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Abstract
Computing a precise points-to analysis for very large Java
programs remains challenging despite the large body of re-
search on points-to analysis. Any approach must solve an
underlying dynamic graph reachability problem, for which
the best algorithms have near-cubic worst-case runtime com-
plexity, and, hence, previous work does not scale to pro-
grams with millions of lines of code.

In this work, we present a novel approach for solv-
ing the field-sensitive points-to problem for Java with the
means of (1) a transitive-closure data-structure, and (2) a
pre-computed set of potentially matching load/store pairs
to accelerate the fix-point calculation. Experimentation on
Java benchmarks validates the superior performance of our
approach over the standard context-free language reacha-
bility implementations. Our approach computes a points-to
index for the OpenJDK with over 1.5 billion tuples in under
a minute.

Categories and Subject Descriptors F.3.2 [Theory of Com-
putation]: Semantics of Programming Languages—Program
analysis

Keywords Context-free Language, Transitive Closure, Java,
Points-to Analysis

1. Introduction
Points-to analysis is a well-researched computational prob-
lem, with important applications to compiler optimisations
and productivity tools. Much progress has been made for
the C programming language [2, 34, 49], which establishes
a hierarchy of analyses that trade-off speed for precision.

In the Java1 context, the main research focus is on field-
sensitive analysis, which tracks the dataflow between heap
objects that are stored in and loaded from fields. Points-to
analyses for Java vary in precision, and can be context sen-
sitive [25, 30, 44, 45], or insensitive [32, 33], but usually
necessitate field-sensitivity to improve precision.

The points-to problem for Java specifies the task of de-
termining which heap objects a program variable may refer-
ence during runtime. Computing the points-to analysis stat-
ically is intricate in the presence of recursive methods, dy-
namic dispatch, and other complex control-flow constructs.
A light-weight points-to analysis abstracts the statements of
a program in a context-insensitive and flow-insensitive fash-
ion to obtain an over-approximation of the program’s run-
time behaviour.

There are many applications for points-to analysis in-
cluding its use in compilers, integrated development envi-
ronments, bug checking and security tools. Most of these
applications require a whole program analysis for points-
to, i.e., for any program variable in the input program, the
points-to set is to be computed. For example, this whole
program analysis requirement is necessary for security anal-
ysis (as reported in [18]) for which the whole state of the
input program has to be explored. This necessitates exhaus-
tive analysis [30, 32, 48, 49], as opposed to the often faster
on-demand analysis [31, 33, 44, 45, 45]. Whole program
analysis is particularly challenging for cloning-techniques
used for context-sensitivity and for large code bases such as
OpenJDK.

The points-to problem is commonly encoded as a context-
free language reachability (CFLR) problem [23]. In a CFLR
encoding, program variables and heap objects form the ver-
tices of the directed points-to graph, whose edges are la-
belled with the relational semantics for object creation, vari-
able assignment, and field load/store accesses. An instance
of the points-to problem is solved by searching for paths
whose edge labels form sentences that are in the language
of a context-free grammar, that expresses the semantics of
the points-to analysis. Unfortunately, CFLR algorithms are

1 Java and JDK are registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.
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well-known to have a practical complexity of O(n3) [19],
and no algorithm faster than O( n3

logn ) [7] has been discov-
ered, for general graphs with n vertices and general context-
free grammars. Cubic time-complexity is the performance
bottleneck of many static program analyses in practice, due
to their underlying connection to CFLR. Hence, there is need
to optimise the performance of concrete instances of CFLR,
including points-to.

To overcome the performance bottleneck of a field-
sensitive Java points-to analysis, we employ a transitive clo-
sure2 data-structure. Transitive closures have more in com-
mon with regular languages than their context-free counter-
parts. Indeed, Yannakakis’ foundational work on CFLR [46]
expresses the regular language reachability problem via tran-
sitive closure on an expanded graph. Importantly, the CFLR
formulation exposes transitive properties of points-to, hence
we are able to adapt very fast transitive closure algorithms
(e.g. [21]) to solve points-to. Specifically, our contributions
are:

• We introduce a novel algorithm for field-sensitive points-
to analysis using a transitive closure data-structure. We
use a set of potentially matching load/store pairs pre-
computed by an over-approximated bridge oracle to ac-
celerate the fix-point computation. We discuss soundness
and completeness, and detail its implementation.

• We provide a parameterised worst-case runtime complex-
ity analysis for our points-to algorithm, that might ex-
hibit a complexity of O(n4) assuming the worst-case for
the parameters. We provide an empirical analysis show-
ing that, for real-world problems including DaCapo and
OpenJDK, some parameters are nearly constant.

• We conduct experiments with our points-to algorithm
on Java benchmarks, including the very large OpenJDK
dataset, whose points-to relation has over 1.5 billion tu-
ples for which a points-to index is computed in under
a minute. We compare the performance of our algo-
rithm with the standard CFLR algorithm by Melski and
Reps [19], the fast difference propagation-style algorithm
by Sridharan and Fink [32] and a Datalog implementation
using the LogicBlox engine. Our experiments show that
precision is unrecoverable when top-down refinement
techniques are used, such as in [33], therefore bottom-up
refinement is necessary.

This paper is structured as follows: Section 2 presents a
running example for this paper. Section 3 introduces the for-
mulation of points-to as transitive closure, including proofs
on the soundness and completeness of the transformation,
and a presentation of the algorithm skeleton (including a
time-complexity analysis). The specific details of how to im-
plement a fast solver are explained in Section 4. We verify

2 More accurately: reflexive transitive closure, though in the literature the
formulation is typically used without reflexivity.

v1 = new Obj(); // h1
v2 = new Obj(); // h2
v4 = new Obj(); // h3
v6 = new Obj(); // h4
v5 = v4;
v5 = v6;

v12 = v8;
v1.h = v1;
v2.g = v1;
v4.f = v2;
v7 = v5.f;
v9 = v6.f;

v3 = v2.g;
v8 = v7.g;
v10 = v9.g;
v10 = v10.h;

Figure 1: Running example: Java fragment. Class Obj has
fields: public Obj f, g, h;

the correctness and performance claims for our approach ex-
perimentally in Section 5, and revisit the practical complex-
ity discussion in response to experimental statistics in Sec-
tion 6. Finally, we give a brief survey of the literature in Sec-
tion 7, and our concluding remarks and a brief discussion of
future work in Section 8.

2. Points-To via Graph Reachability
Consider the program listed in Figure 1. The dataflow of
the program is constructed from object creations, variable
assignments, and load/store operations on fields. The inter-
play between object creations, variables, and operations may
be expressed as a collection of binary relations that capture
sufficient semantics for an input program to compute flow-
insensitive points-to analysis. Given an arbitrary Java pro-
gram with a set of heap allocation sites Objects, program
variables Vars, and fields Fields, the semantics is given by
the following binary relations:

• Relation assign ⊆ Vars× Vars records the assignment of
program variables to other program variables. For sim-
plicity, casting, variable returning, and the passing of ac-
tual parameters to formal parameters, are all considered
to be assignments.

• Relation alloc ⊆ Vars×Objects records the allocation of
heap objects and the variables they are assigned to, i.e. x
= new Obj();. The Java semantics allows for a variable
to allocate many heap objects, but each object is allocated
by at most one variable.

• Relations loadf ⊆ Vars × Vars, for all f ∈ fields,
record reading from a field of another variable. A distinct
relation exists for every field that the Java program reads
to or writes from. For the statement x = y.f;, we refer
to variable y as the base variable of the load operation.

• Relations storef ⊆ Vars×Vars, for all f ∈ fields, record
writing to a field. The statement x.f = y; has variable
x as the base variable of the store operation.

Since our analysis is flow-insensitive and context-insensitive,
we omit the notion of order between statements, and method
invocations are modelled as a series of assignments in
assign: (1) the transfer of data from actual parameters to
the formal parameters of the called method, (2) object bases
between caller and callee, and (2) return values.

A graphical representation of the binary relations is an
edge-labelled graph. The edge-labelled graph of the code
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Figure 2: Input Graph of Example in Figure 1

snippet from Figure 1 is depicted in Figure 2. Nodes in the
graph V = VVars ∪ VObjects are either program variables (v1
- v12) denoted by VVars, or heap-object creation sites (h1 -
h4) denoted by VObjects. Edges are labelled according to the
relation name from which they were drawn. In Figure 2, we
have omitted the labels for assignment and allocation edges,
as their meanings are clear in context, i.e., assign edges flow
from a variable to a variable, and alloc edges from a variable
to an object-creation, respectively.

The main difficulty in finding the points-to relation is ev-
idenced in Figure 2, namely tracking dataflow information.
Deducing, for example, that variable v12 may point to h1,
requires tracking two principle flows that may happen. First,
a flow may be realised between a variable and an object-
creation via edges in the assign relation, a sequence of as-
signment statements, transferring the object from one vari-
able to the next. Second, a flow may be realised with one
or more load/store pairs. A load/store pair may introduce an
artificial assignment-like edge which we refer to as a bridge.
A bridge connects a stored variable, and the result of a load
statement, if the receiver of the load/store pair reach a com-
mon object-creation, i.e., the base variables may point to the
same object. The bridges of load/store pairs capture the flow
of information through the heap. The tracking of bridges be-
come a recursive problem and can be expressed concisely
with an instance of the context-free language reachability
(CFLR) problem [23]. The instance consists of an input
graph whose edges are labelled by terminal symbols alloc,
assign, loadf , and storef and a grammar given below,

alias → pointsTo pointsTo
bridge → loadf alias storef ∀f ∈ Fields

pointsTo → (assign|bridge)∗ alloc
(1)

with non-terminals pointsTo, bridge, and alias. As a result
of “parsing” the input-graph, relations for the non-terminal
symbols are produced. The non-terminal pointsTo represents
paths between variables and object-creations. An alias path
exists between two variables when we can walk forwards to
a heap object the first points to, and backwards from that ob-
ject to the second variable (i.e. they both point to the same
object)3. A bridge path acts like an assignment edge for in-

3 To simplify, we do not list the rules for backwards paths, which can be
deduced mechanically (cf. [23]).

formation flowing across a load edge, between two alias-
ing nodes, then down a store of the same field. The gram-
mar is based on Sridharan et al.’s work [33], with a super-
ficial difference that our pointsTo reverses the flowsTo ⊆
Objects × Vars in their work. The change of directionality
in the grammar facilitates the description of our new algo-
rithm.

In this work we focus on a core high-performance build-
ing block of field-sensitive points-to analysis for Java. We
have chosen an Andersen-style analysis [2], which is precise
enough for many applications, but makes minimal treatment
of Java semantics. This style of analysis has been imple-
mented by the Java static optimiser SPARK [16]4. Extend-
ing our algorithm to further improve precision, such as with
call-graph construction on the fly, context-sensitivity, or rea-
soning about types and reflection, is out of scope, and left as
future work.

3. Points-To via Transitive Closure
In this section we introduce the algorithmic aspects of our
new points-to analysis. First, we present means to solve the
points-to problem using a transitive closure operation on a
binary relation under the assumption that there exists an or-
acle, which decides the load/store pairs that form bridges
– inferred assign edges representing flow through match-
ing loads/stores. Second, given that pre-computing the or-
acle is expensive, we detail how to solve points-to without
an oracle. We assume that a bridge-finder over-approximates
the oracle, i.e., the bridge-finder determines a set of poten-
tially matching load/store pairs, and the algorithm refines the
bridges employing a transitive closure data-structure.

3.1 Points-To with Transitive Closure Using an Oracle
The most obvious difficulty in computing the points-to re-
lation is in correctly identifying how objects are passed on
using object fields of heap objects. We want to find the
bridges, between load and store, along which the references
flow. A bridge edge acts as a pseudo-assign edge between
the source and the sink of matching load and store edges,
so that reachability can be computed using this bridge edge
instead of the store and load. This is similar to the con-
cept of match edges used by Sridharan et. al. [33]. Fig-
ure 3 depicts our running example with the bridge edges,
{(v7, v2), (v3, v1), (v8, v1)}, as dashed arrows.

4 Specifically the type-unaware version: ignore-types:true
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Figure 3: Example in Figure 1 with bridge edges

Let’s assume that we know the relation bridge ahead of
time from an oracle. The grammar (cf. Eq. (1)) would reduce
to

pointsTo→ (assign|bridge)∗ alloc (2)

Instead of describing the problem as a CFLR problem, we
can express the points-to computation using relations. The
relationship between CFLR problems and relational algebra
has been studied in the seminal work of Yannakakis [46].
For computing points-to as a relation, we introduce a new
relation T that is defined as

T = (assign ∪ bridge)∗

representing the grammar expression (assign|bridge)∗. I.e.
the relation T is the reflexive transitive closure of the binary
relation assign ⊆ Vars×Vars unified with relation bridge ⊆
Vars× Vars.

Semantically, the relation T expresses the value transfer
between two variables. If there is a pair (u, v) ∈ T , then
variable u receives the objects that v may point to either
because u is equal to v, or u and v are connected by a
path consisting of Ebridge ∪Eassign. Hence, the path indicates
a data flow from variable v to u. In the running example,
(v12, v1) ∈ T , since (v12, v8) ∈ assign, and (v8, v1) ∈
bridge.

To obtain the relation pointsTo ⊆ Vars×Objects, relations
T and alloc are composed, i.e.,

pointsTo = T ◦ alloc

where operation ◦ is the composition of two binary relations
(i.e. A ◦ B = {(u,w) | (u, v) ∈ A, (v, w) ∈ B}) and cor-
responds to the concatenation of symbols on the right-hand
side of production rules in the grammar. Hence, the com-
putation of pointsTo requires the computation of the reflex-
ive transitive closure and the binary relation composition.
The fastest known transitive closure algorithms employ a
fast matrix multiplication algorithm and divide-and-conquer
techniques. Their worst-case complexity is in the order of
a Boolean matrix multiplication [21]. Hence, pointsTo is
computable in O(|Vars|2.37) with the fastest known matrix-
multiplication [10, 11] assuming we have an oracle that pro-
vides the relation bridge. However, this approach is not vi-
able since bridge is not known ahead-of-time and computing

it would be at least as hard as computing the entire CFLR
problem.

To overcome this issue, we find an over-approximation
of the relation bridge, and devise a new algorithm based
on transitive closure and a certificate for bridge edges. Note
that an over-approximation of relation bridge can always be
found. For example, the all-pair solution load× store would
be a valid, alas a very imprecise over-approximation of the
oracle.

3.2 Points-To with a Transitive Closure Data-Structure
The fundamental idea of our new points-to algorithm is to
use a reflexive transitive closure data-structure T , to refine
a sound over-approximation of the bridge oracle denoted
by ˜bridge, produced by a bridge-finder. The data-structure
has an underlying carrier relation S for which it answers
queries about its reflexive transitive closure S∗. Initially, the
carrier relation is empty. The carrier relation S can be ex-
tended by operation add(X), which adds set X to the car-
rier set (i.e., S′ ← S ∪X). The operation query(u) returns
the reflexive and transitive elements of u, i.e., query(u) =
{v|(u, v) ∈ S∗}. Efficient transitive closure implementa-
tions keep track of the previously computed results in some
intermediate form to facilitate fast query time [21]. A more
detailed discussion about our transitive closure implementa-
tion is found in Section 4.3.

To use the reflexive transitive closure algorithm as a ve-
hicle to solve points-to, we rewrite the input grammar of
Eq. (1) to capture the semantics of the transitive closure re-
lation T :

pointsTo → T alloc
T → (assign|bridge)∗

bridge → loadf T alloc alloc T storef ∀f ∈ Fields
(3)

Algorithm 1 computes points-to using the modified gram-
mar in Eq. (3), specifically the relations for the non-terminals
T and bridge. In the first step, candidate list W is initialised
by the bridge-finder’s output. The task of the bridge-finder
is to exclude as many potential matching load/store pairs as
possible by still providing an over-approximation for rela-
tion bridge. An efficient and effective bridge-finder is de-
scribed in Section 4 based on Dyck-reachability [48].

After initialising the candidate list W , the algorithm iter-
ates over the candidate list until no new bridge edges can be
added to the carrier relation of T . Inside the loop, we certify
each potential bridge (u, v) with the IS-BRIDGE procedure.
If (u, v) ∈W is a bridge, we add the pair (u, v) to the set N.
After the traversal over W, set N captures all newly certified
bridges and is added to the carrier relation of T, and removed
from the candidate list. After termination, the candidate list
may still contain pairs, caused by the over-approximation of
the bridge-finder. Composing the computed transitive clo-
sure T , after the fix-point iteration, with relation alloc, pro-
duces the points-to relation.
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Algorithm 1 Points-To Computation: requires ˜bridge as an
over-approximation of the bridge oracle; T is the incremen-
tal transitive closure with add and query operations.

1: function POINTS-TO( ˜bridge)
2: W ← ˜bridge
3: T.add(assign)
4: repeat
5: N ← ∅
6: for all (u, v) ∈W do
7: if IS-BRIDGE(u, v) then
8: N ← N ∪ {(u, v)}
9: end if

10: end for
11: T.add(N)
12: W ←W \N
13: until N = ∅
14: pointsTo← T ◦ alloc
15: end function
16: function IS-BRIDGE(u, v)
17: for all (bu, bv) ∈ lsb(u,v) do
18: if (T.query(bu)∩T.query(bv))�alloc 6= ∅ then
19: return true
20: end if
21: end for
22: return false
23: end function

The certifier IS-BRIDGE(u, v) holds if the pair (u, v) con-
stitutes a bridge edge for the current version of relation
T . In order to construct a bridge edge, we need at least a
load/store pair for the same field, whose destination is u
and source v, respectively, and their base variables bu and
bv , may point to a common object. Here � is shorthand for
S � R ⇔ {o | ∃(e, o) ∈ R : e ∈ S}. The function
lsb ∈ Vars× Vars→ 2Vars×Vars retrieves all load/stores base
variables that may emanate from a load/store pair with vari-
ables (u, v), i.e.,⋃

f∈Fields

{bu | (u, bu) ∈ loadf} × {bv | (v, bv) ∈ storef}

To check whether both base variables bu and bv share a com-
mon object, we query the transitive closure for both base
variables. For both queries we obtain a set of variables that
pass on their points-to information to the base variables, re-
spectively. If both sets have at least one variable in common
which was used in an object-creation site, we have a transfer
of data from the store operation to the load operation, and
(u, v) becomes a bridge edge.

3.2.1 Soundness and Completeness
The soundness and completeness of our algorithm is shown
by expressing the computations as a least fix-point of a sys-
tem of simultaneous equations over relation T and bridge.

The systems of simultaneous equations is directly deduced
from the CFLR grammar in Eq. (1) based on Yannakakis’
work [46], and is given as follows,

T = (assign ∪ bridge)∗ alloc

bridge =
⋃

f∈Fields

loadf ◦ T ◦ alloc ◦ alloc ◦ T ◦ storef (4)

where alloc and T denote the reverse relations5 of relation
alloc and T , respectively. The simultaneous system of equa-
tions has two unknowns, which are relations T and bridge.
A solution is a pair of relations (T, bridge) that satisfies the
equations of Eq. (4). Solutions are ordered by a partial or-
der denoted by symbol �. For two solutions (T, bridge) �
(T ′, bridge′) holds, iff T ⊆ T ′ and bridge ⊆ bridge′. The
partial order induces a finite subset lattice, as well.

For our simultaneous system of equations, we seek the
smallest solution. The smallest solution gives a sound solu-
tion for points-to but has the smallest numbers of points-to
relations, which makes it the most precise solution. Tarski-
Knaster’s fix-point theorem states the existence of the small-
est solution, also known as the least fix-point solution. In the
following, we outline that our algorithm is computing the
least fix-point solution for the simultaneous equation system
of Eq. (4).

Proposition 1. For a given T , certificate IS-BRIDGE(u, v)
holds iff

(u, v) ∈
⋃

f∈Fields

loadf ◦ T ◦ alloc ◦ alloc ◦ T ◦ storef (5)

We observe that the condition, T.query(bu)∩ T.query(bv)�
alloc 6= ∅, is equivalent to (bu, bv) ∈ T ◦ alloc ◦ alloc ◦ T
assuming that the relation alloc has for each object-creation
site a single variable only, which in general holds for Java,
because new() cannot assign a newly created instance to
more than one variable. By the definition of lsb(u, v), we
connect the term with all load/store pairs over all fields, and
conclude that (u, v) is a member.

Lemma 1. In the i-th iteration, the transitive closure repre-
sents the set

T0 = assign∗

Ti = (assign ∪ bridgei)
∗ ∀i > 0

where

bridgei =
⋃

f∈Fields

loadf ◦Ti−1 ◦ alloc ◦ alloc ◦Ti−1 ◦ storef

From Proposition 1 we have the certified bridges, and
procedure IS-BRIDGE certifies according to the “given T ”
from the (i−1)-th iteration, initialised with the assign edges.

5 Iff for a pair a, b, relation aRb holds, then the reverse relation bRa holds.
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In each iteration new bridges are added that could be certi-
fied and that have not been added yet. We can show by in-
duction that the above lemma holds. Since the number of
pairs in relations T and bridge is finite, and Ti+1 ⊇ Ti,
bridgei+1 ⊇ bridgei holds, after a finite number of iter-
ations, the fix-point is obtained. We denote with T∗ and
bridge∗ relation Ti and bridgei, respectively, for the smallest
i, such that Ti+1 = Ti, and bridgei = bridgei+1.

Theorem 1. (T∗, bridge∗) is the least-fix-point solution.

The theorem can be shown by Kleene’s fix-point theorem
using the monotonicity of the fix-point equations.

3.2.2 Complexity
We present the algorithm’s worst-case runtime complexity
in parametric form, and as a function of vertex-set size only,
which we refer as “absolute form”. The parametric form pro-
vides some insights into the nature of the program’s execu-
tion, and why this approach may be faster than the standard
method in practice. The absolute form relates the running
time to the size of the input, noted n, measured as the number
of program variables and object-creation sites. Converting
the parametric form to the absolute form produces a conser-
vative over-estimate of the runtime complexity which may
be unrealistic for concrete instances.

Let the cost of updating a transitive closure over n ver-
tices when adding m new edges be noted TU(n,m). Sim-
ilarly, let TQ(n) note the time a transitive closure for n
variables takes to query all reachable nodes from a single
source. Finally, we shall call k the stratification depth which
is the number of iterations required in the outer-loop of Al-
gorithm 1.

Lemma 2. For input problems with n = |V |, l = | ˜bridge|,
|N |-sized updates to the incremental transitive closure, and
a stratification depth of k, the time complexity is asymptoti-
cally bounded to O(k(TU(n, |N |) +TQ(n)l)).

The lemma is immediate from the definition of Algo-
rithms 1. The parametric complexity can be converted to an
absolute complexity bounds for inputs with n vertices as fol-
lows:

Lemma 3. For input problems with n = |V |, the time
complexity is asymptotically bounded to O(n4).

The lemma can be shown by substituting conservative
values in Lemma 2. We make the following assumptions:
First, the stratification depth k can not exceed n, since each
level of depth requires writing to and reading from at least
one variable each, so the depth is at most n

2 . Second, the
bridge-finder may return up to n2 pairs of load/store edges.
Third, updating the incremental transitive closure can be
no worse than performing the entire closure from-scratch,
which takes O(n2.37). Fourth, querying the incremental
transitive closure takes O(n) time (cf. Section 4.3). When
the transitive closure is represented by a boolean adjacency

matrix, we iterate over the n other variables to check if both
base variables reach it. For any variable that both base vari-
ables reflexively and transitively reach, checking that this
variable is an allocation site is a constant-time operation.
Therefore the complexity is O(n(n2.37 + n2n)) = O(n4).

Based on Lemma 3, we deduce that the basic CFLR
algorithm is superior to our algorithm assuming worst-case
parameters. However, we justify the use of this technique by
experimental validation (see Section 5), which shows that in
practice the performance is significantly better, since some
parameters do not exhibit their worst-case behaviour (see
Section 6).

4. Implementation
This section describes the implementation of our fast points-
to analysis. Engineering effort was necessary to create
an efficient implementation using new data-structures for
transitive closures. In particular, the algorithm from Sec-
tion 3 requires a bridge-finder to over-approximate the re-
lation bridge, and a transitive closure structure to certify
the bridges. The algorithm is implemented in three stages.
The first stage is the partitioning of input vertices into
an initial set of weakly-connected points-to components
(aka. componentisation, cf. Sec 4.1). Next, the bridge-finder
simultaneously merges components and computes the ora-
cle (aka. folding, cf. Section 4.2). Finally, we incrementally
certify the correct edges (aka. refinement, cf. Section 4.3), as
shown in Algorithm 1.

4.1 Componentisation
Our approach to computing points-to information relies on
an incrementally updated transitive closure along assign-
ment edges in the program graph. In programs containing
no loads or stores, this can be achieved trivially with the
grammar pointsTo = assign∗ ◦ alloc (cf. Eq. 1). In the pres-
ence of loads and stores, the relation becomes an under-
approximation of the solution. We can compute the under-
approximation of the points-to relation, by first partitioning
the graph into subsets of vertices that are weakly connected
amongst Ealloc ∪ Eassign. We call this computation the com-
ponentisation stage.

Components are computed by traversing the graph fol-
lowing reversed assign edges starting at heap object vertices.
For each heap object vertex, a new component is created, and
all visited vertices are associated with this component. If a
vertex is visited that has already been assigned to a compo-
nent then the respective components are merged. Finally, the
sources of load edges with sinks already assigned to com-
ponents are considered as “pseudo-heap objects”, and new
traversals are started there. We can think of load edges as
providing pseudo-allocations to the heap objects that had to
be allocated for the base variable of the load.

The result of this step is a component cover - some (but
not necessarily all) vertices are associated with exactly one
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component. The vertices not associated with components
represent vertices that can not reach any heap object vertex,
and will therefore always have empty points-to sets. These
vertices can be excluded from further analysis.

v1h1

h2 v2

h3 v4

v7

v3 v8

storeg loadg

storef

loadg

loadf

v5 v6 h4

v9

v10

loadf

loadg

storeh loadh

v11

v12

Figure 4: The running example, broken up into its initial
components (grey boxes)

Figure 4 depicts the component cover generated for the
running example. The component containing v8 and v12 is
an example of a component computed using a virtual pseudo
heap object vertex induced by the loadg edge. The vertex
v11 cannot be associated with a component and can be safely
removed as discussed above.

4.2 Folding
According to the abstract implementation from Section 3 we
require a bridge-finder to over-approximate the indirect as-
signment across load/store pairs. From an engineering per-
spective, several options are available to us, with different
trade-offs. From least accurate to most, some options are:
(1) all store-load pairs might bridge, (2) all store-load pairs
of the same type might bridge, (3) all store-load pairs for the
same field might bridge [31], (4) all store-load pairs whose
base-variables alias might bridge, and (5) all store-load pairs
for the same field whose base-variables alias might bridge.
Note that the last of these options is equivalent to computing
the exact solution (so a perfect oracle), but the fastest known
algorithms for this are of near-cubic complexity [7].

For our algorithm we choose the fast bi-directed Dyck-
reachability relationship by Zhang et al. [48], due to the
speed of evaluation and the acceptably high precision for
alias. This phase of the algorithm is therefore called Dyck-
folding. Informally, this mechanism treats allocation and
assignment edges similar to Steensgaard [34] equivalence-
based approach, and collapses equivalent sets when the
load/store paths between them form properly-balanced paren-
thesis structures over their fields. The over-approximation of
the points-to relation when using this method derives from
the lack of directionality information, which is lost when the
input is converted to a bi-directed Dyck-reachability prob-
lem.

The component {v4, v5, v6} in the running example (Fig-
ure 4) shows how bi-directionality produces false positives.
Normally, v4 cannot reach h4 and v6 cannot reach h3. Dur-
ing the folding stage, all nodes in the same component are
viewed as inter-reachable, hence, since v4,v5 and v6 are in

the same component, v4 and v6 are falsely determined to
point-to h4 and h3 respectively. The underlying problem is
that the equivalence relationship used to build components
is transitive, while alias is not.

We use the initial component cover generated in the
componentisation stage as equivalence classes for the fold-
ing stage followed by running the fast bi-directed Dyck-
reachability algorithm over the component graph. Bridges
are created when matching load-store pairs, those with load
sinks and store sources in the same component, are encoun-
tered. If the load sources and the store sinks are in different
components, the respective components are merged (fold-
ing). Book-keeping for the later refinement stage requires
modifying the fast-Dyck algorithm [48].
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h2 v2

h3 v4
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v3

storeg loadg

storef

loadg

loadf

v5 v6 h4

v9

v10

loadf

loadg

storeh loadh

g

f

v8 v12

Figure 5: Applying a Dyck fold

Whereas Zhang et al. sought to compute which vertices
belong to the same equivalence class, we also need to record
additional information on why two components were col-
lapsed. For this purpose, we create symbolic bridge vertices
in the collapsed components to store this additional infor-
mation. Bridge vertices indicate which field was collapsed
in order to record which component the base variables were
members of. Figure 5 illustrates this approach. The squares
represent the newly introduced bridge vertices. Bridge ver-
tices are labelled with the field of the respective load and
store edges, and the dashed line is used to link the bridge ver-
tices to the respective components they were derived from.
The dotted lines do not represent edges in the graph.
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h2 v2
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storeh loadh

g

f

v12

Figure 6: This graph shows the need to connect store/load
edges to pre-existing bridge nodes when they are collapsed

Bridge vertices allow for multiple pairs of load/stores to
be collapsed into them. Consider the example in Figure 6.
Both components of v7 and v9 must be collapsed to v2, but
the bridge vertex is created only once (for the first collapse),
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and re-used when the second fold is applied. During the fold-
ing stage, initial components are merged together according
to their bi-directed equivalence. Once completed, the result-
ing components form an over-approximation of the alias re-
lation where comp(u) denotes the component of vertex u:

Lemma 4. ∀u, v ∈ V Vars : alias(u, v) ⇒ comp(u) =
comp(v)

The lemma holds since the alias relation indicates that
two variables transitively reach the same heap object along
bridge and assignment edges, finishing with an allocation.
This implies that they would end-up in the same component,
since vertices sharing an alloc, assign, or bridge edge have
been collapsed.

The final result of the folding stage on our running ex-
ample can be seen in Figure 7. Bridge edges for the oracle
can be easily expanded at this stage as the cross product of
nodes into and out-of the bridge node. Componentisation in-
formation is not needed any more, as its only purpose was to
compute the bridge oracle efficiently.

4.3 Refinement
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Figure 7: Running example after folding

The refinement for the over-approximated points-to/alias
sets can be performed either in bottom-up or top-down fash-
ion. In a top-down approach, the incorrect results of the
over-approximation are iteratively pruned if it can be estab-
lished that the respective store and load end points cannot
alias. This strategy was suggested by Sridharan et al. [33].
Top-down approaches have the advantage that they can be
terminated in any refinement iteration without producing
false negatives, making them appealing for demand driven
or time-critical applications.

Unfortunately, top-down techniques can be very im-
precise on certain programs, due to the presence of self-
supporting bridges. Consider the graph depicted in Figure 8.
The question is whether v10 can point to h1. There is clearly
a path to support this: 〈v10, v11, v7, v5, v1, h1〉. But this
path contains the bridge edge (v11, v7). To confirm that this
is still valid, we have to show that v8 (the source of the re-
spective store edge) and v3 (the sink of the respective load
edge) may alias. Indeed this is the case, as both can point to
h2. However, for v3 to point to h2, the bridge edge (v4, v2)
is required. To confirm that this is still valid, we have to
demonstrate that v5 and v9 may alias, and this is only the

h1

v1

h2

v2

h3

v4 v3

v5 v6

v7 v8 v9

v10

v11

storef

storeg

loadf

loadg

bridge (for field g)

bridge (for field f)

Figure 8: A self-supporting bridge pair. This graph is drawn
from the hsqldb DaCapo 2006 benchmark (with variables
renamed and irrelevant edges removed).

case if we can use the bridge edge (v11, v7) (then both can
point to h1). For this purpose, the argument becomes cyclic.

To overcome the precision limitations of top-down refine-
ment, the bottom-up refinement as described in Section 3
was chosen. Bottom-up evaluation is more expensive than
top-down due to the need for iterative re-evaluation, but pro-
duces a precise least-fix-point solution rather than an over-
approximated solution.

The bottom-up approach starts with a non-solution and
needs to be iterated until a fix-point is reached. Hence, termi-
nating the refinement iterations before reaching the fix-point
would lead to false negatives, making the analysis unsound.
However, our implementation uses a fast transitive closure
algorithm that takes full advantage of the sparse nature of
the graph. At each iteration, we check the intersection of the
points-to sets for the base variables of the bridges edges pro-
duced by the bridge-finder. If these sets overlap, the bridge
edge is certified. Certified bridge edges are added in bulk
at the end of the iteration to minimise re-computation of
the transitive closure. This process is repeated until no more
bridge edges can be certified.

Figure 9 shows the refinement step performed on the run-
ning example. In this case, the fix-point is reached after two
iterations, since certifying (v8, v1) depends on (v7, v2) to
establish that v7 and v2 have intersecting points-to sets. The
two edges represented by dotted lines cannot be certified.
Note that (v9, v2) would also be excluded by top-down re-
finement. However, top-down refinement would not be able
to exclude (v10, v1) as this edge is self-supporting.

Figure 10 shows the final transformed graph. Now load
and store edges can be removed and a precise points-to index
can be computed from alloc, assign and bridge edges only,
via transitive closure.

To achieve high performance, the computation of the
transitive-closure and the points-to intersection must be fast.
We use the algorithm suggested by Nuutila [21]. This al-
gorithm uses Tarjan’s classical algorithm [36] to compute
strongly connected components (SCC), and successor sets
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Figure 9: Bottom-up refinement produces the precise set
of bridges (dashed lines). A bridge’s label indicates which
iteration it was certified in.
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Figure 10: Transformed graph after refinement

are shared amongst the members of the same component. We
follow van Schaik and de Moor’s [40] suggestion to repre-
sent successor sets using compressed sparse bit vectors, and
decided to use CONCISE for this purpose [40]. The time re-
quired to check points-to intersection is O(|V |) in the worst
case, but in practice we observe significantly better perfor-
mance due to the small size of the points-to sets. Our use of
the reasonably accurate Dyck-reachability oracle is impor-
tant here to keep the number of alias checks low.

5. Validation
We evaluate the proposed solver on a set of experimental
benchmarks drawn from real-world programs.

5.1 Methodology
5.1.1 Implementations
Our experiments verify the viability of the transitive-closure
based points-to evaluation strategy via comparison with
well-known techniques available both as commodity soft-
ware and in the research literature. The implementations
are:

• WL: the worklist algorithm due to Melski and Reps [19,
33].

• DP: the difference-propagation algorithm due to Sridha-
ran and Fink [32].

• LB: a Datalog implementation6 using the LogicBlox en-
gine, version 3.9.

• TC: our transitive-closure implementation.

All implementations (except the proprietary LogicBlox)
are written in Java for JRE version 1.7.0 65. All experiments
are run on an Intel® i7-4790 3.6GHz machine, 32GB of
RAM, running Lubuntu 14.10. Since the implementations
are single-threaded, execution times reported refer to wall-
clock time-to-completion.

5.1.2 Datasets
Primarily, our experimental framework uses the DaCapo
benchmarks [4] as input programs to generate points-to
information. Static information from the 2009-Bach ver-
sion of DaCapo is dumped by the Doop framework, version
r-160113, which makes use of Soot 2.5.0 [39], and Tami-
flex [5] 2.0.1. Benchmark information is converted from the
output of Doop (.facts files) to raw .csv files by simple
text substitution during pre-processing. We do not include
performing this pre-processing step in any algorithm for
the purpose of runtime or memory usage experimentations.
Pre-processing is the same for all algorithms, and would
typically be handled by an analysis driver, which is out-of-
scope for this research. The DaCapo benchmarks are sup-
plemented with a very large points-to dataset, the OpenJDK
version 1.7.0 b147. Due to its size, the OpenJDK dataset
was generated by proprietary systems.

5.1.3 Correctness of Implementation
We run some tests to support our claims on the soundness
and completeness of our algorithm (Section 3.2.1) and to
ensure that we implemented the other algorithms we use for
comparison correctly. To verify the correctness of the vari-
ous algorithms and their implementations, we first computed
the points-to relation using the basic worklist algorithm WL.
Due to the size of the OpenJDK dataset, WL is unable to
compute the points-to relation. In this case, a proprietary sys-
tem was used.

We then used these pre-computed points-to relations to
check whether all algorithms computed the same result. I.e.,
we used the pre-computed points-to relation as test oracle,
and checked (1) whether the points-to relation computed by
the tested solver is a subset of this test oracle (test for false
negatives – soundness), and (2) whether the test oracle is a
subset of points-to relation computed by the tested solver
(test for false positives – precision). We run these tests for
all programs in the DaCapo dataset. For the OpenJDK, we
run a similar test using a subset of the test oracle.

6 LogicBlox runs a custom logic program which computes the same anal-
ysis that WL, DP, and TC do (as described in Section 2). It is simpler and
less precise than the context-insensitive analysis distributed with Doop [28],
since the latter performs on-the-fly call-graph construction, improving pre-
cision, which our TC implementation does not currently support.
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Table 1: Vertex, edge, and solution sizes for the problems
used in our evaluation. For this table only, benchmark names
are displayed in full.

Bench |V | |E| |EpointsTo|
sunflow 15,464 15,957 16,354
lusearch 15,774 14,994 9,242
luindex 18,532 17,375 9,677
avrora 24,690 25,196 21,532
eclipse 41,383 40,200 21,830
h2 44,717 56,683 92,038
pmd 54,444 59,329 60,518
xalan 58,476 62,758 52,382
batik 60,175 63,089 45,968
fop 86,183 83,016 76,615
tomcat 111,327 110,884 82,424
jython 191,895 260,034 561,720
tradebeans 439,693 466,969 696,316
tradesoap 440,680 468,263 698,567
openjdk 1,621,634 1,964,146 1,570,820,597

5.1.4 Experiments
Our evaluation focuses on the runtime performance of the
TC implementation, and examining the proportional execu-
tion times of the componentisation, folding, and refinement
stages in practice. Specifically, we:

• Compare the index-generation/query times required by
TC against the alternatives.

• Evaluate the proportional execution time of the compo-
nentisation, folding, and refinement stages of TC.

• Quantify the solution space of the DaCapo/OpenJDK
datasets.

• Compare the bridge-finder and refinement strategies of
our algorithm against alternatives in the literature.

5.1.5 Distribution
All implementations are available online7, including scripts
to perform the experiments described in this section, and
input-data for the DaCapo datasets.

The Datalog implementation relies on the proprietary
LogicBlox engine, an academic or commercial license must
be obtained. The logic program run by LogicBlox is pro-
vided in source-form in the appendix and the online distri-
bution.

5.2 Datasets
We present a breakdown of the problem and solution sizes
by benchmark in Table 1. Our input problems represent a
large range in problem sizes, though the OpenJDK dataset is
significantly larger than any of the DaCapo problems. It is

7 https://bitbucket.org/jensdietrich/

gigascale-pointsto-oopsla2015

Table 2: Solution statistics by benchmark. The average and
maximum size of a variable’s points-to-set, and the maxi-
mum number of loads/stores-per-field.

Bench Avg. Max. Loads/f Stores/f
sun 1.06 140 530 11
lus 0.59 35 46 21
lui 0.52 35 94 21
avr 0.87 342 104 11
ecl 0.53 88 119 11
h2 2.06 457 520 13
pmd 1.11 221 998 212
xal 0.90 221 998 25
bat 0.76 681 155 20
fop 0.89 285 94 16
tom 0.74 325 512 38
jyt 2.93 1,878 2,118 1,363
trb 1.58 581 517 144
trs 1.59 581 517 144
jdk 968.67 82,665 962 85

interesting to observe that the edge sets are mostly equal in
size to their respective vertex sets. Our benchmark suite is
highly sparse, which points-to graphs are known to be in the
literature.

The relationship between the problem size and the so-
lution size is less clear. The EpointsTo set varies greatly in
size when compared to V , which indicates variable degrees
of connectedness in the input problems. Indeed, Table 2
demonstrates this. The average and maximal sizes of points-
to sets in the DaCapo benchmarks varies significantly. We
attribute the outlying OpenJDK to the relatively higher pro-
portion of large points-to sets in strongly connected compo-
nents (see Appendix A, Table 6).

Table 2 also shows the maximal bound for load/store
edges, how often the most loaded/stored field is referenced.
This number motivates reasoning about the work of the
bridge-finder in practice. Since the load/store bound does
not scale with program size, but rather problem-specific in-
ternals, we have evidence that the work of a bridge oracle
does not scale quadratically with the size of the program.

5.3 Performance
The execution time and memory usage8 for the various
solvers are shown in Table 3. We clearly see the distinc-
tion between the more scalable implementations (LB and
TC) and the non-scalable ones (WL and DP). In general,
WL and DP exhibit the scalability that these techniques
are known for, respectively cubic and quadratic time and
space. The Datalog implementation performs well on the
DaCapo benchmarks, particularly the larger Tradebeans

and Tradesoap, however the time needed to process Open-

8 The memory consumption of LB is internally limited to 75% of system
memory.
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Table 3: Runtimes (s) and memory consumption (MB) for all benchmarks. The WL and TC implementations timed out after 2
hours on the OpenJDK problem.

Bench WLtime DPtime LBtime TCtime WLmem DPmem LBmem TCmem

sun 0.21 0.20 1.01 0.38 74 77 227 96
lus 0.19 0.18 1.01 0.42 75 78 224 96
lui 0.21 0.19 1.01 0.46 81 80 226 110
avr 0.51 0.32 1.02 0.60 89 92 225 127
ecl 0.48 0.40 1.04 0.74 122 145 232 170
h2 1.92 0.83 1.11 0.74 137 226 233 211
pmd 1.61 0.58 1.11 0.80 152 228 236 220
xal 1.72 0.71 1.09 0.84 161 235 239 223
bat 1.23 0.97 1.08 0.80 161 242 239 221
fop 2.70 2.05 1.12 1.08 242 244 245 262
tom 4.45 2.13 1.15 1.27 235 326 252 303
jyt 16.62 9.83 1.54 1.86 379 611 289 502
trb 122.90 52.36 1.95 4.34 796 1,022 378 910
trs 124.56 52.44 1.96 4.39 795 1,025 378 910
jdk * * 3,102.10 40.13 * * 23,530 3,296

JDK is significantly worse than TC. The TC implementation
is the most scalable option, as evidenced by the under-a-
minute runtime and relatively small memory footprint, for
the largest benchmark. Note that the computational improve-
ment does not come at the cost of increased index-querying
times, which are reported in Appendix B.

The disparity between scalable and poorly-scaling algo-
rithms deserves further treatment. The OpenJDK problem is
only 4x larger than the next largest benchmark (Tradesoap),
and yet the WL and DP implementations timeout on this
problem. Indeed, the LB implementation slows down by
1582x compared to its runtime on Tradesoap. The reason
for this, and a great advantage of TC, is that the WL, DP, and
LB executions are intrinsically tied to the size of the output,
which is almost 2250x larger. Specifically, WL’s worklist is
populated by newly discovered points-to edges, which drives
the search for more edges. Similar is true of the difference
sets in DP and the pointsTo relation in LB. By contrast, TC is
only affected by the output size when checking the alias re-
lationship between load/store bases. Having a larger (more-
populated compressed bit-vector) relation, does not demand
significantly more computation to check aliases (non-empty
intersection). Without compression, the memory consump-
tion of WL, DP and LB will also be affected.

In light of the faster execution time for TC we are inter-
ested in how the computations break down. Referring to the
stages of the algorithm discussed in Section 4, componenti-
sation, folding and refinement, Figure 11 shows the propor-
tion of execution time devoted to these stages. We observe
that for the smaller DaCapo benchmarks, refinement makes
up more than half the execution time, where larger bench-
marks require proportionally less time. The ratio between
componentisation and folding seems independent of prob-
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Figure 11: Execution time for TC devoted to componentisa-
tion, folding, and refinement, as a proportion of total time.

lem size, though, at least for the largest benchmarks, folding
accounts for the most time.

5.4 Bridge-Finders
Our implementation uses bi-directional Dyck-reachability [48]
as its bridge-finder. This decision is motivated by a trade-off
between having an accurate finder (which necessitates less
work during refinement) and having a fast finder (less work
during folding). Some alternative bridge-finders are shown
in Table 4, displaying the number of potential bridges they
find. Using the all-pairs bridge-finder produces prohibitively
many pairs, between two and four orders of magnitude
greater than the true amount. The same-field bridge-finder,
which was used by Sridharan et. al. in [31], varies signif-
icantly in precision, most notably pmd produces 37x more
potential bridges than Dyck.
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Table 4: Comparison of different bridge-finders: every load
with every store [All], loads and stores for the same field
[Field], bi-directional Dyck-reachability used by TC [Dyck],
and the true number of bridge edges [True].

Bench All Field Dyck True
sun 8.61·105 3,934 886 747
lus 1.46·106 5,037 793 770
lui 2.87·106 8,722 1,228 1,212
avr 3.58·106 4,630 756 722
ecl 4.39·106 6,444 1,430 1,096
h2 8.31·106 12,174 3,492 3,281
pmd 2.20·107 65,849 1,908 1,752
xal 2.45·107 31,041 2,233 2,104
bat 1.20·107 19,405 2,397 1,948
fop 1.43·107 12,551 1,962 1,744
tom 4.93·107 30,863 8,052 7,700
jyt 6.12·107 55,776 8,646 8,082
trb 6.15·108 149,642 30,863 29,155
trs 6.17·108 149,724 30,894 29,173
jdk 7.44·109 538,274 84,415 64,716

Table 5: Comparison of refinement strategies. Init shows
the initial precision (reported points-to relations vs actual)
without refinement. TD shows the iterations count of the
top-down refiner. Precision shows the final precision of top-
down refinement. BU shows the bottom-up refiner’s iteration
count.

Bench Init TD Precision BU
sun 0.9857 2 1.0000 4
lus 0.9909 3 1.0000 4
lui 0.9978 2 0.9998 5
avr 0.9949 2 0.9953 6
ecl 0.9460 4 0.9606 5
h2 0.8844 3 1.0000 5
pmd 0.9736 3 1.0000 6
xal 0.9755 2 0.9998 6
bat 0.9857 3 1.0000 4
fop 0.9908 4 1.0000 8
tom 0.9830 4 1.0000 5
jyt 0.8155 3 0.9997 7
trb 0.9661 4 0.9988 6
trs 0.9662 4 0.9988 6
jdk * 5 * 6

5.5 Refinement Strategies
The bottom-up refinement strategy used in our solver is more
expensive than comparable top-down techniques. We jus-
tify its use by presenting precision data as compared with
the top-down refinement strategy favoured by [31, 33]. Ta-
ble 5 shows how precision varies due to refinement. Preci-
sion measures the proportion of correct points-to relations

the top-down solver reports, i.e. its false-positive rate is
1 − precision. The initial precision (assuming all reported
dyck-reachable bridges are correct) motivates the need for
refinement, due to the (nearly 20%) false-positive rate of
some benchmarks. Using top-down refinement (with usually
fewer steps than bottom-up), we are able to bring precision
close to 100%. Unfortunately, sets of bridge edges remain
which mutually confirm the validity of each other, and so
cannot be removed via top-down refinement9. In their own
work, Sridharan et al., using different benchmarks, observe
imprecision (11% pre-refinement, 7% post-refinement [33])
which is consistent with our results, allowing for the time-
budget in their demand-driven analysis and the compounded
imprecision of their same-field bridge-approximation.

6. Complexity Revisited
In this section we revisit the complexity analysis in order
to explain the superior performance exhibited by our algo-
rithm in experiments. We show how this can be attributed
to the topology of the points-to graphs. We argue that the
behaviour of all three steps of the algorithm is potentially
better than quadratic in practice, an improvement over Srid-
haran and Fink’s observation [32].

6.1 Componentisation
Componentisation can be performed in linear time using
simple depth first search (DFS). Note that we can merge
components using proxies. I.e., instead of replacing the com-
ponent already assigned to vertices, we just treat this compo-
nent as an alias for another component. In order to perform
well during the folding stage, our implementation chooses a
good component ordering here, which increases the compo-
nentisation time, especially for larger benchmarks (see Fig-
ure 11).

6.2 Folding
Zhang et al. have demonstrated that the complexity of the
folding step is O(n + m logm), where n = |V | and m =
|E|. Our implementation differs from their algorithm in that
bridge vertices are used. The same-field oracle size reported
in Table 4 is a conservative estimate for the steps that must
be performed by our algorithm: all load/store pairs with
identical fields must be processed. Checking that the store’s
source and load’s sink are in the same Dyck-component can
be done in constant time. Comparing the data in Tables 1 and
4 indicates that the number of these load/store pairs increases
at most linear to the size of the graph, in fact, the largest
values of ratios same-field oracle / vertex count can be found
in smaller programs such as luindex and xalan.

The sparsity of load and stores edges can be attributed
to the fact that Java encourages field encapsulation and

9 The most imprecise benchmark shown is eclipse, at 96%, however
experimentation on other benchmarks has revealed real-world adverse cases
with as low as 40% precision for the bloat dataset that is included in
DaCapo 2006.
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field access through getters and setters through conventions,
tool support and component models. Empirical studies have
demonstrated that even when this convention is violated,
direct access to exposed fields is rare [37].

6.3 Refinement
Refinement is performed in k steps corresponding to the
level of recursion. We have observed that k is a small con-
stant (BU column of Table 5), and that the size of the bridge
oracle set l is roughly linear in the size of the graph (Table 4).
Finally, we use a variant of the simple cubic transitive-
closure algorithm from [40]. The cubic complexity stems
from the fact that m edges must be visited, n2 in the worst
case. As our graphs are very sparse (m ≈ n), the algo-
rithm runs in quadratic time. Moreover, in [40], the au-
thors assume that the complexity of a single successor set
merge operation is O(n). This is only the case if a graph
is rather dense (which is not the case here), and succes-
sor sets consist mainly of literals – sections that cannot be
compressed. Our implementation avoids this by encoding
vertices during depth-first traversal, ensuring that successor
sets often consist of vertices with adjacent indices, hence
more readily compressed. The sets are made even sparser
by not recording all successors, but only the points-to sets
(i.e. the partial successor sets only consisting of heap ob-
ject vertices). For all programs we analysed, including the
OpenJDK data set, we found that the size of these sets was
10 or less for over 92.8% of the variable vertices. The low-
est value (by far) was observed for the OpenJDK dataset.
However, when we consider the sizes of unique points-to
sets, then the share of small points-to sets for the OpenJDK
increases to 98.03%. This indicates that the larger points-
to sets tend to be the points-to sets of variable vertices in
strongly-connected components, and they can therefore be
shared. Also note that the presence of a very few very large
points-to sets that cause the average size of the points-to sets
to increase with the size of the program (Table 2) does not
necessarily make the algorithm slow as long as a dense rep-
resentation can be found10. Then set merging becomes a de-
facto constant time operation. The same applies to the inter-
section operation needed during certification. Therefore, the
transitive closure can also be computed in near-linear time.
This is consistent with the results in Figure 11. It is partic-
ularly interesting to see that large programs need relatively
less time for refinement, even though this part of the algo-
rithm has the highest computational complexity.

7. Related Work
7.1 Transitive Closure
Naive algorithms to compute the transitive closure of di-
rected graphs have cubic time and square space complex-
ity. The computation of transitive closure can be mapped

10 Compressed sparse bit vectors are symmetric in the sense that they can
handle very dense and very sparse areas of the graph equally well.

to binary matrix multiplication, and existing sub-cubic ma-
trix multiplication algorithms can be used [3, 10, 11, 35].
More recent approaches to compute transitive closure pre-
compute an index using effective data-structures that sup-
port fast queries. In many cases, single source – single sink
queries can be answered in constant time. Index construc-
tion must strike the right balance between construction time,
memory space required and query time. Often, index genera-
tion algorithms can take advantage of certain characteristics
of the graph.

In chain / path compression [13], a chain cover is built
and reachability information can be effectively compressed
using these chains. In tree cover [1], a spanning tree is
constructed, and reachability information is represented by
labels that describe descendants within the tree. Both ap-
proaches work well if long chains and spanning trees ex-
ist and can be discovered, but have problems dealing with
cross-chain and non-tree edges, respectively. Several im-
provements have been suggested, including combinations of
tree and chain cover [14], and probabilistic approaches [47].
An alternative is to build an index around hubs within the
graph, i.e., vertices or edges with high betweenness central-
ity. 2-HOP [8] and 3-HOP [15] are based on this idea, 3-
HOP uses “highways” to compress reachability information,
while 2-HOP uses single hub vertices. Based on our exper-
imental results, we found that points-to graphs do not have
any of the topology features, which the aforementioned ap-
proaches require. Points-to graphs tend to be sparse, have
no hubs, and there are no long chains or trees that dominate
these graphs.

A simple yet very effective approach to compute the tran-
sitive closure has been proposed by Nuutila [21]. The algo-
rithm is based on Tarjan’s algorithm to detect strongly con-
nected components [36]. While the graph is traversed using
simple depth first search, successor sets are built and propa-
gated down. In particular, the successor sets of child vertices
are merged into the successor set of a parent vertex, and suc-
cessor sets are shared amongst the vertices within a strongly
connected component. Much of the computational complex-
ity is shifted to merging successor sets. This can be done
effectively by choosing suitable data-structures. Nuutila sug-
gested the use of interval lists, while van Schaik and de Moor
proposed compressed bit vectors [40]. Compressed bit vec-
tors have the advantage that blocks of 32 or 64 vertices can
be processed without computational overhead, a technique
similar to the Four Russians trick [3]. Suitable compression
schemes include WAH [42], PWAH [40] and CONCISE [9].

7.2 CFLR and Points-To Analysis
Yannakakis [46] introduced the foundations of CFLR, show-
ing the relationship between recursively defined relations
and Context-free reachability. There are several known al-
gorithms for computing both general CFLR, and variants
with restricted graph and grammar classes (such as Dyck
grammars on bi-directed graphs). A cubic algorithm for gen-
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eral context-free languages that is based on dynamic pro-
gramming, was proposed by Melski and Reps [19]. The
worst-case runtime complexity of the cubic algorithm was
improved by Chaudhuri, using the Four Russians trick [7],
i.e. dense set operations, reducing the runtime to O( n3

logn ).
Reps [23] applied CFLR to phrase an Andersen-style anal-
ysis [2] for C programs. This was later adapted to a field-
sensitive Andersen-style analysis for Java in the work of
Sridharan et al. [31, 33].

Though our work presents the same points-to formula-
tion as Sridharan et al., the ideas are very different. Most
notably, refinement in their work is not equivalent to our
“certification”-style techniques. Broadly, their match edges
are refined when the client analysis is unsatisfied with the
current precision of the result, meaning the points-to set is
recomputed in their absence via conventional worklist tech-
niques. Notably, “valid” matches are never remembered be-
tween queries, and the removal of matches increases the
work done by future iterations, doubly so in [31], where the
match elided both context and field information. Since we
treat confirmed bridges as assignments, the regular-language
reachability analysis truly is solved by transitive closure,
which the context-insensitive variant [33] cannot leverage,
despite having a regular approximation.

Zhang et al. [48] have proposed a fast algorithm to solve
the CFLR problem for Dyck grammars on bi-directional
graphs. Their algorithm requires the graph have new edges
that simultaneously reverse both the direction and the la-
bels, then it may recursively merges vertices on this bi-
directed graph whenever matching labels are encountered,
producing growing equivalence classes of vertices. Reacha-
bility between vertices is then defined with respect to com-
mon membership in one of these classes in time nearly lin-
ear to the edge-set (O(|V | + |E| log(|E|))). They propose
a memory-alias grammar as an application of their algo-
rithm, which performs a Steensgard’s style analysis [34]
with field-sensitivity. Whilst useful for fast pre-analyses in
some points-to analyses (e.g. [44] and our own work), it
lacks precision on its own. For our algorithm, the fast Dyck
algorithm was fundamental to find potential bridges effi-
ciently with an acceptable false positive rate.

Points-to analysis for C was solved using CFLR by
Zhang et al. in [49]. Their Andersen-style inclusion-based
points-to is simpler than our Java analysis (which has field
sensitivity), but the scalability challenges faced by those
authors are relevant. Firstly, they have a more traditional
CFLR formulation, which is modified to selectively propa-
gate information along meaningful summary edges, unlike
WL, which propagates over all edges. The authors also adapt
Chaudhiri’s [7] sub-cubic improvement for faster runtimes.
Though they have a similar motivation, their approach sig-
nificantly differs from ours, as we abandon the CFLR ma-
chinery entirely in favour of transitive-closure.

Sridharan and Fink have investigated the scalability of
Andersen style analysis and found that it becomes quadratic
if the graph is sparse enough [32]. Their algorithm is based
on Pierce’s difference propagation algorithm [22]. This has
similarities with our algorithm where we propagate points-to
sets. In [44], Xu et al. introduce a points-to analysis that per-
forms a pre-analysis that determines whether two program
variables may be aliases. The pre-analysis is used for filter-
ing out infeasible CFL-paths using an augmented CFLR al-
gorithm that takes the pre-analysis into account. In contrast,
our approach uses a pre-analysis to find potentially match-
ing load/store pairs (not to exclude pairs). Instead of a stan-
dard CFLR algorithm, we propose a transitive closure data-
structure as a computational vehicle for solving CFLR prob-
lems to obtain high-performance. In [43], a points-to analy-
sis uses equivalence classes to merge abstract contexts and
employs a last-k-substring merging for trading-off scalabil-
ity and precision. Our approach is context-insensitive but can
be extended to context-sensitivity using cloning ideas.

8. Conclusion
We presented a new approach for solving the field-sensitive
points-to problem for Java. The proposed algorithm is
based on (1) an incremental reflexive transitive-closure
problem, and (2) a pre-computed set of potentially match-
ing load/store pairs to speed up the fix-point calculation.
For the pre-computation we use the latest work in Dyck-
Reachability to obtain matching load/store pairs efficiently
and effectively. The algorithm computes a least-fix-point
solution, for which we give a parameterised worst-case run-
time complexity. We conducted experiments for the DaCapo
benchmark, comparing our approach against commercial
and academic alternatives. Our experiments demonstrate sig-
nificant improvements, especially for large datasets. For the
OpenJDK library, our approach computes a points-to index,
with over 1.5 billion tuples, in under a minute.

While our algorithm provides a precise solution for the
problem addressed – field-sensitive points-to analysis for
Java – we acknowledge that this problem formulation itself
lacks precision [24]. We see our work as a stepping stone,
and more work is needed to investigate whether similar al-
gorithms can be devised that support context-sensitivity [20,
26, 27, 29], flow-sensitivity [6, 41] and call graph construc-
tion on the fly [12, 20, 38]. This increases the complexity of
the problem. On the other hand, the computed points-to rela-
tion becomes sparser, and this could at least partially offset
the performance penalty for algorithms [17]. In particular,
we can expect this to happen for algorithms that take full
advantage of sparse data-structures, similar to the work pre-
sented here.
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A. Benchmark Statistics
This appendix contains some details about the size of points-
to sets (Table 6), and statistics of edge labels in the input
problem (Table 7).

Table 6: Percentage of Small Points-to sets. Small is defined
as having a size of 10 or less. The proportion is shown where
points-to sets of strongly connected components are counted
repeatedly (shared) and only once (unique).

.

Bench Shared small sets Unique small sets
sun 97.96 97.62
lus 99.49 99.22
lui 99.56 99.45
avr 98.81 97.95
ecl 99.66 99.16
h2 94.89 97.15
pmd 97.46 98.46
xal 98.66 97.68
bat 98.96 98.26
fop 98.25 98.86
tom 98.79 98.57
jyt 99.03 98.06
trb 98.05 98.27
trs 98.05 98.27
jdk 92.83 98.03

Table 7: Breakdown of edge labels in the input problem.

Bench Alloc Assign Load Store
sun 3,306 9,972 2,305 374
lus 2,633 9,266 2,515 580
lui 3,273 9,903 3,340 859
avr 4,526 16,009 3,684 977
ecl 7,129 27,535 4,575 961
h2 7,339 41,392 6,709 1,243
pmd 7,552 38,676 11,109 1,992
xal 8,760 40,102 11,813 2,083
bat 10,322 43,905 7,176 1,686
fop 20,462 53,350 7,212 1,992
tom 22,962 69,473 15,198 3,251
jyt 30,830 210,346 14,685 4,173
trb 69,597 335,195 49,794 12,383
trs 69,718 336,279 49,858 12,408
jdk 347,515 1,411,505 157,804 47,322

B. Query Performance
We show the single-source single-sink, and single-source
all-sinks query times for the benchmarks. The TC imple-
mentation uses compressed bit-vectors to store points-to in-
formation, which may affect the query performance. The
query times for the WL and TC implementations are shown
in Table 8. Query times do not scale with program size, but
rather internal forces like cache locality and problem den-
sity. Furthermore, decompressing the compressed bit-vector
has some overhead, but this at worst doubles the query time.
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Table 8: Query times for all benchmarks, shown as ms per
1000 queries, Single-sink and All-sinks. The oracles neces-
sary to determine single-source single-sink query times for
OpenJDK are too large for experimentation.

Bench WLsingle TCsingle WLall TCall

sun 2.2 3.7 0.3 0.8
lus 2.9 5.3 0.5 1.5
lui 3.0 5.5 0.4 0.8
avr 2.0 3.4 0.3 0.3
ecl 2.3 4.0 0.3 0.3
h2 0.6 0.9 0.3 0.5
pmd 1.2 1.5 0.3 0.3
xal 1.4 1.9 0.3 0.3
bat 1.5 2.2 0.3 0.3
fop 0.8 1.5 0.3 0.5
tom 0.9 1.9 0.3 0.3
jyt 0.3 0.4 0.3 0.4
trb 0.4 0.5 0.2 0.4
trs 0.4 0.5 0.2 0.4
jdk * * * 98.4

C. Datalog Source-Code
This appendix contains the source code of the Datalog pro-
gram used in the experiments with LB. Note that the type-
cardinality directive lang:physical:capacity and im-
port scripts must be generated as-needed.

/*

* Types

*/

FieldSignatureRef(?x),

FieldSignatureRef:Value(?x:?s) ->

string(?s).

HeapAllocationRef(?x),

HeapAllocationRef:Value(?x:?s) ->

string(?s).

VarRef(?x),

VarRef:Value(?x:?s) ->

string(?s).

/*

* EDB

*/

// var = new Obj();

Alloc(?var, ?obj) ->

VarRef(?var),

HeapAllocationRef(?obj).

// dst = src;

Assign(?src, ?dst) ->

VarRef(?src),

VarRef(?dst).

// dst = (type)src;

Cast(?src, ?dst) ->

VarRef(?src),

VarRef(?dst).

// dst = base.field;

Load(?base, ?dst, ?field) ->

VarRef(?base),

VarRef(?dst),

FieldSignatureRef(?field).

// base.field = src;

Store(?src, ?base, ?field) ->

VarRef(?src),

VarRef(?base),

FieldSignatureRef(?field).

/*

* IDB

*/

Bridge(?dst, ?src) <-

FieldIsStored(?src, ?field, ?obj),

FieldIsLoaded(?dst, ?field, ?obj).

FieldIsLoaded(?target, ?field, ?obj) <-

NewLoad(?target, ?field, ?base),

VarPointsTo(?obj, ?base).

FieldIsStored(?src, ?field, ?obj) <-

NewStore(?src, ?field, ?base),

VarPointsTo(?obj, ?base).

NewAssign(?to, ?from) <-

Assign(?from, ?to).

NewAssign(?to, ?from) <-

Cast(?from, ?to).

NewLoad(?target, ?field, ?base) <-

Load(?base, ?target, ?field).

NewStore(?src, ?field, ?base) <-

Store(?src, ?base, ?field).

VarPointsTo(?obj, ?var) <-

Alloc(?var, ?obj).

VarPointsTo(?obj, ?to) <-

NewAssign(?to, ?from),

VarPointsTo(?obj, ?from).

VarPointsTo(?obj, ?dst) <-

Bridge(?dst, ?src),

VarPointsTo(?obj, ?src).
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