
Program Analysis for Mobile: How and

Why to Run WALA on Your Phone

Julian Dolby

IBM Thomas J. Watson Research Center

United States

dolby@us.ibm.com

Abstract

As mobile devices become ubiquitous, security of such de-

vices has become a serious concern. Attacks on the devices

themselves are a danger, as is theft of data they contain.

Static analysis of the devices’ software is one approach to

verifying the absence of security, and several tools have been

created to analyze apps for potential attacks and vulnerabili-

ties. Many tools focus on single apps, but there are starting to

be tools that look for possible vulnerabilities or attacks due

to multiple apps on a single device that can communicate.

Such analysis depends on having access to the relevant apps,

and hence has been proposed to be performed on app stores.

One challenge in the Android environment is that apps are

often installed from multiple sources, such as development

builds of apps installed from developer sites, e.g. Mozilla

Aurora pre-released of Firefox. Ultimately, sometimes the

device itself is the only place with the full set of apps used

on that device.

This suggests that running analysis on the device itself is

attractive, at least in terms of having all the relevant code.

Furthermore, app communication can be configured on the

device itself, raising the possibility of analyzing communica-

tion risk when it is configured. However, this approach has a

variety of challenges: 1) analysis tools are not typically mo-

bile apps themselves, yet they somehow need to be built for

and deployed on mobile devices. 2) Analysis tools are often

resources intensive, and mobile devices need the resources

to perform analysis. 3) Analysis can also be a major drain

on battery life, so care must be taken not to heedlessly drain

power. We describe our preliminary work toward running

program analysis on mobile devices, focusing on running

the WALA framework on Android devices. We describe how

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright held by Owner/Author. Publication Rights Licensed to ACM.

Copyright c© ACM [to be supplied]. . . $15.00

WALA can be built and deployed for Android; since WALA

is Java code, it is actually straightforward to do this, both us-

ing Eclipse and Maven-based command-line tools. We also

provide some evidence that performance is reasonable.

Keywords WALA, analysis, mobile

General Terms Program Analysis

Categories and Subject Descriptors D.3.4 [Programming

Languages]

1. Introduction

Mobile devices have become the primary means for interac-

tion with online information and services; being able to find

information anywhere and any time has revolutionized many

aspects of life. During casual conversation, we no longer

wonder idly how tea came to India but can find out in real

time.1 Beyond general knowledge, though, we also expect

our mobile devices to know more and more about us: to in-

form us of flight delays, public transit service changes, ar-

rival of packages, and much more.

This requires our devices to have a lot of personal infor-

mation and potentially a variety of specialized apps to de-

liver services. And once these apps have our information,

we need to be aware of how these apps use that information,

and make sure we are comfortable with that use. These has

been much work devoted to analyzing how apps use private

information; one recent example is DroidInfer [5] that com-

bines program dataflow analysis and a type system to detect

misuse of private information.

And these apps communicate: if you have ever been

given, without asking, driving directions to the airport

shortly before an upcoming flight, you have experienced

multiple apps working together to get travel plans, likely

from your email, and combine that with location-based ser-

vices. These apps need to communicate with each other,

but this opens further avenues for attacks, in which multiple

apps together have permission to release personal informa-

tion for purposes unintended by the user. There have started

1 Large-scale tea production in India started under the British East India

Company[4]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MobileDeLi’15, October 26, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3906-3/15/10...$15.00

http://dx.doi.org/10.1145/2846661.2846673

47

to be tools designed to detect situations in which multiple

apps can communicate private data; one example is Com-

Droid [1].

In the Android environment, apps are often installed

from multiple sources, such as development builds of apps

installed from developer sites, e.g. Mozilla Aurora pre-

released of Firefox. Thus the device itself may be the

only place with the full set of apps used on that device.

Hence, we have been investigating running program anal-

ysis on Android devices. In particular, we have been run-

ning WALA [7]; WALA is an open-source program analysis

project that is written in Java and can be built using with

Eclipse and Maven-based command-line tools. Both of these

build mechanisms are very compatible with Android.

• The Android Development Tools within Eclipse provide

a convenient interface that takes ordinary Eclipse Java

projects and deploy them to Android platforms.

• The Maven build tools supports apk packaging, and

hence it is possible to compile Java code at the command

line and deploy it to Android.

WALA has been extensively used for security analysis both

in products [6] and in research work [2, 3].

One concern once the code can be built for Android is

whether analysis can be run in practice. We have carried out

experiments using a recent top-of-the-line tablet, an Asus

ZenPad S 8 (Z580CA), which has 4 64-bit Intel Atom cores

running at up to 2.33GHz, and it has 4GB of RAM. It runs

Android 5.0 in our experiments, which allows the system

to make use of the full RAM with a 64 bit address space.

This device also has a large enough battery that we can ex-

periment with program analysis for at least a day on battery

power; however, we anticipate that analysis will mostly be

done while installing apps, and hence will not be a major

drain in normal usage.

2. Approach

We have made our analysis infrastructure for mobile devices

available on GitHub [8]. The version there makes use of the

Android Development Tools for Eclipse. Another approach

we have successfully used for development is to install Lin-

uxDeploy on the device, and then use the standard Maven-

based command line tools to build and run WALA on the

tablet. The only restriction is that the device must be rooted

for this approach to work.

Overall, we have shown that WALA can run on Android

devices, as the first step toward a mobile analysis system for

mobile apps.

References

[1] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Ana-

lyzing inter-application communication in android. In Pro-

ceedings of the 9th International Conference on Mobile Sys-

tems, Applications, and Services, MobiSys ’11, pages 239–
252, New York, NY, USA, 2011. ACM. ISBN 978-

1-4503-0643-0. doi: 10.1145/1999995.2000018. URL

http://doi.acm.org/10.1145/1999995.2000018.

[2] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip.

Efficient construction of approximate call graphs for javascript

IDE services. In D. Notkin, B. H. C. Cheng, and K. Pohl, ed-

itors, 35th International Conference on Software Engineering,

ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages

752–761. IEEE / ACM, 2013. ISBN 978-1-4673-3076-3. URL

http://dl.acm.org/citation.cfm?id=2486887.

[3] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet,

and R. Berg. Saving the world wide web from vulnera-

ble javascript. In M. B. Dwyer and F. Tip, editors, Pro-

ceedings of the 20th International Symposium on Software

Testing and Analysis, ISSTA 2011, Toronto, ON, Canada,

July 17-21, 2011, pages 177–187. ACM, 2011. ISBN

978-1-4503-0562-4. doi: 10.1145/2001420.2001442. URL

http://doi.acm.org/10.1145/2001420.2001442.

[4] history of tea in India. history of tea in india.

https://en.wikipedia.org/wiki/History of tea in India.

[5] W. Huang, Y. Dong, A. Milanova, and J. Dolby. Scalable and

precise taint analysis for android. In Proceedings of the 2015

International Symposium on Software Testing and Analysis, IS-

STA 2015, pages 106–117, New York, NY, USA, 2015. ACM.

ISBN 978-1-4503-3620-8. doi: 10.1145/2771783.2771803.

URL http://doi.acm.org/10.1145/2771783.2771803.

[6] IBM Security AppScan Source. Ibm security appscan source.

http://www-03.ibm.com/software/products/en/appscan-source.

[7] wala. T.J. Watson Libraries for Analysis (WALA).

http://wala.sf.net.

[8] wala mobile. T.J. Watson Libraries for Analysis (WALA)

Mobile. https://github.com/wala/WALA-Mobile.

48

