneke Kleppe, Jos Warmer, Wim Bast,: MDA Explained,

The Model Driven Architecture: Practice and Promise, , Ad-

dison-Wesley, 2003, ISBN 0-321-19442-X

[9] OMG. Meta object facility (mof) specification version

1.4.Technical report, Object Management Group (OMG),

http://www.omg.org/mof/

[10] Ravichandar R, Nanjangud N Ponnalagu K, Gangopadhyay

D, Morpheus: Semantics-based Incremental Change Propa-

gation in SOA-based Solutions, IEEE International Confer-

ence on Services Computing ,pp.193-201, 2008

[11] Service Component Architecture (SCA)-

http://www.osoa.org/display/Main/Service+Component+Arc

hitecture+Specifications

[12] OMG, OCL 2.0 Specification, Object Management Group,

Final Adopted Specification ptc/03-10-14, 2003.

[13] Eclipse Foundation, UML2: EMF-Based UML 2.0 Meta-

model Implementation,www.eclipse.org/uml2

[14] Rational Software Architect, http://www-

01.ibm.com/software/awdtools/architect/swarchitect/

[15] Websphere Business Modeler, http://www-

01.ibm.com/software/integration/wbimodeler/

[16] Rational Data Architect, http://www-

01.ibm.com/software/data/integration/rda/

[17] Telelogic System Architect,

http://www.telelogic.com/products/systemarchitect/systemarc

hitect/index.cfm

[18] Mazzoleni, P. and Srivastava, B. Business Driven SOA Cus-

tomization. 6th international Conference on Service-Oriented

Computing, pp. 286-301, 2008.

[19] Flaxer, D. Anil Nigam Vergo, J. Using component busi-

ness modeling to facilitate business enterprise architecture

and business services at the US Department of Defense,

ICEBE, International Conference on eBusiness Engineering,

2005.

[20] Web Services Business Process Execution Language Version

2.0 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

658

