
Do Language Constructs for Concurrent
Execution Have Impact on Energy Efficiency?

Gustavo Pinto
Informatics Center, Federal University of Pernambuco

Recife, PE, Brazil
ghlp@cin.ufpe.br

Abstract
This study analyzed the performance and energy consumption of
multicore applications, using three techniques to manage concur-
rent execution in a set of benchmarks. We conclude that these con-
structs can heavily impact on energy consumption. Nonetheless, the
trade-off between performance and energy consumption in multi-
core applications is not so obvious.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming, Parallel Programming

Keywords Refactoring, Concurrent/Parallel Programming, En-
ergy Consumption

1. The research problem and motivation
Measuring the energy consumption of an application and under-
standing where the energy usage lies provides new opportunities
for energy savings. In order to understand the complexities of this
approach, we specifically look at multi-threaded applications. The
performance of the existing constructs for concurrent execution is
reasonably well-understood [4, 7]. Furthermore, since parallel pro-
gramming enables programmers to run their applications faster, it
makes sense to assume that an application that finish earlier will
also consume less energy [3]. This idea is known as the “Race to
idle” principle [1]. In summary: faster programs will theoretically
consume less energy because they will have the machine idle fast,
and modern processors consume very little energy when idle. Nev-
ertheless, parallelism and the overheads inherent to concurrent and
parallel programming constructs might impact energy consumption
in ways that are hard to predict.

This paper presents an empirical study consisting of the eval-
uation of the performance and energy consumption of four appli-
cations that use three programming concurrent constructs plus a
sequential implementation with the goal of demonstrating that it is
hard to establish a trade-offs between energy-efficiency and perfor-
mance. This study is relevant because it is known that concurrent
construct is often used in high-level applications [5]. Moreover, the
performance of the existing constructs for concurrent execution is

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-1995-9/13/10.
http://dx.doi.org/10.1145/2508075.2514880

reasonably well-understood [7], but little is know about its energy
efficiency.

2. Related work
To the best of our knowledge, only two studies have dealt with the
topic of understanding the impact of concurrent constructs on the
energy efficiency of applications [2, 6]. Gautham et al. [2] analyzed
synchronization primitives and explore the following synchro-
nization techniques to find an ideal solution for synchronization-
intensive workloads: i) spin lock ii) mutexes iii) software transac-
tional memory. They show that Software Transactional Memory
(STM) systems can perform better than locks for workloads where
a significant portion of the execution time is spent in the critical
sections. Trefethen [6] studies the behavior of the NAS Benchmark
suite for its energy and runtime performance. The benchmark suite
considered includes I/O and compute-intensive applications. The
authors concluded that there is a clear interaction between execu-
tion time and energy but this is not a simple relationship and can
be affected by the computer environment and algorithmic approach
used in the application. Nonetheless, none of these papers compare
the energy-efficiency between techniques to manage concurrent
execution.

3. Approach and uniqueness
To achieve this study’s goal, we ran a set of benchmark applica-
tions from different domains in a number of different configurations
while varying a group of attributes. We can divide these attributes
in two groups: internal (programming language construct, number
of threads in use and resource usage - CPU and/or IO) and external
(the clock frequency and the JVM implementation). We then pro-
vided a set of variant implementations for each benchmark using
three concurrent programming constructs, plus a sequential imple-
mentation1.

In this experiment, we used commodity hardware: an Intel(R)
Xeon(R), 2.13 GHz, 4 cores/8 threads and with 16Gb of mem-
ory, running Linux 64-bit, kernel 3.0.0.-31-server. These experi-
ments were run using three JVMs: i) OpenJDK version 1.7.0 09,
ii) HotSpot JDK version 1.7, and iii) JRockit version 1.6. When the
experiments were performed using JRockit, we provided an exter-
nal jar file containing the ForkJoin implementation.

Our experiments consisted of running these four applications
in each of the three JVM implementations, scaling the CPU fre-
quency, and limiting the number of threads in use. We ran each
experiment twelve times for each workload, while measuring the
system using the powertop utility2. We discarded the executions

1 The implementation details are available at http://bit.ly/parallel-construct
2 https://01.org/powertop/

121



Energy Consumption (J)
N-Queens LargestImage Mandelbrot Knucleotide

Median SD Median SD Median SD Median SD
S 732 1.3 679 1.2 1978 1.2 5395 3.3
T 1023 2.2 766 3.8 1290 3.9 4808 4.7
E 984 2.1 633 3.7 1287 3.4 3281 3.6
FJ 753 1.8 749 4.5 1292 3.6 2993 3.9

Time (s)
N-Queens LargestImage Mandelbrot Knucleotide

Median SD Median SD Median SD Median SD
S 85 0.7 78 1.2 71 1.2 106 0.6
T 44 1.2 42 1.9 41 2.1 68 1.3
E 38 1.1 31 1.8 41 1.9 62 1.1
FJ 27 1.1 54 3.8 35 1.3 55 1.4

Table 1. The comparison between the language constructs in terms
of energy consumption and time. The obtained values for energy
consumption and time are the medians of 10 executions.

with the lowest and the highest to reduce bias caused by outliers.
We have two main metrics that evaluate the experiments: the energy
consumed (in Joules) and the execution time (in seconds).

4. Results
Table 1 shows the overall view of our experimental results. The
column named “Energy Consumption (J)” organizes the results of
the 10 executions. The value contained in each cell represents the
median of the 10 executions, where each sample represents the total
of energy consumed in this given execution. We use boldface to
highlight the best result for the given benchmark application. The
column “Time (s)” works similarly.

As Table 1 shows, we can notice that the results of the concur-
rent constructs can have significant differences. For instance, the
Thread results are almost always more inefficient in terms of both
consumption and performance, when compared to Executors.
Thus, since the usage of Thread and the Executors is very simi-
lar, with a little effort, a programmer could use Executors. Table 1
also shows that the same technique can have different impact on the
energy consumed. The ForkJoin variant exhibited the best perfor-
mance for all the benchmarks with the exception of LargestImage,
which is strongly IO-bound. It also exhibits the lowest consumption
for Knucleotide and reasonably low consumption for N-Queens
and Mandelbrot. On the other hand, considering the LargestImage
application, we notice that the ForkJoin variant consumed more
energy than every other variant except for the one using threads.
Nonetheless, LargestImage is a benchmark application that makes
heavy use of IO operations, and it is well know that ForkJoin is
not adequate for this kind of computation. This fact is the probable
reason for the poor energy consumption.

Moreover, it is interesting to note that the Sequential variant
of the N-Queens benchmark application presented the best energy
consumption result, in spite of presenting the worst performance.
This benchmark’s result can vary according to the input data (in
case, the NxN size of the matrix). In this experiments, we realized
that, for a small matrix, the overhead caused by the thread creation
led to an increase in energy consumption. But, for example, if we
doubled the matrix size, the ForkJoin variant becomes the most
energy efficient as well.

Furthermore, we analyzed how the benchmark applications
scale with respect to the number of threads. Both the Mandelbrot
and Knucleotide benchmark applications scale well. This means
that the more cores available, the faster the applications run, and
more energy is saved. Nonetheless, for the other ones, it is not true.
For instance, in the LargestImage benchmark, the more cores we
have, more inefficient the ForkJoin variant is, in terms of both
performance and energy. In summary, we collected a total of 128

samples (4 benchmarks x 4 variants x 4 nr. of threads x 2 clock
frequencies), and for 36 of those, the variation which achieve the
best performance were not the same that consume less energy.

We then repeated the experiments varying the CPU frequency
from 1.2 GHz to 2.13 GHz. We notice that even after reducing the
clock frequencies, the results seems to be very similar to the ones
with the higher frequency, in terms of the better technique remain-
ing the better. However, for the LargestImage benchmark, we found
out that the lowest frequency consumes the same amount of energy
as a middle clock frequency. It is interesting and acceptable, since
it is an application that does not use a huge amount of CPU. This is
something that requires further investigation.

Finally, we have also analyzed whether different JVMs had
different impacts on performance and energy consumption. We
observed that, in general, results are very similar, specially for
OpenJDK and HotSpot. It does not surprise us, since the HotSpot
is the primary reference implementation of JVM, and OpenJDK
is heavily inspired by them. On the other side, the JRockit JVM
presents the worst case scenario, for all variants. For example,
taking into consideration the Thread variant, the results increased
in more than 10%. For the other benchmark applications, JRockit
also exhibited the worst results among the JVMs. Although the
different JVMs did affect execution time and energy consumption,
similarly to different clock frequencies, they did not significantly
change the behavior of the variants, e.g. the fastest and slowest
variants in one JVM were the fastest and lowest variants for all
of them.

4.1 Contributions
This paper presented the following contributions:

• Different techniques for concurrent/parallel programming within
the same language (Java, in this case) can impact both per-
formance and energy consumption in very different ways for
applications with different characteristics.

• For concurrent software, the Race to Idle principle is often not
true. In fact, we found at least a few examples that go in the
opposite direction.

• Some factors, such as clock frequency and different VMs, do
not significantly affect the relationship between performance
and energy consumption.

References
[1] S. Albers and A. Antoniadis. Race to idle: new algorithms for speed

scaling with a sleep state. In Proceedings of the Twenty-Third An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages
1266–1285. SIAM, 2012.

[2] A. Gautham et al. The implications of shared data synchronization
techniques on multi-core energy efficiency. HotPower’12, Berkeley,
CA, USA, 2012.

[3] J. Jelschen et al. Towards applying reengineering services to energy-
efficient applications. In CSMR, pages 353–358, 2012.

[4] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel java grande
benchmark suite. In Proceedings of the 2001 ACM/IEEE conference
on Supercomputing (CDROM), Supercomputing ’01, pages 8–8, New
York, NY, USA, 2001. ACM. ISBN 1-58113-293-X.

[5] W. Torres et al. Are java programmers transitioning to multicore?: a
large scale study of java floss. SPLASH ’11 Workshops, pages 123–
128, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-1183-0.

[6] A. Trefethen and J. Thiyagalingam. Energy-aware software: Chal-
lenges, opportunities and strategies. Journal of Computational Science,
1(0):–, 2013. ISSN 1877-7503. .

[7] W. Zhu, J. del Cuvillo, and G. R. Gao. Performance characteristics of
openmp language constructs on a many-core-on-a-chip architecture. In
IWOMP, pages 230–241, 2006.

122




