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Abstract
In mainstream OO languages, inheritance can be used to add new
methods, or to override existing methods. Virtual classes and fea-
ture oriented programming are techniques which extend the mech-
anism of inheritance so that it is possible to refine nested classes
as well. These techniques are attractive for programming in the
large, because inheritance becomes a tool for manipulating whole
class hierarchies rather than individual classes. Nevertheless, it has
proved difficult to design static type systems for virtual classes, be-
cause virtual classes introduce dependent types. The compile-time
type of an expression may depend on the run-time values of objects
in that expression.

We present a formal object calculus which implements vir-
tual classes in a type-safe manner. Our type system uses a novel
technique based on prototypes, which blur the distinction between
compile-time and run-time. At run-time, prototypes act as objects,
and they can be used in ordinary computations. At compile-time,
they act as types. Prototypes are similar in power to dependent
types, and subtyping is shown to be a form of partial evaluation.
We prove that prototypes are type-safe but undecidable, and briefly
outline a decidable semi-algorithm for dealing with them.

Categories and Subject Descriptors D.3.1 [Software]: Formal
Definitions and Theory; F.3.2 [Theory of Computation]: Seman-
tics of Programming Languages

General Terms Languages, Theory

Keywords Abstract Interpretation, Features, Dependent Types,
Mixins, Partial Evaluation, Prototypes, Singleton Types, Virtual
Classes, Virtual Types

1. Introduction
To a large degree, classes and inheritance are the “essence” of OO
programming. A class encapsulates a group of interacting methods.
Inheritance can be used to refine a class by adding new methods,
or by overriding and extending existing ones. Late binding ensures
that whenever a method is overridden, all references automatically
point to the new version.

In a similar fashion, a module encapsulates a group of interact-
ing classes. However, mainstream OO languages do not provide a
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mechanism for refining modules. C++ namespaces and Java pack-
ages are modules, and nested or inner classes can also be used to
emulate modules to some degree. However, none of these mecha-
nisms support late binding. It is possible to add new classes to a
module, but it is not possible to refine or replace an existing class
definition with something else.

As has been extensively argued elsewhere [14] [48] [26], it
is not possible to refine a group of mutually recursive classes
by deriving a new, parallel set with different names. The act of
renaming the classes breaks the type dependencies between them,
thus requiring downcasts and run-time type checks. The situation is
somewhat analogous to the Java collection classes before generics
were introduced; downcasts are necessary because there is no way
to express the appropriate type relationships.

This issue is illustrated by the “expression problem”, which has
been discussed extensively in the literature [44] [27] [50] [37] [55].
The expression problem concerns the design of an extensible inter-
preter or compiler. A compiler manipulates abstract syntax trees,
which consist of several different kinds of node — e.g. literals, op-
erators, declarations, etc. A compiler also defines several opera-
tions over such trees — e.g. evaluation, pretty-printing, typing, etc.
A compiler extension must add a new kind of node, or a new oper-
ation, without altering any definitions in the original source code.

In a functional programming language it is easy to extend the
compiler with new operations, but hard to add new kinds of node.
In a OO language it is easy to add new kinds of node, but hard to
add new operations, as is illustrated by the following example in
Java:

// core d e f i n i t i o n s
a b s t r a c t c l a s s Expr { } ;

c l a s s L i t e r a l ex tends Expr {
i n t v a l u e ;

} ;

c l a s s P lus ex tends Expr {
Expr l e f t ;
Expr r i g h t ;

} ;

// e x t e n s i o n s
i n t e r f a c e ExprEva l {

i n t e v a l ( ) ;
} ;

c l a s s L i t E v a l ex tends L i t e r a l
implements ExprEva l {

i n t e v a l ( ) { r e t u r n v a l u e ; }
} ;

c l a s s P l u sEv a l ex tends P lus
implements ExprEva l {
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i n t e v a l ( ) {
r e t u r n ( ( ExprEva l ) l e f t ) . e v a l () +

( ( ExprEva l ) r i g h t ) . e v a l ( ) ;
}

} ;

This example follows the interpreter design pattern, where each
kind of node has a different class, and each operation is a method
that must be implemented by all the classes. Since the original
classes cannot be modified, this code defines a new operation
within an interface. It then extends each of the node classes to
implement the interface.

The trouble with this approach is that left and right have type
Expr, not ExprEval. Whenever we wish to call one of the new
operations, we must insert a downcast to the appropriate type.
The situation is somewhat analogous to the Java collection classes
before generics were introduced; downcasts are necessary because
there is no way to express the appropriate type relationships.

One way to solve the expression problem in an elegant fashion
is to use virtual classes [26]. The following example is pseudo-
code for a Java-like language. It encapsulates the entire group
of classes as a module, and then refines them simultaneously by
refining the module as a whole [28]. This mechanism allows us
to add a method to each class in the group, without altering the
the original module. Type dependencies within the module are
preserved because classes keep the same name.

module EBase {
a b s t r a c t c l a s s Expr { } ;

c l a s s L i t e r a l ex tends Expr {
i n t v a l u e ;

} ;

c l a s s P lus ex tends Expr {
Expr l e f t ;
Expr r i g h t ;

} ;
} ;

module EvalMod ex tends EBase {
r e f i n e c l a s s Expr {

i n t e v a l ( ) ;
} ;

r e f i n e c l a s s L i t e r a l {
i n t e v a l ( ) { r e t u r n v a l u e ; }

} ;

r e f i n e c l a s s P lus {
i n t e v a l ( ) {

r e t u r n l e f t . e v a l ( ) + r i g h t . e v a l ( ) ;
}

} ;
} ;

Virtual classes are defined by analogy with virtual methods. Just
as it is possible for a derived class to override a virtual method,
it is possible for a derived module to refine a virtual class. Class
refinement obeys the same rules as ordinary inheritance; the new
classes inherit definitions from the old ones.

Class names in Java are global identifiers. As a result, the re-
lationships between classes are hard-coded, and class hierarchies
become brittle and difficult to extend. With virtual classes, class
names are local references within the current module, and inheri-
tance between modules preserves the relationships between classes.
EvalMod.Literal extends EvalMod.Expr, even though it is not ex-
plicitly declared, because EBase. Literal extends EBase.Expr, and
EvalMod inherits from EBase.

In a fully general implementation of this concept, modules can
also contain virtual nested modules. Module inheritance thus has
the potential to be truly scalable, since it can be used to manipulate
structures of arbitrary size. If a class library is encapsulated in a
module, then it is possible not just to link against the library, but to
customize and refine it to the needs of a particular application.

1.1 History

Virtual classes were first introduced in the Beta language, and were
initially presented as an alternative to parameterized classes —
a.k.a. generics [39]. However, Beta was unable to do static typing
for virtual classes, and was forced to insert run-time checks.

The Beta language also had a major restriction, which is that
it was not possible to inherit from a virtual class. This rules out
solutions like the one above, which is an example of a higher-order
hierarchy [27]. The gbeta language removed this restriction, and
provided a static type system [24]. However, the type system for
gbeta is complex, and has only recently been formalized [28].

Feature-oriented programming [8] [7], and multi-dimensional
separation of concerns [44] are a different approach to the same
problem. These solutions provide a mechanism for module refine-
ment similar to the one shown above, but they do so by transform-
ing code. Source code transformation happens outside the type sys-
tem of the target language, so features cannot be type-checked sep-
arately.

1.1.1 Recent work

Interest in virtual classes has resurged in the past few years, and
a number of formal models have recently been published in the
literature; see section 8 for more details. The biggest difference
between them lies in the way they treat modules. There are three
main approaches:

1. Modules are distinct entities, often called “class groups”.
2. Modules are classes. Virtual classes are static nested classes.
3. Modules are objects. Virtual classes are inner classes.

Using a distinct notion of class group makes static typing eas-
ier, but is somewhat unsatisfying because it ignores the similar-
ity between module inheritance and class inheritance. The second
two approaches present a unified model of inheritance, but differ
in whether they regard virtual classes as attributes of classes, or
attributes of objects.

Treating virtual classes as attributes of objects is the most pow-
erful approach, because it allows an arbitrary number of distinct
class families to be created at run-time. However, treating virtual
classes as attributes of classes is often more convenient, because
there is no need to pass around instances of the enclosing classes.

We treat virtual classes as attributes of objects, which is the
most difficult case to model formally. However, our solution uses
a prototype model in which classes are objects, so it encompasses
both of the latter approaches.

1.2 Challenges

Formal models of virtual classes have proved difficult to build
because classes are complex entities, which serve three distinct
roles in OO programs:

1. A class C is a generator for instances of the class.
— e.g. new C(...)

2. A class C is a generator for subclasses.
— e.g. class D extends C { ... }

3. Classes denote types.

The first role presents no difficulties; virtual classes behave
much like virtual methods. The expression new myobj.C will lo-
cate the constructor for C at run-time, by looking it up in the virtual
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method table of myobj. To ensure that this operation is safe, refine-
ments of a virtual class must share the same constructor signatures.

The second role is harder, because refinements to a virtual base
class will affect any derived classes. Some refinements may even
invalidate derived classes. For example, assume that we have two
virtual classes, C and D, where C declares a virtual method m,
and D overrides m. If C is later refined such that m becomes final,
then that refinement will invalidate D. The solution we present in
this paper detects such errors by re-checking the interface of all
inherited definitions.

The third role is the most difficult. In a method call to myobj.m(),
the code for m() is not determined until run-time, because it de-
pends on the dynamic value of myobj. Virtual classes behave simi-
larly; the class denoted by the expression myobj.C depends on the
dynamic value of myobj.

If virtual classes are attributes of objects, then the type system
must necessarily involve some form of dependent types — types
that depend on objects [38]. Dependent types are tricky because
static safety requires that type judgments be performed at compile-
time, even though the precise value of myobj may not be known
until run-time.

1.2.1 Recursive Modules

The situation is further complicated by the pervasive presence of
recursion. Each class in a module can potentially refer to all the
others. The interface of a module is thus a set of mutually recursive
type equations. Similarly, all of the methods and constructors in a
module can potentially call each other. The implementation of a
module is thus a set of mutually recursive definitions.

Inheritance relationships add an additional twist, because inher-
itance is not recursive. The inheritance graph cannot have any cy-
cles, as would occur if classes A and B tried to inherit from each
other. Nor should there be any infinite descending chains, as might
occur if a nested class tried to inherit from its enclosing class.

Type theories for recursive modules are not simple. The tradi-
tional approach is to untangle recursive types from recursive imple-
mentations [22], but such untangling does not seem possible in the
presence of dependent types. The alternative is to permit general
recursion at the type level, but that yields a theory that is undecid-
able. Our approach is to accept undecidability as a necessary evil,
but to develop a practical and decidable semi-algorithm for type
checking.

1.3 Summary of Paper

We present the DEEP calculus, which provides type-safe support
for virtual classes. Its semantics is based on a model of inheritance
much like that in gbeta, which Ernst refers to as propagating combi-
nation [25]. We prefer the term used by Odersky and Zenger: deep
mixin composition [55].

The most technically innovative aspect of DEEP is the fact that
the type system is based on prototypes rather than types. Prototypes
are first-class objects; they exist at run-time, and they can be used in
ordinary expressions. Prototypes are also types, however, and there
is a subtype relation defined between them. Static type safety relies
on subtyping, rather than typing.

Prototypes allow us to treat modules, classes, methods, and ob-
jects in a uniform manner, as entities which exist at both compile-
time and run-time. As such, they provide a natural mechanism for
dealing with dependent types. In a dependent type system, typing
may involve the evaluation of object expressions. In our prototype
model, this is reflected in the fact that the subtype relation has a
copy of evaluation embedded in it. In fact, subtyping can be seen
as a mixture of partial evaluation and abstract interpretation.

Subtyping in DEEP is both nominal and structural. It is defined
as a structural relation over terms, but terms can be paths of the

form object name.class name, which means that nominal subtyp-
ing is included as a special case.

We show how standard approaches to type soundness can be
adapted to prototypes, and we prove that the type system for DEEP

is sound. We also show that the type system is undecidable, and
provide an informal discussion of techniques to overcome this
limitation.

Despite the theoretical nature of the topic, our goal for this paper
is not to be overly technical. Rather, we hope to present enough
theory to satisfy critics that there is some basis to our claims, while
providing a discussion that is readable by a wider audience.

The organization of this paper is as follows. Section 2 provides
an informal discussion of issues that motivated the design of DEEP.
Section 3 introduces the DEEP calculus. Section 4 gives some
example code. Section 5 describes subtyping, and section 6 covers
type safety and decidability. Section 7 describes extensions to the
calculus. Section 8 covers related work, and section 9 concludes.

2. Informal Discussion
Inheritance hierarchies are usually presented as a directed graph,
where the nodes are classes and the arcs are inheritance relation-
ships. In keeping with this idea, method lookup is frequently de-
fined as a graph traversal. Unfortunately, this metaphor becomes
unwieldy when there are inheritance relationships between the
modules themselves as well as the classes within those modules.

Feature-oriented programming provides a compositional ap-
proach to modeling inheritance [8]. Features are essentially partial
definitions of modules, and complex features are created by com-
posing simpler ones. A compositional approach is convenient for
a formal calculus, so DEEP is based on feature composition rather
than inheritance.

A deep mixin composition of modules is one which descends
into the module hierarchy, and recursively composes classes, meth-
ods, and nested modules which have the same name. It is defined
as follows, where “⊗” is the composition operator:

X
a :: ax

b :: bx
⊗

Y
a :: ay

c :: cy

=

Z
a :: ax ⊗ ay

b :: bx

c :: cy

In this example, X and Y are two modules, while a, b, and c
are named definitions, which may be modules, classes, methods,
or constants. X and Y each declare a partial definition, or frag-
ment of a. When X and Y are composed together, the composition
operator is recursively applied to compose the two fragments. Def-
initions which exist in one module but not the other are copied over
unchanged.

Class composition is the same as module composition; the re-
sulting class “inherits” methods from both sources, and recursively
composes methods with the same name. The composition of two
methods or constants must merge their implementations in some
way, as will be discussed below.

The “::” syntax is DEEP notation for an open or virtual binding.
It means that a must contain at least the definitions in ax, and at
least those in ay. If a is a class, then it must be a subclass of both
ax and ay.

2.1 Symmetric Composition

DEEP provides two distinct operators for performing deep mixin
composition. The first operator, written “&”, stands for symmetric
composition, which is similar to the way traits are composed [45].
Symmetric composition obeys the following algebraic identities:
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t & t ≡ t Idempotence
t & u ≡ u & t Commutativity

(t & u) & s ≡ t & (u & s) Associativity

These three identities constitute the algebraic definition of a
semi-lattice, which means that there is a partial order defined over
modules as follows:

t <: u if and only if t & u ≡ t (Definition of Subtyping)

Subtyping is defined directly over modules, rather than types.
The intuition is that every module provides a set of capabilities. A
module t is a subtype of u if t provides all of the capabilities that u
provides. Due to its relationship with subtyping, the “&” operator
can be viewed as a form of type intersection.

Unlike traditional type systems, the “capabilities” of a module
encompass not only its interface, but also its implementation. Two
modules which have the same interface, but provide different im-
plementations, are regarded as distinct entities; neither of two is a
subtype of the other.

Unfortunately, type intersection is not powerful enough to
model OO inheritance. Commutativity and idempotence are strong
requirements, and while it is easy to compose interfaces in this
manner, it does not seem possible to compose method implemen-
tations. If two classes in an intersection both define a method with
the same name, then one definition must be abstract — it cannot
have a body.

2.2 Asymmetric Composition

The “&∗” operator is used for asymmetric composition, which can
be used to model features, mixin layers[46], and OO inheritance.
Asymmetric composition is identical to type intersection, except
that it also merges implementations. When two classes both im-
plement a method with the same name, then the bodies of the two
methods will be glued together in some way.

The difficulty of merging implementations from two sources is
well-known in OO programming as “the multiple inheritance prob-
lem”. The simplest way to resolve conflicts is by automatic overrid-
ing — definitions on the right-hand side of the composition over-
ride those on the left. This does not merge two implementations, it
simply replaces one with the other.

A more sophisticated approach is to use mixin composition
[11] [10] [29]. Definitions on the right-hand side are functions
which transform definitions on the left. Mixin composition is a
generalization of the way overriding works in OO inheritance,
where a subclass may refer to definitions in the superclass with the
super keyword. Mixins are a powerful technique, but that power
comes at a cost:

Ordering Problems: Since mixin composition is not commuta-
tive, the order in which modules are composed is significant. Re-
arranging the order will generate different behaviors, with effects
that may range from subtle to catastrophic.

Duplicates: Since mixin composition is not idempotent, it is
possible to apply the same transformation twice, as illustrated in
the following example:

let t = a &∗ b
let u = a &∗ c
let s = t &∗ u (= a &∗ b &∗ a &∗ c)

This is merely a restatement of the classic “diamond” problem
with multiple inheritance. The implementation of a occurs twice
within s, which may or may not be what was intended.

A number of OO languages, including CLOS, Dylan, and
Python, linearize the multiple inheritance hierarchy [6]. Lineariza-
tion eliminates duplicates, which is perceived as the greater of the
two evils, but it does not solve the ordering problem.

The DEEP calculus does not perform either mixin composition
or linearization by default. The core calculus is defined with simple
overriding semantics. However, this mechanism can be extended to
more sophisticated kinds of composition without altering any of the
type judgments presented in this paper.

2.3 Interfaces

Asymmetric composition differs from type intersection only where
implementations are concerned, which means that the two opera-
tors are identical with respect to interfaces.

Every module t has a unique interface ↑t, such that t <: ↑t.
Like interfaces in Java, the interface of a module only contains type
signatures for methods and fields; all implementations are stripped
away. Interfaces obey the following identity:

↑(f &∗ g) ≡ ↑f & ↑g
Interfaces in DEEP serve much the same role as types in other

languages

2.4 Virtual Types and Dependent Types

A type which is an attribute of an object is known as a virtual type.
Static type safety for virtual types is illustrated by the following
example, which is adapted from [49]. Consider a program which
must deal with several different kinds of animal, each of which
eats a different kind of food. We model this by using a virtual type
which holds the kind of food that the animal eats, as illustrated by
the following psuedo-code:

c l a s s Food { . . . } ;
c l a s s Meat ex tends Food { . . . } ;

a b s t r a c t c l a s s Animal {
type FoodType < : Food ; // v i r t u a l type

a b s t r a c t FoodType f a v o r i t e F o o d ( ) ;
a b s t r a c t v o i d ea t ( FoodType food ) ;

} ;

s t a t i c v o i d f eed1 ( Animal aml ) {
aml . ea t ( new Meat ( ) ) ; // e r r o r !

}

s t a t i c v o i d f eed2 ( Animal aml ) {
aml . ea t ( aml . f a v o r i t e F o o d ( ) ) ; // OK

}
A simplistic and unsound approach is to assume that since aml

is an animal, and animals eat food, then it is possible to feed any
kind of food to aml. This is incorrect because it would allow us to
feed meat to cows, or grass to people. Nevertheless, it is hard to
come up with a good alternative, because if aml is some arbitrary
animal, then there is no way of knowing at compile-time what kind
of food it eats!

The code above circumvents this problem by endowing ev-
ery animal with a favoriteFood which is guaranteed to be edible,
even though its exact type is not statically known. The expres-
sion aml.favoriteFood () has type aml.FoodType. The argument to
aml.eat must also have type aml.FoodType, so function feed2 is
well-typed.

The type aml.FoodType is a dependent type, because the object
aml appears within the type expression. Two types a.T and b.T are
the same only if a and b refer to the same object. In this case, object
identity follows because the object aml is referred to by name.

2.5 Object equality and evaluation

In a dependent type system, proving that two types are equivalent
may involve proving that two object expressions are equivalent, and
there is no way prove such equivalence in general. Every dependent
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type system must make a design decision about how to deal with
object equality.

Array types in C are a primitive form of dependent type, be-
cause the size of the array is an integer expression. Most modern
compilers can show that the type int [256] is the same as int [4∗64],
because they evaluate constant integer expressions at compile-time.
However, array sizes in C must be constant expressions involving
built-in operators, which places a limit on what the type system is
expected to prove.

Like C, the DEEP calculus uses an intensional notion of equality
which is based on evaluation. Two expressions are equal if they
can be reduced to a common term. Unlike C, the type-checker
may reduce arbitrary expressions at compile-time, not just constant
ones. The type system for DEEP can prove that (λx.x)(y) = y,
because the left-hand side reduces to the right, even if y is not
statically known. However, it cannot prove that x + y = y + x,
where x and y are unknown variables; DEEP does not handle
arithmetic identities.

Because it may evaluate arbitrary expressions at compile-time,
the type system for DEEP is structured much like an online partial
evaluation engine [35]. In fact, we use a technique similar to partial
evaluation not only to prove type equivalence, but also to derive the
types themselves. This technique is based on the idea of prototypes.

2.6 Prototypes

Prototypes were proposed in the Self language as an alternative
to classes [51]. In a prototype-based system, objects are self-
descriptive. A prototypical object is one which implements some
default behavior. New objects are created by refining existing pro-
totypes. Prototype refinement differs from inheritance mainly be-
cause it is an operation over objects rather than classes, so it can
occur at run-time.

The DEEP calculus is a prototype-based system in this sense.
Classes and modules are treated as ordinary objects which exist
at run-time, and new classes are created by refining or composing
existing ones.

The DEEP calculus is also prototype-based in a different sense:
prototypes in DEEP can act as both types and objects. Unlike Self,
DEEP is statically typed. There is a subtype relation defined over
all objects, and composition creates subtypes.

Objects in DEEP may be only partially defined. An interface is
an object which is fully abstract; it contains only type signatures for
methods and fields. An instance is an object which is fully concrete;
every method has an implementation, and every field has a value.
A class is somewhere in between — it defines implementations for
methods, but it may not define values for fields. Throughout the
rest of this paper, we will refer to interface prototypes as “types”,
and concrete prototypes as “objects”, but the calculus itself does
not distinguish between the two.

Composition in DEEP is used to create both subtypes and in-
stances. An instance of a type is a subtype of that type, which means
that instances are leaves at the bottom of the inheritance hierarchy.
For example:

3 <: Int <: Number <: Object
true <: Bool <: Object

In DEEP, all objects can act as types. A concrete value, like
the number 3, is a singleton type [47]; it represents the type of all
integers which are equal to 3.

In addition to treating objects as first-class types, DEEP treats
types as first-class objects. The result of performing an operation
on a type is just another type, e.g.

1 + 2 = 3
Int + 2 = Int

true && Bool = Bool
false && Bool = false

The intuition behind this mechanism is that interface types such
as Int represent objects which are only partially defined. It is
possible to perform computations with such objects, but the result
may also be partially defined.

The ability to perform computations with prototypes provides a
link between evaluation and typing. The bounding type of an ex-
pression can be calculated by substituting types for any unknown
variables, and then evaluating the expression. In other words, typ-
ing is a form of abstract interpretation [21].

3. Syntax and Semantics
The syntax and operational semantics of DEEP are given in figure
1. There are two basic constructs: functions and records. Functions
are defined much the same as in other languages. Objects, classes,
and modules are all encoded as records.

For the sake of clarity, the following discussion assumes that the
core calculus has been extended with types Int and Bool, integer
and boolean literals such as 0 and true , as well as the standard
logical and arithmetic operators. These objects are not built-in; they
can be encoded using more primitive constructs.

3.1 Functions

A function is defined by the syntax λ(x : t). u. The variable x
is the argument, t is the argument type, and u is the body. As is
standard practice, functions with multiple arguments are encoded
by Currying:

λ(x, y, z). u is short for λ(x). λ(y). λ(z). u

3.2 Records

A record is defined by the syntax μx{d}, where d is a (possibly
empty) sequence d1 .. dn of labeled declarations, called slots. A
record may not have more than one slot with the same label. The
self-variable x is an identifier which refers to the enclosing record;
it is equivalent to the this keyword in C++ or Java [1]. (Using an
explicit name for this is helpful when dealing with nested records.)

A slot is projected from a record using standard OO dot nota-
tion, as shown below. One slot can refer to other slots within the
same record by means of the self-variable x.

let r = μx{ a : I n t = 1 ;
b : I n t = 2 ;
c = x . a + x . b ;

}

r . c −→ r . a + r . b −� 1 + 2 −→ 3

Slots use late binding. In the example above, x is not assigned
a value until the slot c is actually projected from the record. The
definition of c thus acts like a simple method, rather than a constant.
If the values of a and b were overridden by composition, then the
value of c would be affected accordingly.

Every record denotes a fixpoint. This fixpoint can be used to de-
clare recursive objects, including mutually recursive functions and
circular data structures, just like the letrec construct in functional
languages. Late binding for slots has the same semantics as lazy
evaluation in a letrec .

The slots of a record hold prototypes, which can be either types
or objects. This means that records can also be used to declare
recursive types, such as lists and trees.

3.3 Declarations

Declarations serve two distinct roles. First, a declaration defines an
object, which is stored in the slot of a record. Second, a declaration
establishes a constraint which must hold in subtypes of that record.
This dual role — object + constraint — is what allows records
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x, y, z Variable
�, l, m Slot label

s, t, u ::= Terms:
x variable
λ(x : t). t function
μx{d} record
t(t) application
t.l projection
t ⊗ t composition
↑t interface

c, d, e ::= Declarations:
l :: t open/virtual binding
l = t final binding
l : t = u concrete field
l : t = abstract field

⊗ ::= Composition:
& type intersection
&∗ asymmetric composition

v, w ::= Normal Forms
λ(x : t). t function
μx{d} record

Γ ::= Contexts
∅ empty context
Γ, x � t variable declaration

� ::= Type relations
<: subtype
� exact subtype
≡ type equivalence

Notation:

• d denotes a possibly empty sequence of declarations d1 .. dn, where each declaration is terminated by a semicolon.
• dom(d) denotes the set of labels in the sequence d.
• d� denotes the declaration with label � in the sequence d.
• [x �→ t] u denotes the capture-avoiding substitution of the term t for the variable x within u.
• c ⊗ d is defined below. It concatenates the two sequences, composing declarations which have the same label.

c ⊗ d −→ e and c ⊗ d � e will compose declarations using “−→” and “�”, respectively. (See figure 2)

Term Equality: α-renaming of bound variables x, plus
d is a permutation of e

μx{d} = μx{e}
Evaluation Context: E ::= [] | E.l | E(t) | v(E) | E ⊗ t | v ⊗ E

Reduction: t −→ t

t −→ t′

E[t] −→ E[t′]
(E-CONGRUENCE)

(λ(x : t). u)(v) −→ [x �→ v] u (E-APPLY)

declVal(d�, t)

μx{d}.� −→ [x �→ μx{d}] t
(E-PROJECT)

declVal(l :: t, t)
declVal(l = t, t)
declVal(l : t = , t)
declVal(l : t = u, u)

λ(x : t). u ⊗ λ(x : t′). s −→ λ(x : t′). (u ⊗ s)
(E-COMPOSEFUN)

c ⊗ d −→ e

μx{c} ⊗ μx{d} −→ μx{e} (E-COMPOSEREC)

↑λ(x : t). u −→ λ(x : t). ↑u (E-INTERFACEFUN)

↑μx{d} −→ μx{↑d} (E-INTERFACEREC)

Composition of sequences: c ⊗ d

c ⊗ d
def
= e, where:

dom(e) = dom(c) ∪ dom(d)

e� =

8><
>:

c� ⊗ d� if � ∈ dom(c) ∩ dom(d)

c� if � ∈ dom(c) and � �∈ dom(d)

d� if � ∈ dom(d) and � �∈ dom(c)

Composition of declarations: c ⊗ d −→ e

(l :: t) ⊗ (l :: u) −→ l :: t ⊗ u (DE-COMPOSE)

e replaces d

d ⊗ e −→ e

d overrides e

d ⊗ e −→ d
(DE-REPLACE)

(l = t) replaces (l = t′)
(l : t = ) replaces (l : t′ = )
(l : t = u) replaces (l : t′ = u′)
(l = t) overrides (l :: u)
(l : t = u) overrides (l : t′ = )

d overrides e

d replaces e

Interface of declarations: ↑d def
= e

↑(l :: t)
def
= l :: ↑t

↑(l = t)
def
= l = t

↑(l : t = )
def
= l : t =

↑(l : t = u)
def
= l : t =

(DE-INTERFACE1-4)

Figure 1. Syntax and Operational Semantics
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and functions to serve as prototypes. There are three main kinds
of declaration, which establish three different constraints:

• l :: t is an open or virtual declaration, which has an upper
bound given by t. An open declaration can be specialized to
any subtype of t. Virtual methods and virtual classes are defined
using open declarations.

• l = t is a final binding. A final binding cannot be specialized;
all subtypes must have equivalent definitions.

• l : t = u is a field. The term t is the range of the field, while
u is the (optional) implementation, which must be a subtype of
the range. The implementation may be left unspecified using
the syntax l : t = , in which case the field is abstract. Fields
with implementations are concrete.

The range of a field is invariant; all subtypes must have the
same range. The implementation of a field can be overridden in
a composition, as will be discussed below.

3.4 Composition

Composition is defined over both terms and declarations. The com-
position of two records will compose declarations with the same
label. Declarations are composed as follows. (The “⊗” symbol is a
meta-variable which ranges over both “&” and “&∗”.)

• If both declarations have open bindings, then composition is
recursively applied to terms:
(l :: t) ⊗ (l :: u) −→ (l :: t ⊗ u)

• If one declaration is more specific than the other, then the spe-
cific one overrides the general one. Final bindings override open
bindings, and concrete fields override abstract fields. If two dec-
larations are equivalent, then the one on the right replaces the
one on the left.

• When two fields are composed with &∗,
(e.g. (l : t = u) &∗ (l : t = u′)) then the implementation on
the right replaces the implementation on the left.

The composition of two functions composes their bodies:

λ(x : t). u ⊗ λ(x : t). s −→ λ(x : t). u ⊗ s

Note: in the operational semantics, “&” and “&∗” are treated
identically. The difference between the two only appears in the type
system. The expression t & u is not well-formed unless there is a
valid intersection of the two terms.

3.5 Interfaces

The main purpose of a field is to separate the interface of a record
from its implementation. The expression ↑t will erase the imple-
mentation of all fields. Like “⊗”, “↑” is recursively defined over
both terms and declarations. It will erase the implementation of ev-
ery field that could potentially be overridden by “&∗”. For example:

↑µx { m : : µy{
a : I n t = 1 ;

} ;
b : I n t = 2 ;

}

−�

µx { m : : µy{
a : I n t = ;

} ;
b : I n t = ;

}

3.6 Function types

In keeping with the prototype model, functions can act as types.
Subtyping between functions is defined pointwise: given two func-
tions f and g, f <: g implies that f(a) <: g(a), for all a. For
example:

λ(x : Int). x + x <: λ(x : Int). Int

Two functions are compared by comparing their bodies, treating
the variable x as a free variable with the given upper bound. The

example above holds because x + x is a subtype of Int if x is a
subtype of Int. The prototype λ(x : Int). Int serves the same role
as the conventional arrow-type Int → Int .

The argument type of a function is invariant (rather than con-
travariant) in subtypes. This is because the composition of two
functions will mix their bodies together. Since the body of a func-
tion may refer to its argument, relaxing the type constraint would
not be type-safe.

3.7 Record types

Subtyping between records is done by comparing individual slots.
Final bindings and fields specialize open bindings, and concrete
fields specialize abstract fields. E.g.

μx {
a : : I n t ;
b = 0;
c = 1;
d : I n t = 2 ;
e = f a l s e ;

}

<:

μx {
a : : Object ;
b : : I n t ;
c = 1 ;
d : I n t = ;

}

When comparing two records, (i.e. R <: S), the self-variable
x is treated as a free variable which has an upper bound given by
R. A variable is equivalent to itself, so two expressions involving
x are equivalent if x occurs in the same place in both expressions.
For example:

μx {
a : : I n t ;
b : : λ( y : x . a ) . x . a ;

}
<:

μx {
a : : Object ;
b : : λ( y : x . a ) . x . a ;

}
This result may seem somewhat surprising. In the first record, b

represents the arrow type Int → Int , whereas in the second record,
it is Object → Object. The first definition of b is not a subtype of
the second when projected from its enclosing record. Because of
this, the rules for subtyping state that if R and S are records, then
R.l <: S.l only if R ≡ S. The more usual assumption – that
R.l <: S.l if R <: S, is not type-safe if self-references occur in
covariant positions.

4. Additional Examples
This section contains some larger examples which illustrate how
the DEEP calculus can be used to emulate standard OO constructs,
such as classes, methods, and generics. Along the way, we will
point out ways in which the DEEP calculus resolves some tricky
typing issues.

For these larger examples, we use the following syntax sugar.
The syntax

method1 ( x : argType , . . . ) = body ;
method2 ( y : argType , . . . ) : r e s u l tType = body ;

is short-hand for:

method1 = λ( x : argType , . . . ) . body ;

method2 : λ( y : argType , . . . ) . r e s u l tType =
λ( y : argType , . . . ) . body ;

The examples in this section also follow the convention that the
variable g stands for the enclosing global scope.

4.1 Classes and inheritance

Classes and methods are defined much as one might expect:

μg{
Po int : : μ t h i s {

x : I n t = ;
y : I n t = ;
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rSqua re : I n t =
t h i s . x ∗ t h i s . x +
t h i s . y ∗ t h i s . y ;

equa l s ( t ha t : ↑ t h i s ) : Bool =
t h i s . x == tha t . x &&
t h i s . y == tha t . y ;

} ;

// i n h e r i t a n c e
Po int3 : : g . Po in t &∗ μ t h i s {

z : I n t = ;

rSqua re : I n t =
t h i s . x ∗ t h i s . x +
t h i s . y ∗ t h i s . y +
t h i s . z ∗ t h i s . z ;

e qua l s ( t ha t : ↑ t h i s ) : Bool =
t h i s . x == tha t . x &&
t h i s . y == tha t . y &&
t h i s . z == tha t . z ;

} ;

// i n s t a n t i a t i o n −− i n Java t h i s would be
// Po int o r i g i n = new Po int3 ( 0 , 0 , 0 ) ;
o r i g i n : ↑g . Po in t = g . Po in t3 &∗ μ t h i s {

x : I n t = 0 ;
y : I n t = 0 ;
z : I n t = 0 ;

} ;

p1 : ↑g . Po in t = g . Po in t3 &∗ μ t h i s {
x : I n t = 1 ;
y : I n t = 1 ;
z : I n t = 1 ;

} ;

// u s i ng o r i g i n as a p r o t o t y p i c a l o b j e c t
p2 = g . o r i g i n &∗ μ t h i s { y : I n t = 1 ; } ;

// s e l f −t y pe s
c p e r r = o r i g i n . equa l s ( p1 ) ; // type e r r o r !
cp ok = o r i g i n . equa l s ( p2 ) ; // ok

}

This example defines a simple Point class. It has three data
members: x, y, z, and two methods: rSquare and equals. The mem-
bers of a class are immutable, so there is no difference between a
data member and a method that takes no arguments.

Point3 is a class which inherits from Point. It adds a new field
named z, and it overrides rSquare and equals with new definitions.

There are two ways to create a point object. First, it is possible
to instantiate a class directly by using composition to assign values
to data members. This is how origin and p1 are defined. Second, a
new point can also be created by using an existing value as a pro-
totypical object, and then overriding data members (or methods!)
with new definitions. In the example above, p2 uses origin as a
prototypical object.

Notice that inheritance and instantiation are both performed
with the same operation: &∗. This mechanism highlights the pro-
totype model, in which instances are subtypes of classes.

4.1.1 Interface Types

Unlike typical OO languages, Point3 is not a subtype of Point, be-
cause it overrides the definitions of rSquare and equals. Subtyping
between records includes the complete definition of all slots. In or-
der for one record to be a subtype of another, it must have the exact
same implementation for all methods.

Instead, Point3 and origin are subtypes of ↑Point — the inter-
face type of Point. This relationship results from the identity intro-
duced earlier:

t &∗ u <: ↑t & ↑u
The distinction between class objects and interfaces highlights

the dual role that classes play in OO programs. Point is a generator
for both instances and subclasses, while ↑Point is the bounding type
for objects that it generates.

4.1.2 Self Types

Another point of interest (pun intended) is the use of ↑ this as a
bounding type for the argument of equals. The expression ↑ this is
a self-type, which means “the type of this ”. It is an upper bound for
all records which have the same interface as this . The expression
↑ this emulates the “MyType” construct proposed by Bruce [13].

The expression cp err is not well-typed, because origin and p1
have an upper bound of ↑Point. There is thus no guarantee that
they have the same interface. They both happen to be 3D points in
this example, but one could easily be overridden with a 2D point
instead.

However, it is safe to compare origin and p2, because the type
of p2 is ↑ origin rather than ↑Point, and it is thus guaranteed to have
the same interface.

4.2 Generics

A generic class is a function that takes a type as an input, and
produces a class as an output. Since functions in DEEP operate over
prototypes, generics can be implemented as ordinary functions.

μg{
L i s t (T : Object ) = μ t h i s {

i sEmpty : : Bool ;
head : T = ;
t a i l : g . L i s t (T) = ;

} ;

n i l (T : Object ) =
g . L i s t (T) & μ t h i s {

i sEmpty = t r ue ;
t a i l : g . L i s t (T) = g . n i l (T ) ;

} ;

cons (T : Object , hd : T , t l : g . L i s t (T)) =
g . L i s t (T) & μ t h i s {

i sEmpty = f a l s e ;
head : T = hd ;
t a i l : g . L i s t (T) = t l ;

} ;
}

This is a fairly standard implementation of parametric polymor-
phism, in the informal sense of the word. The List class is parame-
terized by a type T . Every function which operates on lists (i.e. nil
and cons) must also be parameterized by T . Some form of pattern
matching which infers the appropriate T would obviously be desir-
able in a practical implementation, but we do not consider pattern
matching in the core calculus.

The only thing about these definitions which is peculiar to DEEP
is the fact the type parameter T is passed as an ordinary function
argument. Traditional type systems distinguish between functions
over types, and functions over objects. The former are evaluated at
compile-time, while the latter are evaluated at run-time.

The DEEP calculus only has one kind of function: functions over
prototypes. In order to type-check the above code, the compiler will
partially evaluate expressions of the form List (T) at compile-time.
Partial evaluation is an integral part of the type system.
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4.3 Virtual Types

Virtual types have been proposed as an alternative to parametric
polymorphism [48]. The following example shows how an abstract
array class can be defined and used. This example plugs the infa-
mous type safety problem with Java arrays.

The following definition of arrays differs from the earlier list
example because arrays have a covariant type parameter. An array
of Int is a subtype of an array of Object. The same is not true of
lists: List (t) <: List (t ’) only if t ≡ t′.

μg{
Array = μ t h i s {

l e ng th : : I n t ;
ElemType : : Object ;

ge t ( i : I n t ) : t h i s . ElemType = ;
s e t ( i : I n t , e : t h i s . ElemType ) : ↑ t h i s = ;

}

copyElem ( a : g . Array , n : I n t , m: I n t ) : ↑a =
a . s e t (m, a . ge t (n ) ) ;

setElem ( a : g . Array & μx { ElemType = F l oa t ; } ,
n : I n t , f : F l o a t ) : ↑a =

a . s e t (n , f ) ;
}

An array holds a certain number of elements, all of which
have an upper bound given by ElemType. The methods get( i ) and
set( i ,e) will get and set the ith element of the array. Since DEEP
does not have a mutable heap, set returns a new array which has the
same interface as the original. (Additional trickery, such as monads
[52] or uniqueness types [5], can be used to avoid allocating a new
array.)

The copyElem function will copy the value index n to index m.
This routine is well-typed because get and set are both acting on
the same array. The expression a. set requires an argument of type
a.ElemType — a dependent type. The expression a.get(m) has type
a.ElemType, so the types match up.

There is practical problem with using covariant array types.
Although it is safe to copy elements within the same array, it is
not safe to put elements from any other source into the array. The
definition of setElem circumvents this problem by giving ElemType
a final bound of Float. Since a.ElemType is equivalent to Float, it
is safe to put any floating-point number into the array.

4.4 The Expression Problem:

Our final example presents a solution to the expression problem in
DEEP. This solution closely mimics the pseudo-code given in the
introduction, but includes a bit more detail. We demonstrate that it
is possible to add a new class, add a new operation, and to mix the
two extensions together.

μg{
// core d e f i n i t i o n s
EBase = μm {

// empty c l a s s d e c l a r a t i o n
Expr : : μ t h i s { } ;

L i t e r a l : : m. Expr &∗ μ t h i s {
v a l u e : I n t = ;

} ;

P lus : : m. Expr &∗ μ t h i s {
e1 : ↑m. Expr = ;
e2 : ↑m. Expr = ;

} ;
} ;

// add a new op e r a t i o n
EvalMod = g . EBase &∗ μm{

Expr : : μ t h i s {
e v a l : I n t = ;

} ;

L i t e r a l : : μ t h i s {
e v a l : I n t = t h i s . v a l u e ;

} ;

P lus : : μ t h i s {
e v a l : I n t = t h i s . e1 . e v a l + t h i s . e2 . e v a l ;

} ;
} ;

// add a new type
MultMod = g . EBase &∗ μm{

Times : : m. Expr &∗ μ t h i s {
e1 : ↑m. Expr = ;
e2 : ↑m. Expr = ;

} ;
} ;

// combine the two e x t e n s i o n s
Eva lMul t = g . MultMod &∗ g . EvalMod &∗ μm{

Times : : μ t h i s {
e v a l : I n t = t h i s . e1 . e v a l ∗ t h i s . e2 . e v a l ;

} ;
} ;

} ;

EBase is a module with three nested classes — Expr, Literal ,
and Plus, that together define a simple syntax tree. Literal and Plus
inherit from Expr.

EvalMod is a module which extends EBase and adds a new
method — eval — to all three classes. MultMod also extends EBase,
and adds a new class — Times — which inherits from Expr.

The EvalMult module combines these two extensions by com-
posing EvalMod with MultMod. However, the pure composition
(EvalMod &∗ MultMod) has a gap in functionality because the
Times class does not implement the eval method. The definition
of EvalMult fills in this gap.

4.5 Limitation – no indexed data types

DEEP does have a major limitation. One of the main applications
of dependent types to date has been reasoning about the sizes of
data structures. Instead of ordinary lists, dependent type system
can encode lists of length n, where n is natural number. Using
this type, is is possible to prove that operations such as map and
reverse preserve the length of lists, that concatenating two lists will
add their lengths, etc.

In contrast with other dependent type systems, such as DML
[54] and Epigram [40], DEEP does not provide good support for
types of this nature. It is certainly possible to extend the definition
of List given earlier with an integer parameter. However, in order to
reason about sizes, the type system must have knowledge of basic
arithmetic identities, such as the commutativity and associativity of
addition. List (n + m) should be the same type as List (m + n).

DEEP does not handle such identities. This limitation means that
although the core of DEEP supports dependent types, in practice it
is not able take full advantage of it.

5. Subtyping
Subtyping is the least relation between terms which is closed under
the definitions in figure 2. Figure 2 defines three relations over
terms; where “�” is a meta-variable that ranges over all three.

• t <: u means that t is a subtype of u.
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Subtyping (congruence): Γ  t � t

Γ  t � u u � s u wf
Γ  t � s

Γ  u ≡ t

Γ  t ≡ u

(S-TRANS),
(S-SYMM)

Γ  t ≡ u

Γ  t � u

Γ  t � u

Γ  t <: u
(S-WEAKEN1-2)

Γ  x ≡ x
Γ  t � t′, u ≡ u′

Γ  t(u) � t′(u′)
(S-VAR),

(S-APPLY)

Γ  t ≡ t′

Γ  t.l ≡ t′.l
Γ  t � ↑t (S-PROJECT),

(S-IFACEINTRO)

Γ  t � u

Γ  ↑t ≡ ↑u
Γ  t <: u

Γ  ↑t <: ↑u (S-INTERFACE1-2)

Γ  t ≡ t′ u ≡ u′

Γ  t ⊗ u ≡ t′ ⊗ u′ (S-COMPOSE)

Γ  t ≡ t′

Γ, x <: t  u � s

Γ  λ(x : t). u � λ(x : t′). s
(S-FUNCTION)

dom(d) [�] dom(e)
∀� ∈ dom(e). Γ, x <: μx{↑d}  d� � e�

Γ  μx{d} � μx{e} (S-RECORD)

[<:]
def
= ⊇ [�]

def
= = [≡]

def
= =

Declaration subtyping: Γ  d � d

Γ  d ≡ e

Γ  d � e

Γ  d � e

Γ  d <: e
(DS-WEAKEN1-2)

(DS-DECL1-6)
Γ  t � u

Γ  (l :: t) � (l :: u)

Γ  t ≡ u

Γ  (l = t) ≡ (l = u)

Γ  t <: u

Γ  (l = t) <: (l :: u)

Γ  t ≡ t′

Γ  (l : t = ) ≡ (l : t′ = )

Γ  t ≡ t′, u ≡ u′

Γ  (l : t = u) ≡ (l : t′ = u′)

Γ  t ≡ t′

Γ  (l : t = u) � (l : t′ = )

Subtyping (reduction): Γ  t � t

x � t ∈ Γ

Γ  x � t
(SE-VAR)

Γ  t � λ(x : u′). s

Γ  t(u) � [x �→ u] s
(SE-APPLY)

t �′ μx{d}
declType(�′, d�, �, u)

Γ  t.� � [x �→ t] u
(SE-PROJECT)

declType(�, l :: t, �, t)
declType(�, l = t, ≡, t)
declType(�, l : t = , <:, t)
declType(�, l : t = u, <:, t)
declType(�, l : t = u, ≡, u)

Γ  t ≡ t′

Γ  λ(x : t). u ⊗ λ(x : t′). s ≡ λ(x : t′). (u ⊗ s)
(SE-COMPOSEFUN)

Γ, x <: μx{↑e}  c ⊗ d � e

Γ  μx{c} ⊗ μx{d} ≡ μx{e} (SE-COMPOSEREC)

↑v −→ w

Γ  ↑v ≡ w
(SE-INTERFACE)

Γ  (t & u) ≡ (u & t)
Γ  (t & u) & s ≡ t & (u & s)

(SE-ISECTCOMM),
(SE-ISECTASSOC)

Γ  t <: u

Γ  t & u ≡ t
t & u <: t (SE-ISECTELIM1-2)

Γ  ↑(t &∗ u) ≡ ↑t & ↑u (SE-IFCOMPOSE)

Checked composition: Γ  c ⊗ d � e

Γ  (l :: t) ⊗ (l :: u) � (l :: t ⊗ u)

Γ  e <: d
e replaces d

Γ  d & e � e

Γ  d <: e
d overrides e

Γ  d & e � d

Γ  e <: ↑d
e replaces d

Γ  d &∗ e � e

Γ  d <: ↑e
d overrides e

Γ  d &∗ e � d

Figure 2. Subtyping. (Note that � is a metavariable which ranges over <:, �, and ≡.)

• t ≡ u means that t is type equivalent to u.
t ≡ u if and only if t <: u and u <: t.

• t � u means that t is an exact subtype of u.
t � u only if t <: u and ↑t ≡ ↑u.

Exact subtypes are used to prove that a class which inherits
from a virtual class is well-formed. It is discussed in more detail
in section 6.1.

5.1 Subtyping as Partial Evaluation

Since terms in DEEP range over both types and objects, the “≡” re-
lation not only defines equivalence between types, but also equality
between objects. Moreover, equivalence is defined over arbitrary
expressions, not just values. Two expressions are equivalent if they
can be reduced to a common term.

The subtyping rules are split into two groups. The congruence
rules, labeled S-*, compare terms which have the same shape.
The reduction rules, labeled SE-*, mirror the definition of untyped
reduction in the operational semantics. As we will discuss shortly,
the reduction rules mean that subtyping can be seen as a form of
partial evaluation.
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Subtyping differs from untyped reduction in three main ways.
First, composition is restricted in order to eliminate invalid compo-
sitions. The restrictions are:

• Functions cannot be composed unless they have equivalent ar-
gument types.

• Records cannot be composed unless their slots have compati-
ble types. For example, the composition of μx{l = 3; } and
μx{l = 4; } is illegal, because 3 �≡ 4.

Second, subtyping includes some additional algebraic identities.
Type intersection is commutative, associative, and obeys the ab-
sorption law for semi-lattices.

Third, subtyping can discard information. The judgment t ≡ u
is similar to ordinary evaluation. It means that t can be reduced
to an equivalent term u (or vice versa). The judgment t <: u is
similar to typing. It means that t can be simplified to u, where u is
an upper bound for t.

Free variables can be simplified to their upper bounds using
rule SE-VAR. Any expressions that involve free variables can also
be simplified to an upper bound by applying the reduction rules.
Although we refer to this mechanism as “partial evaluation”, it can
also be regarded as a primitive form of abstract interpretation.

To see how this works, consider the rule SE-PROJECT:

• If t <: μx{ l :: Int; }, then t.l <: Int.
• If t ≡ μx{ l :: Int; }, then t.l ≡ Int.
• If t <: μx{ l = Int; }, then t.l ≡ Int.
• If t <: μx{ l : Int = 3; } then t.l <: Int,

and t.l ≡ 3.

This definition serves as both a reduction rule, and a typing rule.
If we know the type of t, then we can find the type of t.l. If we
know the exact value of t, then we can find the exact value of t.l.
Most interestingly, we can also find the exact value of t.l if l is final
bound, even if the only thing we know about t is its type.

5.2 True Partial Evaluation

This ability to derive exact values as well as upper bounds is the
reason why we refer to this mechanism as “partial evaluation”
rather than “typing”. Consider the following two definitions of a
power function, which computes xn.

μg{
powerT ( n : I n t , x : I n t ) : I n t =

i f ( n == 0) then 1
e l s e x ∗ g . powerT (n−1, x ) ;

powerE ( n : I n t , x : I n t ) =
i f ( n == 0) then 1
e l s e x ∗ g . powerE (n−1, x ) ;

pt = g . powerT (3 , x ) ; / / has type I n t
pe = g . powerE (3 , x ) ; / / has type x∗x∗x∗1

}
Recall that the definition of powerT is syntax sugar for:

powerT : λ( n : I n t ) . λ( x : I n t ) . I n t = . . .

This definition is a field, which means that powerT has an
explicit bounding type: a function which ignores its arguments
and returns Int . When the compiler type-checks the expression
powerT(3,x), it will apply this bounding type using rule SE-APPLY.
The result of the application is Int , which is the type of the expres-
sion. In this case the process is very similar to what happens in an
ordinary type system.

The definition of powerE, on the other hand, is a final binding
rather than a field, so it has no bounding type other than itself.
The compiler has no choice but to expand the body of powerE,
and simplify the result to a value. In the process of doing so, it

will reduce the if expressions, and expand further recursive calls.
Assuming that x is a free variable of type Int , the final derivation
is:

g . powerE (3 , x ) ≡ x∗x∗x ∗1 <: I n t

This derivation yields the same upper bound as the one for
powerT, but it has partially evaluated the power function in the
process. Since g.powerE(3,x) is provably equivalent to x∗x∗x∗1, the
latter can be substituted for the former in compiled code.

Limitations The price that must be paid for integrating a partial
evaluator into the type system is loss of decidability. If the type
checker is allowed to expand recursive function calls, then there
is no guarantee that type checking will terminate. In section 6.9,
we sketch an algorithm that ensures termination by preventing the
compiler from entering recursive calls. However, this restriction
would make the definition of powerE illegal.

As with dependent types, DEEP possesses the machinery to per-
form partial evaluation, but is currently unable to take full advan-
tage of it.

5.3 Nominal Subtyping

The subtype relation is defined over all terms, not just normal
forms. One benefit of defining subtypes in this way is that the
nominal typings used in most OO languages can be seen as a special
case of structural comparisons between terms.

Featherweight Java [32] is a good example of how nominal sub-
typing is typically implemented in mainstream OO languages. A
program in featherweight Java consists of a pair (CT, e), where
CT is a global class table, and e is an expression. Types in feather-
weight Java are the names of classes in the table. Subclass relation-
ships are read directly from the table, which is fixed.

The DEEP calculus does not use a global class table. Instead,
subtype relationships are inferred from the local typing context.
To see how nominal subtyping works in practice, consider the
following code, which is an excerpt from the Point example given
earlier:

μg{
Po int : : μ t h i s { . . . } ;

// i n h e r i t a n c e
Po int3 : : g . Po in t &∗ μ t h i s { . . . } ;

}
The name of a class is a path of the form x.l1.l2...ln. In the

code above, g.Point and g.Point3 are class names. Both of them
are declared as virtual classes, so their exact definitions are not
statically known. However, it is possible to infer a subtype relation
between the two by comparing paths. We prove that ↑g.Point3 <:
↑g.Point as follows:

↑g.Point3 <: ↑(g.Point &∗ {...}) SE-PROJECT, SE-VAR
≡ ↑g.Point & ↑{...} SE-IFCOMPOSE
<: ↑g.Point S-ISECTELIM2

This derivation expands g.Point3 to its definition by finding
the type of g in the local context. The remaining steps exploit the
relationship between interfaces and compositions. The derivation
is nominal because it only compares paths; at no point is there any
need to compare records.

5.4 Match Subtyping

Subtyping between records in DEEP is slightly different from that
traditionally used in the literature [19]. A record μx{d} is a re-
cursive structure. As such, every record has an infinite expansion
denoted by the fixpoint of the record. In a traditional type system,
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subtyping between recursive structures is coinductively defined as
a comparison between infinite expansions.

In DEEP, however, a comparison between μx{d} and μx{e},
does not compare the infinite expansions of the two records. In-
stead, it compares their definitions, where x is taken to be a free
variable with an upper bound of μx{↑d}. If two records are in a
subtype relation, then they have the same recursive structure [19].
Bruce calls this mechanism match subtyping [13].

Match subtyping is not ordinarily a sound basis for a static type
system unless that type system supports some form of dependent
types. In a non-dependent type system, the type of a term can
depend only on the static types of its subterms. This restriction
leads to the following typing rule for projecting slots from records.
(The syntax here assumes that T and U range over types, X is
a type variable, and D is a sequence of declarations of the form
l : U ).

Γ  t : T, T = μX{D; l : U ; }
Γ  t.l : [X �→ T ] U

(non-dependent typing)

This definition unfolds the recursive type T by replacing all
occurrences of the self-type X with T . The type T is the static
type of the term t. The static type is only an upper bound for the
exact type [13] of t, which is not necessarily known at compile-
time. With this rule, the use of match subtyping would lead to a
type error if X occurs in a contravariant or invariant position, such
as the argument type of a method.

To see why this creates a problem, consider the following Java-
like pseudo-code.

c l a s s Po in t μX {
. . .
Bool equa l s (X tha t ) { . . . }

}

c l a s s Po in t3 ex tends Po int μX { . . . }

Po int o r i g i n = new Po int3 ( 0 , 0 , 0 ) ; // e r r o r
Po in t p1 = new Po int ( 1 , 1 ) ;

. . . o r i g i n . equa l s ( p1 ) ; . . . // un s a f e c a l l

In this example, the origin variable has a static type of Point.
The static type of origin . equals is a function from Point → Bool,
and the compiler would therefor judge that origin . equals(p1) is
well-typed. At run-time, however, origin has an actual type of
Point3, which cannot be compared with a 2D point.

The only way to avoid this situation in a traditional type system
is to ensure that Point3 is not a subtype of Point, which would make
the definition of origin ill-typed.

5.5 Dependent Types

Compare the non-dependent type rule above with the dependently-
typed definition used in DEEP:

Γ  t <: μx{d; l :: u; }
Γ  t.l <: [x �→ t]u

SE-PROJECT

This definition replaces all occurrences of the self-variable x
with the term t. This replacement is safe for use with match sub-
typing, because it does not discard any information about the exact
run-time type of t. Referring back to the earlier Point example, we
have:

μg{
Po int : : μ t h i s {

equa l s ( t ha t : ↑ t h i s ) : Bool = . . . ;
} ;

Po in t3 : : g . Po in t &∗ μ t h i s { . . . } ;

o r i g i n : ↑g . Po in t = . . .
p1 : ↑g . Po in t = . . .

. . . g . o r i g i n . equa l s ( p1 ) . . . / / type e r r o r
}

In this example, the static type of g. origin . equals is a function:
λ(that: ↑g.origin). Bool. Passing p1 as an argument to this call will
result in a type error unless p1 is a subtype of ↑g. origin , which it
is not. As a side benefit, the type error now occurs at the site of the
unsafe call, rather than at the declaration of origin.

In addition to dependent record types, DEEP supports dependent
function types. A dependent function type is one in which the value
of the argument appears in the type of the result. The Array example
shown earlier illustrates the use of such functions.

6. Type Safety
In an ordinary type system, a term is considered well-typed if a
type can be assigned to it. In DEEP every term is already a type, so
the notion of being well-typed does not make much sense. Instead,
terms are judged to be well-formed. Terms which are well-formed
cannot “go wrong”; that is, they cannot generate type errors at run-
time. A type error is one of the following events:

• A program attempts to call a function with a value of the wrong
type.

• A program attempts to project a slot that does not exist.
• A program attempts to compose two functions with different

argument types.
• A program attempts to compose two records, but the slots have

incompatible definitions.

Ensuring that function calls are well-typed, and that slots exist
is straightforward. However, verifying composition turns out to be
much more difficult. Loosely speaking, a record is considered to
be well-formed if the logical constraints established by its declara-
tions are satisfiable. Given this definition, composition has a most
unfortunate property:

The composition of two well-formed terms is not necessarily
well-formed.

There are several ways in which a composition may be ill-
formed. Two records may define different final bindings for the
same slot, or they may define different ranges for the same field. A
record is also ill-formed if there are cycles of dependencies between
its slots that prevent the proof of well-formedness from terminating,
and such cycles can be introduced by composition. All these cases
are illustrated in the following example:

μx { a = 3;
b : Bool = ;
c : : μy { } ;
d : : x . c ;

}

⊗
μx { a = 4;

b : I n t = ;
c : : x . d ;
d : : μz { } ;

}

6.1 Well-formedness

The rules for well-formedness are given in figure 3. A function
application t(u) is well formed if t is a well-formed function, and u
is a well-formed term of the appropriate type. A record projection
t.l is well-formed if t is a well-formed record and the slot l exists.

The rules for composition and intersection are more subtle. A
composition t &∗ u is well formed if ↑t & ↑u is well-formed.
Intuitively, this follows from the fact that the &∗ operator will
override field implementations. It is not possible for there to be
a type clash between the implementations of two fields, because
one simply overrides the other. All type clashes must occur in the
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Well-formed terms: t wf

x � t ∈ Γ

Γ  x wf
(W-VAR)

Γ  t wf, u wf
Γ  t <: λ(x : u′). s, u <: u′

Γ  t(u) wf
(W-APPLY)

Γ  t wf, t <: μx{d}, l ∈ dom(d)

Γ  t.l wf
(W-PROJECT)

Γ  t wf, u wf
Γ  t & u ≡ s, s wf

Γ  t & u wf
(W-ISECT)

Γ  t wf
Γ  ↑t wf

Γ  ↑t & ↑u wf
Γ  t &∗ u wf

(W-INTERFACE)
(W-COMPOSE)

Γ  t wf, ↑t &∗ v ≡ s, s wf

Γ  t &∗ v wf
(W-INHERIT)

Γ  t wf
Γ, x <: t  u wf

Γ  λ(x : t). u wf
(W-FUNCTION)

∀� ∈ dom(d). Γ, x � μx{↑d}  d� wf

Γ  μx{d} wf
(W-RECORD)

Well-formed declarations: d wf

Γ  t wf
Γ  (l :: t) wf

Γ  t wf
Γ  (l = t) wf

(W-DECL1-2)

wk(Γ)  t wf
Γ  (l : t = ) wf

(W-FIELD1)

wk(Γ)  t wf, u wf, u <: t

Γ  (l : t = u) wf
(W-FIELD2)

wk(∅) = ∅
wk(Γ, x � t) = wk(Γ), x <: t

Figure 3. Well-formedness

interface, so if the interface of the composition is well-formed, then
the composition as a whole is well-formed.

The rule for intersection states that a term t & u is only well-
formed if it is equivalent to some other well-formed term. That
“other term” cannot be an intersection, or the proof will fail to
terminate. Referring back to the rules for subtyping, there are only
two ways in which an intersection can be eliminated:

Γ  t <: u

Γ  t & u ≡ t
(Absorption)

Γ  t ≡ vt, u ≡ vu, vt & vu ≡ w

Γ  t & u ≡ w
(Reduction)

6.2 Instantiation

Absorption handles the case of pure specialization, where one term
is a direct subtype of the other. When used with “&∗”, it also
handles class instantiation. A class is instantiated by overriding
existing fields with new implementations. Consider the following
composition:

g . Po in t3 &∗ {
x : I n t = 0 ; y : I n t = 0 ; z : I n t = 0 ;

} ;

In this case, x, y, and z are already defined within g.Point3, so it
is possible to prove that:

↑g.Point3 <: ↑{ x : Int = 0; y : Int = 0; z : Int = 0; }
and the composition is therefore well-formed. In other words, in-
stantiating a virtual class is an operation which can be safely per-
formed at run-time.

6.3 Inheritance

Reduction is used to handle inheritance. A composition is t ⊗ u is
well-formed if it can be partially-evaluated to a well-formed record.
Since both partial evaluation and the proof of well-formedness are
done at compile-time, this means that inheritance is a compile-
time operation. DEEP is no different from other statically-typed
OO languages in this regard. DEEP also provides a faithful model
of feature composition, which is likewise performed by generating
code at compile-time.

The rule W-INHERIT handles the common syntax for inheri-
tance which is used throughout the examples in this paper. The
right-hand side of the composition is a literal record which re-
fines some superclass. The declarations in this record can only be
understood within the context of the superclass, so the composi-
tion should be performed before the record is checked for well-
formedness. This rule could be removed without changing the fun-
damental expressiveness of the system, but it makes code less ver-
bose by eliminating redundant declarations.

6.4 Exact Types

Unfortunately, the use of partial evaluation places a strong limit on
inheritance. In order to verify that t &∗ u is well-formed, both ↑t
and ↑u must be known up to equivalence. Without some additional
extension, it would only be possible to inherit from a class which is
statically known — i.e. one which is final bound. That would rule
out the possibility of inheriting from a virtual class.

In order to overcome this problem, DEEP introduces an exact
type relation between terms, which is written “�”. The judgment
t � u implies that t <: u and ↑t ≡ ↑u. If a term has an exact type
which is statically known, then the interface of that term is known
up to equivalence, and it is possible to prove that compositions
involving that term are well-formed.

Furthermore, rule W-RECORD states that a record μx{d} is
well-formed if its declarations are well-formed under the assump-
tion that x � μx{↑d}. In other words, when verifying a class C,
instead of assuming that this is a subtype of C, we assume that this
has exact type C. Since the enclosing record has an exact type, any
nested virtual classes also have exact types. It is safe to inherit from
a virtual class.

Verifying a class C under the assumption that this � C ensures
that all instances of C are valid. It is thus safe to create instances
of C at run-time. Unfortunately, subclasses of C may invalidate
certain declarations. Consider the following example:

μg{
Mod1 = μ t h i s {

A : : { a : : I n t ; } ;
B : : t h i s .A &∗ { a = 4 ; } ;

} ;
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Mod2 = g . Mod1 &∗ μ t h i s {
A : : { a = 3 ; } ;
// e r r o r −− B i s now i n v a l i d

} ;
}
In this example, Mod1 contains two classes A and B, where

B inherits from A. Inheriting from a virtual class is a potentially
dangerous operation, because the interface of A is not fixed. Nev-
ertheless, exact types allow us to prove that Mod1 is well-formed.

However, when Mod2 extends Mod1 we have a problem. Mod2
changes the definition of A.a from a virtual binding to a final
binding. The definition of A is still okay, but the inherited copy
of B is now invalid.

This error will be detected at compile-time because inheritance
is a compile-time operation. The only way to verify Mod2 is to
generate the complete record, and check all declarations, including
declarations which are inherited from Mod1. We check the defini-
tion of B when it is first declared within Mod1, and then re-check
the interface of B again within Mod2.

6.5 Separate Compilation

At first glance, this might seem like a bad idea, since appears to rule
out the possibility of separate compilation. However, the type sys-
tem only needs to re-check the interface of inherited declarations.

Field implementations are checked once — at the point where
they are initially declared. Consequently, well-formedness for
fields is performed within a weaker context in which this <: C,
rather than this � C. Using a weaker context ensures that the im-
plementation of fields can be safely inherited by subclasses without
re-checking them.

6.6 Summary

It is safe to inherit from a virtual class. However, it is not safe
to inherit from a class which is stored in a field, or passed as the
argument to a function, because the exact type of such a class is
unknown. It is always safe to instantiate a virtual class, regardless
of whether it has an exact type.

The use of exact types means that every subclass has to re-check
all of the declarations that it inherits from super-classes. However,
it does not need to re-check any implementations that it inherits.
DEEP thus supports separate compilation of modules.

6.7 Transitivity Elimination

Before moving on to the formal proof of type safety, there is
one more technical issue regarding subtyping that needs to be
addressed.

Figure 2 defines the subtype relation in a declarative manner.
This presentation is more concise, but it does not specify an algo-
rithm for determining whether one term is a subtype of another. As
it turns out, the subtype relation must be split into two different al-
gorithms, because a proof of well-formedness uses the relation in
two distinct ways.

First, there is the obvious use: subtyping compares terms. Given
two terms t and u, we wish to know whether t � u. (“�” is a meta-
variable that ranges over <:, �, and ≡.)

Second, subtyping is used as a replacement for typing. Given a
single term t, we wish to find the “type” of t — a minimal upper
bound v such that t <: v. This judgment is used in rules W-APPLY
and W-PROJECT.

Due to lack of space, we do not present a full definition of both
algorithms here. The full definition is available as an appendix in
the electronic version of this paper; what follows is a brief sketch.

The algorithmic definition splits subtyping into two relations:

“�” and “
→
�”. The judgment Γ A t � u is an algorithmic com-

parison between two terms, and it contains the subtype congruence
rules (S-*). As usual, the main challenge of defining the algorithm
is eliminating the rules for symmetry and transitivity:

Γ  u ≡ t

Γ  t ≡ u

Γ  t � u, u � s, u wf
Γ  t � s

(S-SYMM),
(S-TRANS)

Transitivity involves “guessing” a suitable u. Even worse, it
involves guessing a u which is well-formed. The proof of well-
formedness involves subtyping, and that leads to a circular defini-
tion. To overcome this problem, we replace the rules for symmetry
and transitivity with the following definitions:

Γ A t
→
� u, u � s

Γ A t � s

Γ A t � u, s
→≡ u

Γ A t � s

The judgment Γ A t
→
� u contains the subtype reduction

rules (SE-*). These rules have the advantage that they can be read
from left to right, just like untyped reduction, so there is no need
to “guess” u. The only reduction rule that is not included is SE-
ISECTELIM2, because it discards information and introduces a
non-determinism.

The judgment Γ A t
→
� u provides a concrete algorithm for

performing typing and partial evaluation. It also has the following
desirable properties:

1. It is confluent.
2. If t

→
� ...

→
� v, then v is the minimal upper bound of t.

3. If t wf and t
→
� t′, then t′ wf.

The third property is especially important, since it allows us
to eliminate the circular dependency between the judgments for
subtyping and well-formedness. We do not have space for a formal
proof here, but it is essentially the same as the proof of type safety
below.

6.8 Progress and Preservation

We give a full proof of type safety using the standard techniques of
progress and preservation. [53].

The canonical small-step preservation proof states that if t : T
and t −→ t′ then t′ : T . In DEEP there is no typing judgment, so
we prove instead that if t wf and t −→ t′, then t ≡ t′ and t′ wf.

This definition is a faithful interpretation of the traditional
meaning of type-safety. If t ≡ t′, then t <: v implies that t′ <: v,
for any v. Thus, no matter what bounding type we assign to a
program, that bounding type will be preserved under evaluation.

LEMMA 1 (Weakening).
If Γ  u wf, u � s and x �∈ Γ, then Γ, x <: t  u wf, u � s

Proof: straightforward induction on the derivations for subtyp-
ing and well-formedness.

LEMMA 2 (Narrowing).
If Γ, x <: t  u wf, u � s and Γ  t′ wf, t′ <: t
then Γ, x <: t′  u wf, u � s

This lemma states that judgments about subtyping and well-
formedness which are made in a general context still hold in a more
specific context.

Proof: by induction on the derivations of subtyping and well-
formedness. By lemma 1 and S-TRANS, every judgment of the
form x <: t can replaced with a judgment of the form x <: t′ <:
t.

LEMMA 3 (Substitution).
If Γ, x <: t  u wf, u � s and Γ  t′ wf, t′ <: t,
then Γ  [x �→ t′]u wf, [x �→ t′]u � [x �→ t′]s.

Proof: by induction on the derivations for subtyping and well-
formedness. Every judgment of the form x ≡ x can be replaced
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with t′ ≡ t′, every judgment of the form x <: t can be replaced
with t′ <: t, and every judgment of the form x wf can be replaced
with t′ wf.

LEMMA 4 (Inversion of subtyping).
If Γ  v <: μx{d} then there is a proof of that fact which ends in
S-RECORD (i.e. v is a record).
If Γ  v <: λ(x : t). u, then there is a proof that fact which ends
in S-FUNCTION (i.e v is a function).

Proof: This critical result is difficult to prove in the declarative
system, but follows immediately in the algorithmic system from
elimination of transitivity. See section 6.7.

LEMMA 5 (Subterms are well-formed).
If Γ  E[u] wf and u �= v, then Γ  u wf

Proof: by inspection of well-formedness, and induction on the
structure of E[u].

LEMMA 6 (Replacement).
If Γ  E[t] wf, t ≡ u, and u wf,
then Γ  E[t] ≡ E[u], and E[u] wf.

Proof: E[t] ≡ E[u] by inspection of the subtype relation, and
induction on the structure of E[t]. E[u] wf by induction on the
derivation for E[t] wf.

LEMMA 7 (Composition).
If Γ  μx{c} <: μx{d} then μx{c} & μx{d} −→ μx{e}
such that μx{e} ≡ μx{c}.
If Γ  μx{↑c} <: μx{↑d} then μx{c} &∗ μx{d} −→ μx{e}
such that μx{↑e} ≡ μx{↑c}.

Proof: This lemma holds for records if it holds between dec-
larations. If c� & d� −→ e� by DE-COMPOSE, then e� ≡ c� by
SE-ISECTELIM1. If c� overrides d�, then e� = c�. If d� replaces
c�, then we see by inspection that c� <: d� implies c� ≡ d�. The
proof for &∗ is similar, since &∗ and & are identical with respect to
interfaces.

THEOREM 1 (Progress).
If ∅  t wf then either t is a value, or t −→ t′ for some t′.

Proof: By induction on the derivation of t wf.

• Case t = E[u], and u �= v. By lemma 5, u wf. By the induction
hypothesis, u −→ u′, and t reduces by E-CONGRUENCE.

• Case W-APPLY — t = v(w). By lemma 4, v is a function, and
t reduces by E-APPLY.

• Case W-PROJECT — t = v.�. By lemma 4, v is a record with a
slot �, and t reduces by E-PROJECT.

• Case W-ISECT — t = v & w. An intersection is well-formed
only if it can be eliminated, and that can happen in one of two
ways:
(1) v & w ≡ v by SE-ISECTELIM1, given that v <: w. By
lemma 4, v and w must either both be records, or must both be
functions. If they are both records, then t reduces by lemma 7.
If they are both functions, then t reduces by E-COMPOSEFUN.
(2) If v & w ≡ w′ by SE-COMPOSEFUN/REC, then
v & w −→ w′ by E-COMPOSEFUN/REC.

• Case W-COMPOSE and W-INHERIT —
Similar to W-ISECT; the same lemmas apply.

• Case W-INTERFACE — t = ↑v. ↑v can always be reduced by
E-INTERFACEFUN/REC.

THEOREM 2 (Preservation).
If Γ  t wf, t −→ t′ then Γ  t′ wf, t ≡ t′

Proof: By induction on the derivation of t wf.

• Case t = E[u], and u −→ u′. By lemma 5, u wf. By the
induction hypothesis, u ≡ u′ and u′ wf. E[u] ≡ E[u′], and
E[u′] wf by lemma 6.

• Case W-APPLY — t = v(w). We know v must be a well-
formed function. v(w) ≡ t′ by SE-APPLY. t′ wf by lemma
3.

• Case W-PROJECT — t = v.�. We know v must be a well-
formed record. v.l ≡ t′ by SE-PROJECT. t′ wf by lemma 3.

• Case W-ISECT — t = v & w. The intersection can be elimi-
nated in one of two ways:
(1) v & w ≡ v by SE-ISECTELIM1, given that v <: w. By
lemma 4, v and w must either both be well-formed records, or
must both be well-formed functions. If they are both records,
then by lemma 7, v & w −→ t′, such that t′ ≡ v. Since v wf, it
follows that t′ wf.
If v and w are functions, then v&w ≡ t′ by SE-COMPOSEFUN.
Moreover, the body of v must be a subtype of the body of w, so
the intersection of the two bodies is well-formed.
(2) v & w ≡ t′ by SE-COMPOSEFUN/REC. We already have a
proof that t′ wf.

• Case W-COMPOSE and W-INHERIT —
Similar to W-ISECT. In the case of record composition how-
ever, the previous line of reasoning shows that μx{c} &∗
μx{d} −→ μx{e}, such that μx{↑e} wf (it only verifies the
interface). Every field implementation in e is well-formed in
the context of either μx{c} or μx{d}, and is thus well-formed
in the context of μx{e} by lemma 2.

• Case W-INTERFACE — t = ↑v. ↑v ≡ t′ by SE-INTERFACE.
If v is a record, then d� wf implies ↑d� wf for all �.
If v is λ(x : u). s, then s wf implies ↑s wf by W-INTERFACE.

6.9 Decidability and Recursion

THEOREM 3 (Decidability). The type system of DEEP is unde-
cidable.

Proof: Evaluation of a term may not terminate because records
allow general recursion. Subtyping is undecidable because sub-
typing includes evaluation. (By theorem 2, t −→ t′ implies that
t ≡ t′.) Well-formedness depends on subtyping, so all judgments
are undecidable. �

The fact that the type system is undecidable is not necessarily
a problem, so long as a decidable semi-algorithm exists which
captures the cases that we wish to model — namely systems of
mutually recursive virtual classes. We present an informal outline
of such an algorithm, but do not provide any proofs.

Our strategy uses fields to ascribe types to recursive implemen-
tations. Consider the following non-terminating definition:

μg { i n f = g . i n f + 1 ; }
This record is not well-formed because g. inf has no bounding

type — there is no value v for which g. inf <: v — and it can
therefor not be used as an argument to “+”. When the compiler
attempts to find such a bounding type, it will fail to terminate. This
is an example of a dependency cycle — the bounding type for g. inf
depends on g. inf .

Cycles can be broken by hiding recursive definitions within
fields. The following definition is well-formed because inf is given
an explicit upper bound of Int .

μg { i n f : I n t = g . i n f + 1 ; } ;

Surprisingly enough, regular recursive types such as lists and
trees do not create cycles:

μg{
I n t L i s t = {

head : : I n t ;
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t a i l : : g . I n t L i s t ;
} ;

} ;

The above definition is well-formed because IntList is already
defined as a value, and therefore does not need to be reduced. (The
slots of a record use lazy evaluation). Nevertheless, it is possible to
create an infinite chain of dependencies using a list-like structure:

μx{
n : I n t = 0 ;
succ = x &∗ { n : I n t = x . n + 1 ; } ;
l a s t = x . succ . l a s t ;

}
It is the definition of last , not the definition of succ, which

fails to terminate. The definition of succ has an upper bound of
↑x, which can be simplified to a value. Once again, we break the
chain by hiding the recursive definition behind a field:

. . . l a s t : I n t = x . succ . l a s t ; . . .

6.9.1 Eliminating unsafe recursion

The above examples demonstrate that many programs for which
type-checking fails to terminate can be transformed into well-
formed programs by adding type annotations. A practical compiler
should detect places where annotations are required (or might be
required) and issue errors rather than stepping into an infinite loop.
A practical compiler can be constructed with two restrictions:

• Recursive calls are not allowed in the interface of functions and
records.

• It is not possible to project the implementation of a field during
type-checking.

A close look at rule SE-PROJECT reveals that whenever a field
is projected from a record, the type-checker has a choice. It can
choose to project the range of the field, or it can choose to project
the implementation. We force it to always project the range.

Detecting recursive calls is not unduly difficult. A cycle is
created by a path x.l1...ln which points to the slot that is cur-
rently being type-checked. To eliminate such cycles, we use an old
trick from lazy languages. A slot is temporarily overwritten with
a “black hole” value while it is being type-checked, and any term
which partially evaluates to “black hole” is an error.

Detecting infinite chains requires a bit more subtlety, because
recursive types (e.g. lists and trees) should remain legal. A recur-
sive path is one which points to an enclosing record or function.
Such paths are well-formed, and it is legal to use them as bounding
types. This makes it possible to perform nominal subtyping within
a set of mutually recursive classes. However, it is not possible to
expand a recursive path to a value, which makes it illegal to call an
enclosing function, or to inherit from an enclosing record.

By eliminating recursive calls in the interface, we guarantee that
the partial evaluation of any term t will terminate to yield a value
v, such that t <: v. Partial evaluation proceeds as normal, but only
the ranges of fields are accessible, so a non-recursive bounding type
is substituted for every potentially recursive call. This restricts the
precision of the partial evaluation engine (see section 5.2), but it
yields a terminating algorithm.

This technique also ensures that the subtyping and well-formed-
ness judgments terminate. If recursive paths are not expanded, then
recursive applications of “�” or “wf” are always invoked on a
smaller term.

7. Extensions
The most obvious limitation of DEEP is that the core calculus only
supports simple overriding. It is not possible for a method m(...)

in a subclass to call super .m (...) , which is obviously a crippling
restriction. We eliminate this restriction as follows.

Instead of defining fields with the syntax l : t = u, we use the
syntax l : t =s u. The term s is a programmer-defined operator
of type λ(x : t, y : t). t, which mixes implementations together.
Composition of fields then changes to the following:

(l : t =s u) &∗ (l : t =s u′) −→ (l : t =s s(u)(u′))

This version of composition no longer replaces one implemen-
tation with the other. Instead, it mixes the two implementations to-
gether in some arbitrary manner which is defined by the operator s.
As far as the type system is concerned, it doesn’t matter what the
field implementation is, so long as the implementation is a subtype
of the range. There are several possible uses of this extension.

To implement the super keyword as defined in Java and C++,
each method of type M is encoded as a field of type λ(x : M). M .
This type represents a function which takes the super-class defini-
tion as its first argument. The mixin-operator s is the flip of function
composition. A composition of classes C1 &∗ ... &∗ Cn will pro-
duce a composition of methods mn ◦ ... ◦ m1. The composition of
methods is then applied to some base definition, usually a no-op,
to yield a single method of type M which chains calls back from
subclass to superclass.

To implement mixin composition with linearization, each method
of type M is encoded as a field which holds a list of functions of
type λ(x : M).M . The mixin-operator s merges two lists together,
maintaining relative order, but eliminating duplicates. Calling the
method involves folding the list with the flip of function composi-
tion, and then applying the result to some base definition as before.

Other mixin schemes are possible. The exact details the schemes
above don’t matter so much as the idea that mixins do not need to
be part of the core language, but can be offloaded to a library.

8. Related Work
The idea of unifying types and objects comes from the the Ohmu
programming language [30], which was a predecessor to DEEP.

The vc calculus [28] is a formalization of the gbeta and Caesar
languages, and was the first calculus to provide full support for vir-
tual classes as attributes of objects. The definition of vc includes
several complications that don’t arise in DEEP. V c is an imperative
language with a mutable heap, and it performs linearization of mix-
ins within the calculus. As explained in section 7, DEEP offloads
linearization to a library. DEEP also follows a purely functional ap-
proach: any imperative constructs would have to be emulated in
some way — e.g. with monads [52] or uniqueness types [5].

Unlike DEEP, the vc calculus is provably decidable, but it gains
decidability at the cost of several restrictions. The type system of
vc is purely nominal; it only handles dependent path types. It is
unclear how structural types such as generics could be added to
vc. DEEP supports full dependent types, with both structural and
nominal typing.

Second, vc does not support final bindings. Final bindings are
an important tool in many situations — arrays as defined in section
4 are a good example. However, there does not seem to be any way
to add them to vc. The vc calculus avoids name clashes during
inheritance by requiring that all slot names be unique. In real
implementations this requirement is enforced by automatic name-
mangling. This technique doesn’t work with final bindings, because
finalizing a slot when refining a virtual superclass will break any
subclasses which attempt to override the same slot (see section 6.4).
DEEP avoids this problem by using exact types, and by re-checking
inherited declarations.

Third, vc restricts inheritance to classes within the same family
— i.e. it is not possible to inherit from a class in a different object.
DEEP has no such restriction.
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The Tribe calculus is both simpler and somewhat more pow-
erful than vc, although its decidability has not been proven [17].
Like DEEP, Tribe uses singleton types to enrich the subtype rela-
tion. Tribe also includes an intuitive notion of subtyping between
families that DEEP lacks. In Tribe, t.l <: u.l if t <: u, whereas
in DEEP, t.l <: u.l only if t ≡ u. This more flexible subtype
rule is possible because every class in Tribe has a unique enclosing
record, so there is a relative path from this to enclosing records. The
tradeoff is that like vc, classes in Tribe can only inherit from other
classes in the same object. Inheritance in DEEP can cross module
boundaries, but subtyping is less flexible as a result.

Nystrom and Myer’s Jx language is an extension of Java which
supports the refinement of static nested classes [41]. Although
Jx does not currently support virtual inner classes, it does use a
dependent type system, so this restriction does not appear to be
intrinsic. The most unusual aspect of Jx is the use of prefix types
instead of path types. The J& language extends Jx with a form of
deep mixin composition much like the one proposed in this paper,
except that name clashes must be disambiguated by hand [42].

Bruce, Odersky, and Wadler have proposed a statically safe
mechanism for refining groups of classes, but their mechanism does
not scale further — there is no way to define groups of groups, and
it is not possible to inherit from a virtual class. [14] The .FJ calculus
developed by Igarashi and Saito is an extension of featherweight
Java which allows the refinement of static nested classes. .FJ has a
similar set of restrictions: it is not possible to inherit from a virtual
class. [33] The Concord language developed by Jolley et. al. uses
the idea of class groups, but it lifts the restriction on inheritance.
[34]

Odersky’s νObj calculus [43] provides a formal treatment of
virtual types, and is the basis for the Scala programming language.
However, although Scala supports virtual types, it does not support
virtual classes. Instead, scala supports explicit self-types, which
can be used to emulate virtual classes to some degree. Like Beta,
however, it is not possible in Scala to inherit from a virtual class.
Moreover, Scala does not perform deep mixin composition auto-
matically; nested classes must be mixed by hand [55].

Duggan and Sourelis have proposed mixin modules as an exten-
sion to ML [23]. Mixin modules have the same fixpoint semantics
as records in DEEP, and use a similar form of composition. How-
ever, there is no subtype relation between mixin modules, so it is a
form of implementation inheritance only.

Bruce has done a great deal of work on match subtyping, and
introduced the concept of exact types [13] [12]. Exact types provide
many of the benefits of dependent types with a great deal less
hassle, but they have not yet been used to support full virtual
classes.

Mixin layers implement deep mixin composition using C++
templates [46]. Like features, this is essentially a generative ap-
proach, since templates are not type-checked prior to instantiation.

The expression problem has been discussed at length in many
papers. Solutions can be found for gbeta [27], Java generics [50],
Scala [55], and Hyper/J [44]. Lopez-Herrejon provides a compari-
son of generative approaches in [37].

Although most prototype languages are untyped, the Omega
language by Gunther Blaschek is an exception [9]. The type system
in Omega is nominal, and like Java, it uses a global class table,
which makes it unsuitable for virtual classes.

8.1 Relation to typed λ-calculi

Subtyping, dependent types, singleton types, and intersection types
have all been extensively studied in the literature. Subtyping has
been added to Girard’s System F and Fω to yield System F<: and
Fω
<:, respectively. Many object-oriented concepts can be translated

into these two systems; subtyping provides a good model for inher-
itance.

System Fω
<: is not quite powerful enough to handle self-types,

but it can be extended with recursive types and F-bounded poly-
morphism [15]. This extension essentially forms the basis for Java
generics, which have been explored as an existing language mecha-
nism for class refinement [50]. Generics with F-bounded polymor-
phism can capture patterns of mutual recursion, but the number of
parameters per class scales with the number of classes involved,
which makes them unwieldy for complex collaborations.

8.1.1 Intersection Types

Intersection types have been used in a number of calculi. System
Fω
∧ is an extension of System Fω

<: which has been used to model
OO languages with multiple inheritance [18]. It is important to note
that intersection types in Fω

∧ are actually much stronger than those
in DEEP.

In DEEP, an intersection is only well-formed if it can be re-
duced to some other term that is not an intersection. As a result,
the type (λ(x: Int ). Int) & (λ(x: Float). Float) is ill-formed. Sys-
tem Fω

∧ has no such restriction – the analogous type Int →Int ∧
Float →Float is perfectly valid.

As a result, intersections in DEEP do not actually allow more
terms to be typed; they are merely a convenient way to reuse code
by merging declarations. This weaker form of intersection is suffi-
cient to handle multiple inheritance, but it is provably less power-
ful. The restriction is a result of the fact that type intersections in
DEEP can be applied to objects, and type safety requires that such
intersections be reducible.

8.1.2 Dependently typed λ-calculi

The systems described above cannot be used to model classes
which are attributes of objects. A further extension is necessary:
dependent types. Igarashi and Pierce show that virtual types can be
encoded in a variant of System Fω

<: which has been extended with
dependently typed records [31]. However, their extension does not
handle mutually recursive classes, and its safety and decidability
has not been shown.

Dependent types are powerful medicine, and it has proved dif-
ficult to combine them with other language mechanisms. Adding
general recursion to the extended calculus of constructions in-
stantly renders the entire system undecidable. Type equality de-
pends on object equality, and object equality involves evaluation,
so the proof of decidability in CC relies on strong normalization
[20]. Recursive types are equally problematic because they can be
used to write a fix-point operator, thus causing the same problem.
The Cayenne language [4], which adds dependent types to Haskell,
runs afoul of this problem, as does DEEP.

Combining dependent types and subtyping is also surprisingly
tricky. A naive combination of the two in the style of System Fω

<: in-
troduces mutual dependencies between the typing, subtyping, and
kinding judgments which makes the meta-theory very difficult. In
System λP<: Aspinall and Compagnoni circumvent this issue by
carefully controlling the order in which proofs are done [3]. In Sys-
tem λC<:, Gang Chen avoids circularity by careful restructuring
of the subtype rules [16]. Neither system supports bounded quan-
tification (as found in System F<:) because of meta-theoretic dif-
ficulties. Jan Zwanenburg has successfully added subtyping with
bounded quantification to Pure Type Systems; he avoids the circu-
larity by defining subtypes over pre-terms, rather than well-typed
terms [56].

Singleton types and singleton kinds are closely related to de-
pendent types [47]. Aspinall makes the crucial observation that in
a system with singleton types, type judgments can be expressed as
subtype judgments, and vice versa [2]. The DEEP calculus exploits

17



this relationship to conflate typing and subtyping, which results in
a significantly simpler meta-theory.

8.2 Relation to partial evaluation

Partial evaluation is a promising technique, and there is a vast
literature on the subject. The classic text by Neil Jones gives a broad
overview of the field [35]. A more recent survey of current progress
and unsolved problems can be found in [36].

The purpose of partial evaluation is to specialize a program with
respect to some static input, in the hope that this will yield faster
code. Specialization is done by shifting computations from run-
time to compile-time. The Achilles heel of partial evaluation is the
fact that the evaluator may not terminate — see [36] for details. For
every function call, the evaluator must decide whether to expand
(i.e. inline or evaluate) the call, or residualize the call, in which
case the computation is deferred until run-time. Partial evaluators
can be broadly classified into two groups with regard to how they
make this decision.

Online evaluators make decisions “on the fly”, based on internal
heuristics. Offline evaluators perform a global binding-time analy-
sis phase before performing any evaluation. This phase adds anno-
tations to source code that describe which computations are static
(compile-time), and which are dynamic (run-time).

The DEEP calculus employs a primitive form of online evalu-
ation. It evaluates expressions on the fly, but does not employ the
sophisticated heuristics found in successful real-world evaluators.
In order to ensure termination, DEEP requires the programmer to
annotate the source code by hand, adding bounding types that force
the type system to generalize at specific points. (DEEP generalizes
where an ordinary partial evaluator would residualize.)

The use of bounding types in DEEP bears a close resemblance
to abstract interpretation, which is a general technique used for a
wide variety of static analysis [21]. Like partial evaluators, abstract
interpreters may fail to terminate. Abstract interpreters use a tech-
nique called widening, which discards enough information to en-
sure that the analysis terminates. There is an obvious parallel be-
tween widening and the use of bounding types in DEEP, but we
have not pursued this issue further.

9. Conclusion
The DEEP calculus provides type-safe support for virtual classes.
Objects, classes, and modules are all modeled as records, and
records may be nested to any arbitrary depth. This means that
objects may contain classes as attributes.

OO inheritance is emulated by composing records together; the
composition of two records will merge definitions from both par-
ents. Unlike ordinary inheritance, such merging performs a deep
mixin composition, in which definitions with the same name are re-
cursively composed. This is the same mechanism found in feature-
oriented programming, and it supports the incremental refinement
of large-scale class hierarchies.

The most innovative aspect of the DEEP calculus is the fact that
it combines types and objects into a single construct, which we call
a prototype. Every object denotes a type, and every type is a first-
class object. Type safety relies on subtyping between prototypes,
rather than typing.

Prototypes have two main advantages. First, prototypes com-
bine three big ideas — dependent types, singleton types, and sub-
typing — into a unified whole. This mechanism supports a smooth
spectrum of type information, from the very abstract (e.g. Object)
down to the very detailed (e.g. singletons). Because types are uni-
fied with objects, types which depend on objects become a natural
part of the language, rather than a strange and difficult construct.

Second, the subtype relation in DEEP incorporates ideas from
the partial evaluation and abstract interpretation communities. The

static type of a term may just be an upper bound. However, it may
also be an exact value which represents the result of evaluating
the term. The type system includes an interpreter which is capa-
ble of evaluating arbitrary expressions at compile-time. Types thus
become a tool not just for catching errors, but also for code gener-
ation and optimization.

9.1 Limitations and Future Work

The design of DEEP is an attempt to unify ideas from several
different branches of computer science. Currently, this unification
represents the “lowest common denominator” of more advanced
systems. It is thus important to note some of the limitations of
DEEP.

9.1.1 Dependent types

Sophisticated dependent type systems, such as Luo’s UTT [38],
and Connor McBride’s Epigram [40], support inductive data types.
These data types are a limited form of recursive types which only
allow structures of finite size. Primitive recursion over such data
types yields total functions that are guaranteed to terminate, thus
allowing dependent types and recursion to be combined in a decid-
able system. Interestingly enough, such functions can be used to
write “type cast” operators that prove algebraic identities – such as
the commutativity and associativity of addition.

This mechanism addresses the major weakness of DEEP with re-
gard to dependent types, as described in section 4.5. Unfortunately,
the current definition of DEEP relies on general recursion, so there
is no way to construct proofs of this form.

9.1.2 Partial Evaluation

As mentioned earlier, real-world partial evaluators either perform
binding-time analysis, or use sophisticated heuristics to guide the
evaluation process. DEEP does neither, which cripples its ability to
apply partial evaluation to any real-world problems.

However, it might be possible to apply inductive data types here
as well. Dependent type systems with indexed data types provide
exactly the sort of information that a partial evaluator needs —
proofs of termination. In some respects, DEEP represents a first
attempt at combining these ideas, but there is a great deal of work
to be done.
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