
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Bottle Graphs: Visualizing Scalability
Bottlenecks in Multi-Threaded Applications

Kristof Du Bois Jennifer B. Sartor Stijn Eyerman Lieven Eeckhout
Ghent University, Belgium

{kristof.dubois,jennifer.sartor,stijn.eyerman,leeckhou}@elis.UGent.be

Abstract
Understanding and analyzing multi-threaded program per-
formance and scalability is far from trivial, which severely
complicates parallel software development and optimiza-
tion. In this paper, we present bottle graphs, a powerful
analysis tool that visualizes multi-threaded program perfor-
mance, in regards to both per-thread parallelism and execu-
tion time. Each thread is represented as a box, with its height
equal to the share of that thread in the total program exe-
cution time, its width equal to its parallelism, and its area
equal to its total running time. The boxes of all threads are
stacked upon each other, leading to a stack with height equal
to the total program execution time. Bottle graphs show ex-
actly how scalable each thread is, and thus guide optimiza-
tion towards those threads that have a smaller parallel com-
ponent (narrower), and a larger share of the total execution
time (taller), i.e. to the ‘neck’ of the bottle.

Using light-weight OS modules, we calculate bottle
graphs for unmodified multi-threaded programs running
on real processors with an average overhead of 0.68%. To
demonstrate their utility, we do an extensive analysis of 12
Java benchmarks running on top of the Jikes JVM, which in-
troduces many JVM service threads. We not only reveal and
explain scalability limitations of several well-known Java
benchmarks; we also analyze the reasons why the garbage
collector itself does not scale, and in fact performs optimally
with two collector threads for all benchmarks, regardless of
the number of application threads. Finally, we compare the
scalability of Jikes versus the OpenJDK JVM. We demon-
strate how useful and intuitive bottle graphs are as a tool to
analyze scalability and help optimize multi-threaded appli-
cations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509529

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

Query0

Query2
Query3
Query1

Figure 1. Example of a bottle graph: The lusearch DaCapo
benchmark with 4 application threads (QueryX), a main
thread that performs initialization, and garbage collection
threads running on Jikes JVM.

Categories and Subject Descriptors D.2.8 [Software En-
gineering]: Metrics – Performance Measures

Keywords Performance Analysis, Multicore, Java, Bottle-
necks

1. Introduction
Analyzing the performance of multi-threaded applications
on today’s multicore hardware is challenging. While pro-
cessors have advanced in terms of providing performance
counters and other tools to help analyze performance, the
reasons scalability is limited are hard to tease apart. In par-
ticular, the interaction of threads in multi-threaded applica-
tions is complex: some threads perform sequentially for a
period of time, others are stalled with no work to do, and
synchronization behavior makes some threads wait on locks
or barriers. Many papers have demonstrated the inability of
multi-threaded programs to scale well, but studying the root
causes of scalability bottlenecks is challenging. Previous re-
search has not analyzed scalability on a per-thread basis, or
not suggested specific threads for performance optimization
that give the greatest potential for improvement (or those that
are most imbalanced).

355

We propose bottle graphs as an intuitive performance
analysis tool that visualizes scalability bottlenecks in multi-
threaded applications. Bottle graphs are stacked bar graphs,
where the height along the y-axis is the total application ex-
ecution time, see Figure 1 for an example. The stacked bar
represents each thread as a box: the height is the thread’s
share of the total program execution time; the width is the
number of parallel threads that this thread runs concurrently
with, including itself; and the box area is the thread’s total
running time. The center of the x-axis is zero, and thus paral-
lelism is symmetric, reported on both the left and right sides
of the zero-axis. We stack threads’ boxes, sorting threads by
their parallelism, with widest boxes (threads with higher par-
allelism) shown at the bottom and narrower boxes at the top
of the total application bar graph — yielding a bottle-shaped
graph, hence the name bottle graph.

Bottle graphs provide a new way to analyze multi-
threaded application performance along the axes of execu-
tion time and parallelism. Bottle graphs visualize how scal-
able real applications are, and which threads have a larger to-
tal running time (total box area), which threads have limited
parallelism (narrow boxes), and which threads contribute
significantly to execution time (tall boxes). Threads that rep-
resent scalability bottlenecks show up as narrow and tall
boxes around the ‘neck’ of the bottle graph. Bottle graphs
thus quickly point software writers and optimizers to the
threads with the greatest optimization potential.

We measure bottle graphs of real applications running on
real hardware through operating system support using light-
weight Linux kernel modules. The OS naturally knows what
threads are running at a given time, and when threads are
created, destroyed, or scheduled in and out. When a thread
is scheduled in or out, a kernel module is triggered to update
per-thread counters keeping track of both the total thread
running time, and number of concurrently running threads.
Using kernel modules, our bottle measurements incur very
little overhead (0.68% on average), require no recompilation
of the kernel, and require no modifications to applications or
hardware.

To demonstrate the power of bottle graphs as an analy-
sis and optimization tool, we perform an experimental study
of 12 single- and multi-threaded benchmarks written in Java,
both from the DaCapo suite and pseudoJBB from SPEC. The
benchmarks run on top of the Jikes Research Virtual Ma-
chine on real hardware. Because the applications run on top
of a runtime execution environment, even single-threaded
benchmarks have extra Java virtual machine (JVM) service
threads, and thus we can analyze not only the application,
but also JVM performance and scalability.

The work most related to ours is IBM’s WAIT tool [2],
which also analyzes the performance and scalability of
multi-threaded Java programs. However, bottle graphs reveal
much more information at a much lower overhead. Because
WAIT samples threads’ state, it gathers information only at

particular points in time, while our tool aggregates our met-
rics at every thread status (active or inactive) change with-
out loss of information. In order to approach bottle graph’s
amount of information, WAIT must sample more frequently,
thus incurring an order of magnitude more overhead. Bottle
graphs visualize performance per thread, allowing for easy
grouping of thread categories (i.e., for thread pools or ap-
plication versus garbage collection threads). Furthermore,
WAIT can only analyze Java application threads, while our
OS modules facilitate bottle graph creation for any multi-
threaded program, including analysis of underlying Java vir-
tual machine threads.

In our comprehensive study of Java applications, we vary
the number of application threads, number of garbage collec-
tion threads, and heap size. We analyze performance differ-
ences between benchmark iterations, and study the scalabil-
ity of JVM service threads in conjunction with application
threads. We find sometimes surprising insights: a) counter
to the common intuition that one should set the number of
collection threads equal to the number of cores or the num-
ber of application threads, we find that Jikes performs opti-
mally with two collector threads, both with single and multi-
threaded benchmarks, regardless of the number of applica-
tion threads or heap size; b) when increasing the number
of application threads, or increasing the number of collec-
tion threads, the amount of garbage collection work also
increases; c) although application time decreases when in-
creasing the number of application threads, the amount of
work the application performs also increases, thus showing
that these applications are limited in their scalability.

Furthermore, we analyze why there is multi-threaded im-
balance in one well-known benchmark, pmd, as the bottle
graph reveals that one application thread is tall and nar-
row, while others are much better parallelized. Analysis re-
veals that this is due to input file imbalance, and we sug-
gest opportunities to improve both performance and scala-
bility. Finally, because we find that Jikes’ garbage collec-
tor has limited scalability, we compare Jikes’ behavior with
that of OpenJDK. We reveal that increasing the number of
garbage collector threads in Jikes leads to significantly more
synchronization activity than for OpenJDK’s garbage collec-
tor. OpenJDK’s collector does scale to larger thread counts
than Jikes, offering good performance for up to 8 collection
threads. However, collection work still increases as we in-
crease either application thread or collector thread count.

In summary, bottle graphs are a powerful and intuitive
way to visualize parallel performance. They facilitate fast
analysis of scalability bottlenecks, and help target optimiza-
tion to the threads most limited in parallelism, or those slow-
ing down the total execution the most. Such tools are criti-
cal as we move forward in the multicore era to efficiently
use hardware resources while running multi-threaded appli-
cations.

356

2. Bottle Graphs
This section introduces our novel contribution of bottle
graphs, such as the example in Figure 1. A bottle graph con-
sists of multiple boxes, with different heights and widths,
stacked on top of each other. The total height of the stack
is the total running time of the application. Each box rep-
resents a thread. The height of each box can be interpreted
as the share of that thread in the total execution time. The
width of each box represents the amount of parallelism that
that thread exploits, i.e., the average number of threads that
run concurrently with that thread, including itself. The area
of each box is the total running time of that thread.

The boxes are stacked by decreasing width, i.e., the
widest at the bottom and the narrowest at the top, and they
are centered, which makes the resulting graph look like a
(two-dimensional) bottle. As a design choice, we center the
graph around a vertical parallelism line of zero, making the
graph symmetric. The amount of parallelism can be read
either left or right from this line, e.g., a thread with a paral-
lelism of 2 has a box that stretches to 2 on both sides of the
parallelism axis.

The example bottle graph in Figure 1 represents a multi-
threaded Java program, namely the DaCapo lusearch bench-
mark running with Jikes RVM on an 8-core Intel processor
(see Section 3 for a detailed description of the experimental
setup). This program takes 3.28 seconds to execute. There
are 7 threads with visible bottle graph boxes, each having
a different execution time share and different parallelism.
The bottom four boxes represent application threads with a
parallelism of approximately 4, and there is a main thread
that performs benchmark initialization that has limited par-
allelism. There are two garbage collection (GC) threads, but
the one with limited execution time share is a GC initializa-
tion thread, while the other GC thread that performs stop-
the-world collection has a parallelism of only 1, because it
runs alone.

Bottle graphs are an insightful way of visualizing multi-
threaded program performance. Looking at the width of the
boxes shows how well a program is parallelized. Threads
that have low parallelism and have a large share in the total
execution time appear as a large ‘neck’ on the bottle, which
shows that they are a performance bottleneck. Bottle graphs
thus naturally point to the most fruitful directions for effi-
ciently optimizing a multi-threaded program. The next sec-
tion defines the two dimensions of the boxes. In Section 2.2,
we explain how we measure unmodified programs running
on existing processors in order to construct bottle graphs.

2.1 Defining Box Dimensions
Each box in the bottle graph has two dimensions, the height
and the width, representing the thread’s share in the total
execution time and parallelism, respectively.

2.1.1 Quantifying a thread’s execution time share
Attributing shares of the total execution time to each of
the threads in a multi-threaded program is not trivial. One
cannot simply take the individual execution times of each of
the threads, because their sum is larger than the program’s
execution time due to the fact that threads run in parallel.
Individual execution times also do not account for variations
in parallelism: threads that have low parallelism contribute
more to the total execution time than threads with high
parallelism. To account for this effect, we define the share
each thread has in the total execution time (or the height
of the boxes) as its individual execution time divided by the
number of threads that are running concurrently (including
itself), as proposed in our previous work [7]. So, if n threads
run concurrently, they each get accounted one nth of their
execution time.

Of course, the number of threads that run in parallel with
a specific thread is not constant. While a thread is running,
other threads can be created or destroyed or scheduled in or
out by the operating system. To cope with this behavior, we
divide the total execution time into intervals. The intervals
are delimited by events that cause a thread to activate (cre-
ation or scheduling in) or deactivate (destruction/joining or
scheduling out). As a result, the number of active threads is
constant in each interval. Then we calculate the share of the
active threads in each interval as the interval time divided
by the number of active threads. Inactive threads do not get
accounted any share. The final share of the total execution
time of each thread is then the sum of the shares over all
intervals for which that thread was active. The sum of all
threads’ shares equals the total execution time.

We formalize the time share accounting in the follow-
ing way. Assume ti is the duration of interval i, ri is the
number of running threads in that interval, and Ri is the set
containing the thread IDs of the running threads (therefore
|Ri| = ri). Then the total share of thread j equals

Sj =
∑
∀i:j∈Ri

ti
ri
. (1)

The execution time share of a thread is the height of its
box in the bottle graph. Therefore, the sum of all box heights,
or the height of the total graph, is the total program execution
time.

2.1.2 Quantifying a thread’s parallelism
The other dimension of the graph – the width of the boxes
– represents the amount of parallelism of that thread, or
the number of threads that are co-running with that thread,
including itself. A thread that runs alone has a parallelism of
one, while threads that run concurrently with n − 1 other
threads have a parallelism of n. Due to the fact that the
amount of parallelism changes over time, this number can
also be a rational number.

357

The calculation of the execution time share already incor-
porates the amount of parallelism by dividing the execution
time by the number of concurrent threads. We define paral-
lelism as the time a thread is active (its individual running
time) divided by its execution time share. Formally, the par-
allelism of thread j is calculated as

Pj =

∑
∀i:j∈Ri

ti

Sj
=

∑
∀i:j∈Ri

ti∑
∀i:j∈Ri

ti
ri

, (2)

where
∑
∀i:j∈Ri

ti is the sum of all interval times where
thread j is active, which is its individual running time.

Equation 2 in fact calculates the weighted harmonic mean
of the number of concurrent threads, i.e., the harmonic mean
of ri weighted by the interval times ti. It is therefore truly
the average number of concurrent threads for that specific
thread. We choose harmonic mean because metrics that
are inversely proportional to time (e.g., IPC or parallelism)
should be averaged using the harmonic mean while those
proportional to time (e.g., CPI) should be averaged using the
arithmetic mean [14].

Another interesting result from this definition of paral-
lelism is that the execution time share multiplied by the par-
allelism – Sj×Pj – equals the individual running time of the
thread, or in bottle graph terms: the height multiplied by the
width, i.e., the area of the box, equals the running time of a
thread. If we consider the running time of a thread as a mea-
sure of the amount of work a thread performs, then we can
interpret the area of a box in the bottle graph as that thread’s
work. Due to parallelism (the width of the box), a thread’s
impact on execution time (the height of the box) is reduced.

This bottle graph design enhances their intuitiveness –
a lot of information can be seen in one visualization –
and quickly facilitates targeted optimization. Reducing the
amount of work (area) of a thread that has a narrow box will
result in a higher total program execution time (height) re-
duction compared to reducing the work for a wide box. The
impact of a thread on program execution time can also be
reduced by increasing its parallelism, which increases the
width of the box and therefore decreases its height, while
the area (amount of work) remains the same.

2.2 Measuring Bottle Graph Inputs
Now that we have defined how the bottle graphs are con-
structed, we design a tool that measures the values in order
to construct a bottle graph of an application running on an
actual processor. The tool needs to detect:

1. The number of active threads, to calculate the ri values.

2. The IDs of the active threads, to know which threads
should be accounted time shares.

3. Events that cause a thread to activate and deactivate, to
delimit intervals.

4. A timer that can measure the duration of intervals, to get
the ti numbers.

The operating system (OS) is a natural place to construct
our tool, as it already keeps track of thread creation, destruc-
tion, and scheduling, and has fine-grained timing capabili-
ties. We build a tool to gather the necessary information to
construct bottle graphs using kernel modules with Linux ver-
sions 2.6 and 3.0. The kernel modules are loaded using a
script that requires root privileges. Communication with the
modules (e.g., for communicating the name of the process
that should be monitored) is done using writes and reads in
the /proc directory. We use kernel modules to intercept sys-
tem calls that perform thread creation and destruction, that
schedule threads in and out, and that do synchronization with
futex (which implements thread yielding). Our tool keeps
track of the IDs of active threads and the timestamp of inter-
val boundaries. Our modules also keep track of two counters
per thread: one to accumulate the running time of the thread
(i.e., the total time it is active) and the other to accumulate
the execution time share (i.e., the running time divided by
the number of concurrent threads).

A kernel module is triggered upon a (de)activation call,
and updates state and thread counters in the following way.
The module obtains the current timestamp, and by subtract-
ing the previous timestamp from it, determines the execu-
tion time of the interval that just ended. It adds that time to
the running time counter of all threads that were running in
the past interval. It also divides that interval’s time by the
number of active threads, and adds the result to the time
share counters of the active threads. Subsequently, the mod-
ule changes the set of running threads according to the infor-
mation attached to the call (thread activation or deactivation,
and thread ID), and adapts the number of active threads. It
also records the current timestamp as the beginning of the
next interval. When the OS receives a signal from software,
the two counters for each thread are written out, and this in-
formation is read by a script that generates the bottle graphs.

There are several advantages of using kernel modules to
measure bottle graph components:

1. The program under study does not need to be changed;
the tool works with unmodified program binaries.

2. The modules can be loaded dynamically; there is no need
to recompile the kernel.

3. We can make use of a nanosecond resolution timer, which
enables capturing very short active or inactive periods.
We used ktime get and verified in /proc/timer list that
it has nanoscale resolution.

4. In contrast with sampling, our kernel modules continu-
ously monitor all threads’ states accurately, and aggre-
gate metric calculations online without loss of informa-
tion.

5. The extra overhead is limited, because the calculations
are simple and need to be done only on thread creation
and scheduling operations. On average, we measure an
average 0.68% increase in program execution time com-

358

pared to disabling the kernel modules, with a maximum
of 1.11%, see Table 1 for per-benchmark overhead num-
bers.

Discussion of design decisions. In the design of our tool
and experiments, we have made some methodological deci-
sions, which do not limit the expressiveness of bottle graphs.
We keep track of only synchronization events caused by fu-
tex, and thus our tool does not take into account busy waiting
in spin loops, or interference between threads in shared hard-
ware resources (e.g., in the shared cache and in the memory
bus and banks). Threading libraries are designed to avoid
long active spinning loops and yield threads if the expected
waiting time is more than a few cycles, so we expect this to
have no visible impact on the bottle graphs. Interference in
hardware resources is a low-level effect that is less related to
the characterization of the amount of parallelism in a multi-
threaded program. When a thread performs I/O behavior, the
OS schedules out that thread. Thus, we choose not to track
I/O system calls in our kernel modules because most I/O be-
havior is already accounted for as inactive. Furthermore, we
provide sufficient hardware contexts in our hardware setup,
i.e., at least as many as the maximum number of runnable
threads. We thus ensure that threads are only scheduled in
and out due to synchronization events, and factor out the im-
pact of scheduling due to time sharing a hardware context. If
the number of hardware contexts were less than the number
of runnable threads, the bottle graph’s measured parallelism
would be determined more by the machine than by the ap-
plication characteristics.

In the majority of our results, we read out our cumulative
thread statistics, including running time and execution time
share, at the end of the program run. We then construct bottle
graphs that summarize the behavior of the entire application
execution on a per-thread basis. However, our tool can be
given a signal at any time to output, and optionally reset,
thread counters, so that bottle graphs can be constructed
throughout the program run. Thus, bottle graphs can be used
to explore phase behavior of threads within a program run
(as we do in Section 5), or analyze particular sections of
code for scalability bottlenecks. Furthermore, while our OS
modules keep track of counters per-thread, in the case of
thread pools, the bottle graph scripts could be modified to
group separate threads into one component, if desired. Both
execution time share and parallelism are defined such that it
is mathematically sound to aggregate thread components.

3. Methodology
Now that we have introduced the novel and intuitive con-
cept of bottle graphs, we perform experiments on unmod-
ified applications running on real hardware to demonstrate
the usefulness of bottle graphs. While bottle graphs can be
used to analyze any multi-threaded program, in this paper we
chose to analyze managed language applications. Not only
are managed languages widely used in the community, but

Benchmark Suite Version ST/MT Overhead
antlr DaCapo 2006 ST 0.40%
bloat DaCapo 2006 ST 0.64%
eclipse DaCapo 2006 ST 0.70%
fop DaCapo 2006 ST 0.20%
jython DaCapo 2009 ST 0.80%
luindex DaCapo 2009 ST 1.00%
avrora DaCapo 2009 MT 1.11%
lusearch DaCapo 2009 MT 0.32%
pmd DaCapo 2009 MT 0.44%
pseudoJBB SPEC 2005 MT 0.90%
sunflow DaCapo 2009 MT 0.03%
xalan DaCapo 2009 MT 0.91%

Table 1. Evaluated benchmarks and kernel module over-
head. ST=single-threaded, MT=multi-threaded.

they also provide the added complexity of runtime service
threads that manage memory and do dynamic compilation
alongside the application. Thus, we can analyze both appli-
cation and service thread performance and scalability using
our visualization tool.

We evaluate Java benchmarks, see Table 1, from the Da-
Capo benchmark suite [4] and one from the SPEC 2005
benchmark suite, pseudoJBB, which is modified from its
original version to do a fixed amount of work instead of
run for a fixed amount of time [19]. There are 6 single-
threaded (ST) and 6 multi-threaded (MT) benchmarks.1 Al-
though bottle graphs are designed for multi-threaded appli-
cations, it is interesting to analyze the interaction between
a single-threaded application and the Java virtual machine
(JVM) threads. We use the default input set, unless men-
tioned otherwise.

For our experiments, we vary the number of application
threads (2, 4 and 8 for the multi-threaded applications) and
garbage collector threads (1, 2, 4 and 8). We experiment with
different heap sizes (as multiples from the minimum size that
each benchmark can run in), but we present results with two
times the minimum to keep the heap size fairly small in order
to exercise the garbage collector frequently so as to evaluate
its time and parallelism components. We run the benchmarks
for 15 iterations, and collect bottle graphs for every iteration
individually, but present main results for the 13th iteration to
show stable behavior.

We performed our experiments on an Intel Xeon E5-
2650L server, consisting of 2 sockets, each with 8 cores, run-
ning a 64-bit 3.2.37 Linux kernel. Each socket has a 20 MB
LLC, shared by the 8 cores. For our setup, we found that the
number of concurrent threads rarely exceeds 8, with a max-
imum of 9 (due to a dynamic compilation thread). There-
fore, we only use one socket in our experiments with Hy-

1 Although eclipse spawns multiple threads, we found that the JavaIndex-
ing thread is the only running thread for most of the time, so we categorize
it as a single-threaded application.

359

perThreading enabled, which leads to 16 available hardware
contexts. This setup avoids data traversing socket bound-
aries, which could have an impact on performance that is
hardware related, as demonstrated in [18]. The availability
of 16 hardware contexts does not trigger the OS to schedule
out threads other than for synchronization or I/O.

We run all of our benchmarks on Jikes Research Vir-
tual Machine version 3.12 [1]. We use the default best-
performing garbage collector (GC) on Jikes, the stop-the-
world parallel generational Immix collector [3]. In addition
to evaluating the Jikes RVM in Sections 4 and 5, we also
compare with the OpenJDK JVM version 1.6 [17] in Sec-
tion 6. We use their throughput-oriented parallel collector
(also stop-the-world) in both the young and old generations.
It should be noted that OpenJDK’s compacting old gener-
ation has a different layout than Jikes’ old generation, and
thus will have a different impact on both the application and
collector performance.

Because we use a stop-the-world collector, we can divide
the execution of a benchmark into application and collec-
tion phases. Application and GC threads never run concur-
rently; therefore, the application and GC thread components
in the bottle graph can be analyzed in isolation. For exam-
ple, the total height of all application thread boxes is the to-
tal application running time, and the same holds for the GC
threads. Also, because the collector never runs concurrently
with other threads, the parallelism of the GC boxes is the
parallelism of the collector itself. However, an interesting
avenue for future work is to analyze the scalability of Java
applications running with a concurrent collector.

4. Jikes RVM and Benchmark Analysis
By varying the number of application threads, GC threads,
heap size, and collecting results over many iterations, we
have generated over 2,000 bottle graphs. We describe the
main findings from this study in this section, together with
a few bottle graphs that show interesting behavior. We refer
the interested reader to the additional supporting material
for all bottle graphs generated during this study, available
at http://users.elis.ugent.be/~kdubois/bottle_

graphs_oopsla2013.
We first define some terminology that will be used to de-

scribe the bottle graphs we gathered for Java. Application
work is the sum of all active execution times of all appli-
cation threads (excluding JVM threads), i.e., the total area
of all application thread boxes.2 Likewise, we define appli-
cation time as the sum of all execution time shares of all
application threads, i.e., the total height of the application
thread boxes. Along the same lines, we define garbage col-

2 We classify the MainThread as part of the application. The MainThread
does some initialization and then calls the main method of the application.
For single-threaded applications, all of the work is done in this MainThread.
For multi-threaded applications, it does some initialization and then spawns
the application threads.

lection work as the sum of all GC threads’ active execution
times, i.e., the total area of all GC thread boxes, and garbage
collection time as the sum of all GC threads’ execution time
shares, i.e., the total height of the GC thread boxes.

We will discuss collector and application performance
and their impact on each other in Sections 4.2 and 4.3, but
we first show and analyze bottle graphs for all benchmarks
in the next section (at the steady-state 13th iteration). In
Section 4.4, we also analyze the impact of the optimizing
compiler by comparing the first and later iterations.

4.1 Benchmark Overview
Figure 2 shows bottle graphs for all evaluated benchmarks
(only the threads that have a visible component in the bot-
tle graph are shown). All graphs have two GC threads, and
for the multi-threaded applications, we use four applica-
tion threads. In general, turquoise boxes represent Jikes’
MainThread which calls the application’s main method. GC
thread boxes are always presented in brown (including the
GC controller thread, which explains the third GC box that
appears in some graphs), while the dynamic compiler (called
Organizer) is always presented in dark green. Application
thread colors vary per graph. We found that all other JVM
threads have negligible impact on execution time, and thus
are not visible in the bottle graphs.

These graphs show the intuitiveness and insightfulness
of bottle graphs. Single-threaded benchmarks can be easily
identified as having a single large component with a paral-
lelism of one. The graph of eclipse clearly shows that it be-
haves as a single-threaded application, as the JavaIndexing
thread dominates performance, although it spawns multiple
threads. Apart from the application and GC threads, antlr
also has a visible Organizer thread, which is the only other
JVM thread that was visible in all of our graphs. This thread
has a parallelism of two, meaning that the JVM compiler
always runs with one other thread, the MainThread in this
case. Because it has a small running time, it does not have
much impact on the parallelism of the main thread.

When we look at the multi-threaded benchmarks, we see
that for lusearch, pseudoJBB, sunflow and xalan, the ap-
plication threads have a parallelism of four, meaning that
these benchmarks scale well to four threads. PseudoJBB has
a rather large sequential component (in the MainThread),
compared to the others. PseudoJBB does more initializa-
tion before it spawns the application threads, one per ware-
house, to perform the work. Avrora is different in that it
spawns six threads instead of four. This benchmark sim-
ulates a network of microcontrollers, and every microcon-
troller is simulated by one thread. Therefore, the number of
threads spawned by avrora depends on the input, and the de-
fault input has six microcontrollers. The bottle graph reveals
that the parallelism of avrora’s application threads is limited
to 2.4, although there are six threads and 16 available hard-
ware contexts. Avrora uses fine-grained synchronization to
accurately model the communication between the microcon-

360

(a) antlr (b) avrora (c) bloat

 0

 0.5

 1

 1.5

 2

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

 0

 1

 2

 3

 4

 5

 6

 7

 8

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
node-5
node-4
node-2

node-3
node-1
node-0

Organizer

 0

 1

 2

 3

 4

 5

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

(d) eclipse (e) fop (f) jython

 0

 5

 10

 15

 20

 25

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

JavaIndexing
MainThread

GarbageCollector

 0

 0.5

 1

 1.5

 2

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

 0

 1

 2

 3

 4

 5

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

(g) luindex (h) lusearch (i) pseudoJBB

 0

 0.5

 1

 1.5

 2

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

LuceneMergeThread
MainThread

GarbageCollector

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Query3

Query2
Query0
Query1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Thread-1

Thread-2
Thread-3
Thread-4

(j) pmd (k) sunflow (l) xalan

 0

 0.5

 1

 1.5

 2

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

PmdThread1
PmdThread2

PmdThread4
PmdThread3

Organizer

 0

 1

 2

 3

 4

 5

 6

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

Figure 2. Bottle graphs for all benchmarks for the 13th iteration with 2 GC threads. Multi-threaded applications are run with
4 application threads.

361

(a) 1 GC thread (b) 2 GC threads (c) 4 GC threads (d) 8 GC threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

Figure 3. Xalan: scaling of GC threads with 4 application threads.

(a) 2 Application threads (b) 4 Application threads (c) 8 Application threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

3 2 1 0 1 2 3

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
Thread-1

Thread-2
Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u
n

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
Thread-1
Thread-2
Thread-3

Thread-4
Thread-5
Thread-6
Thread-7

Thread-8
Organizer

Figure 4. Xalan: scaling of application threads with 2 GC threads.

trollers, which reduces the exploited parallelism. This prob-
lem could potentially be solved by simulating close-by mi-
crocontrollers in one thread, instead of one thread per micro-
controller, which will reduce the synchronization between
the threads. Pmd is another interesting case: three of the four
threads have a parallelism of more than three, but one thread
has much lower parallelism and a much larger share of the
execution time (PmdThread1). Pmd has an imbalance prob-
lem between its application threads. In Section 5, we analyze
bottle graphs at various times within pmd’s run to help elab-
orate on the cause of this parallelism limitation and provide
suggestions to improve balance.

Although two GC threads are used in these experiments,
the average parallelism of garbage collection is around 1.4.
The next section explores varying the number of threads,
and elaborates on the impact of the number of GC and
application threads on garbage collector performance.

4.2 Garbage Collection Performance Analysis
We now explore what the bottle graphs reveal about garbage
collection performance, while varying the numbers of appli-
cation and collection threads. We analyze in depth the vari-
ation in the amount of garbage collection time (sum of GC
box heights) and work (sum of GC box areas). Figures 3

and 4 show bottle graphs for xalan with increasing num-
ber of GC threads (Figure 3) and increasing number of ap-
plication threads (Figure 4). We include only the xalan re-
sults here because of space constraints; this benchmark has
representative behavior with respect to collection. Figure 5
shows the average collection work (a) and time (b) for all
multi-threaded benchmarks, as a function of the number of
GC threads and the number of application threads.3 The val-
ues are normalized to the configuration with 2 application
threads and 1 GC thread. Figure 6 shows the same data for
the single-threaded benchmarks, obviously without the di-
mension of the number of application threads.

We make the following observations:

Collection work increases with an increasing number of
collection threads. When the number of GC threads in-
creases, the total collection work increases, i.e., the sum of
the running times of all GC threads increases, see Figures 5
(a) and 6. For xalan, total collection work—which equals the
total area of all GC thread boxes—increases by 73% from 1
to 8 GC threads (see Figure 3). For all multi-threaded bench-

3 We exclude the numbers for avrora and pseudoJBB for Figures 5, 7, 8, 9,
15, and 16. For these benchmarks, it is impossible to vary the number of
application threads independently from the problem size.

362

(a) Garbage collection work (b) Garbage collection time

2

4

8

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3

3.25

3.5

1
2

4
8

app threads

co
ll

e
ct

io
n

 w
o

rk

GC threads

2

4

8

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1
2

4
8

app threads

co
ll

e
ct

io
n

 t
im

e

GC threads

Figure 5. Average garbage collection work (a) and time (b) as a function of application and GC thread count (multi-threaded
applications). Numbers are normalized to the 2 application and 1 GC thread configuration. Collection work increases with
increasing GC thread count and increasing application thread count, and 2 GC threads results in minimum collection time for
all application thread counts.

marks, there is an increase of 120% (averaged over all ap-
plication thread counts), and 198% for the single-threaded
benchmarks.

There are a number of reasons for this behavior. First,
more threads incur more synchronization overhead, i.e., ex-
tra code to perform synchronization due to GC threads ac-
cessing shared data. Figure 16 in Section 6 (Jikes line) shows
that the number of futex calls significantly increases as the
number of GC threads increases. Second, because garbage
collection is a very data-intensive process and the last-level
cache (LLC) is shared by all cores, more GC threads will
lead to more interference misses in the LLC, leading to a
larger running time. Figure 7 shows the number of LLC
cache misses as a function of the number of GC threads and
the number of application threads for all multi-threaded ap-
plications, normalized to the 2 application, 1 GC thread con-
figuration. The number of LLC cache misses increases sig-
nificantly when the number of GC threads increases (more
than 2.5 times for 8 GC threads compared to 1 GC thread),
which raises the total execution time of the GC threads.

Collection work increases with an increasing number of
application threads. There is an increase in the amount of
time garbage collection threads are actively running (or their
total work), as we go to larger application thread counts. For
xalan, collection work increases by 60% if the number of ap-
plication threads is increased from 2 to 8 (see Figure 4). For
all multi-threaded benchmarks, we see an average increase
of 47% (over all GC thread-counts), in Figure 5 (a). To ex-
plain this behavior, we refer to Figure 8, which shows the
average number of collections that occurred during the exe-
cution of the multi-threaded benchmarks,4 again as a func-
tion of the number of GC and application threads. When in-

4 We exclude pmd from this graph, because due to its imbalance, only one
thread is running during a significant portion of its execution time. Since
this portion increases with the number of application threads, the number of
collections decreases, while we see an increase for all other benchmarks.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

co
ll

e
ct

io
n

 w
o

rk
/t

im
e

no. of GC threads

collection work

collection time

Figure 6. Average collection work and time as a function
of GC thread count (single-threaded applications). Numbers
are normalized to the 1 GC thread configuration. Collection
work increases with increasing GC thread count and collec-
tion time is minimal with 2 GC threads.

2

4

8

1

1.5

2

2.5

3

3.5

4

1
2

4
8

app threads

n
o

.
o

f
LL

C
 m

is
se

s

GC threads

Figure 7. Average number of LLC misses as a function of
application and GC thread count (multi-threaded applica-
tions). Numbers are normalized to the 2 application and 1
GC thread configuration.

363

2

4

8

1

1.1

1.2

1.3

1.4

1
2

4
8

app threads

n
o

.
o

f
co

ll
e

ct
io

n
s

GC threads

Figure 8. Average number of collections as a function of
application and GC thread count (multi-threaded applica-
tions). Numbers are normalized to the 2 application and 1
GC thread configuration.

creasing the number of GC threads, the number of collec-
tions does not increase. However, the number of application
threads has a clear impact on the number of collections: the
more application threads, the more collections. The intuition
behind this observation is that more threads generate more
live data in a fixed amount of time (because Jikes has thread-
local allocation where every thread gets its own chunk of
memory to allocate into), so the heap fills up faster compared
to having fewer application threads. The more collections,
the more collection work that needs to be done.

2 GC threads are optimal regardless of the number of ap-
plication threads. Figures 5 (b) and 6 show that garbage
collection time is minimal for two GC threads in Jikes, even
for lower and higher application thread counts. Although the
amount of work increases when the number of GC threads is
increased from 1 to 2, collector parallelism is also increased
(from 1 to 1.5), leading to a lower net collection time. When
the number of GC threads is further increased to 4 and 8, par-
allelism increases only slightly (to 1.7 and 1.8, respectively),
and does not compensate for the extra amount of work, lead-
ing to a net increase in collection time. Although we present
results here for only two times the minimum heap size, we
found two GC threads to be optimal for other heap sizes as
well.

4.3 Application Performance Analysis
We analyze changes in the application time and work as we
vary the number of application threads, which seem to suf-
fer less from limited parallelism than the garbage collector.
Figure 9 shows the application execution time (excluding
garbage collection time) and work as a function of the num-
ber of application threads (for the multi-threaded applica-
tions), keeping the GC threads at two. Numbers are normal-
ized to those for two application threads.

Application time decreases with an increasing number of
application threads, but the decrease is limited because ap-
plication work increases due to the overheads of paral-
lelism. When the application thread count is increased, ap-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 8

a
p

p
 w

o
rk

/t
im

e

no. of app threads

app work

app time

Figure 9. Average application work and time as a function
of application thread count (multi-threaded applications).
Numbers are normalized to the 2 application thread config-
uration. Application time decreases with increasing applica-
tion thread count, but the decrease is limited because appli-
cation work increases with more application threads.

plication time does decrease, but not proportionally to the
number of threads. Compared to two application threads,
execution time decreases with a factor of 1.4 for four ap-
plication threads and 1.9 for 8 threads. Part of the reason
this decrease is not higher is the limited parallelism (aver-
age application parallelism equals 1.9, 3.1 and 4.7, for 2, 4
and 8 application threads, respectively). However, this does
not fully cover the smaller application speedup: from 2 to
8 application threads, parallelism is increased by a factor
of 2.5, while execution time is reduced by a factor of only
1.9. This difference is explained by the fact that application
work also increases with the number of application threads,
see Figure 9. This increase is due to synchronization over-
head (the number of futex calls for the application increases
from 1.5 to 4.7 calls per ms when the number of application
threads increases from 2 to 8) and an increasing number of
LLC misses due to more interference (see also Figure 7). In-
creasing the number of application threads leads to more ap-
plication work and increased parallelism, resulting in a net
reduced execution time, but due to the extra overhead, the
execution time reduction is smaller than the thread count in-
crease.

4.4 Compiler Performance Analysis
Lastly, while generating our bottle graphs across many
benchmark iterations, we noticed the difference between
startup and steady state behavior discussed in detail in Java
methodology research [4]. Figure 10 shows the bottle graphs
of one single-threaded benchmark, jython, during the first,
9th and 11th iterations. During the first iteration, we see a
large overall execution time, and a large (one second) time
share for the Organizer thread. This JVM service thread
performs dynamic compilation concurrently with the appli-
cation (it has a parallelism of two), and thus is very active in
the first iteration, but is much more minimal in iteration nine.

364

(a) First iteration (a) 9th iteration (b) 11th iteration

 0

 2

 4

 6

 8

 10

 12

4 3 2 1 0 1 2 3 4

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

 0

 2

 4

 6

 8

 10

 12

4 3 2 1 0 1 2 3 4

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

 0

 2

 4

 6

 8

 10

 12

4 3 2 1 0 1 2 3 4

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

Figure 10. Jython: behavior of Organizer thread over different iterations for 4 GC threads.

Iteration nine has a reduced execution time because the Java
source code is now optimized and the benchmark is running
more at steady-state. However, the bottle graph for iteration
11 shows an increased Organizer thread component. This
behavior is specific to this benchmark; other applications see
the Organizer box disappear in all higher iterations. Jython
is different in that it dynamically interprets python source
code into bytecode, and then runs it. Jython actually runs a
benchmark within itself, and Jikes continues to optimize the
generated bytecode with the optimizing compiler at various
iterations, because the compiler is probabilistic and is trig-
gered unpredictably. Thus, bottle graphs are also useful for
seeing program and JVM variations between iterations.

5. Solving the Poor Scaling of Pmd

We have analyzed the performance of both Java applications
and Jikes RVM’s service threads using bottle graphs. As
shown in Figure 2, and discussed in Section 4.1, pmd has
one thread that has significantly limited parallelism. We now
analyze this bottleneck and propose suggestions on how to
fix pmd’s scalability problem.

Figure 11 shows the bottle graphs for pmd for 2, 4 and
8 application threads, while keeping the collection threads
at two and using the default input set. With two applica-
tion threads, the left graph shows these threads have approx-
imately the same height and width (a parallelism close to
two). However, for 4 and 8 threads, pmd clearly has an im-
balance issue: there is one thread that has less parallelism
and a larger execution time share than the other threads.
To understand the cause, we gathered bottle graphs at sev-
eral time intervals (every 0.5 seconds) within the 13th iter-
ation of the benchmark, running with 2 GC and 8 applica-
tion threads, shown in Figure 12. We see that after the first
0.5 seconds, although there is some variation, the applica-
tion threads are still fairly balanced in regards to parallelism.
Starting from after the second time interval, one application
thread has limited parallelism and a larger share of execu-

tion time (PmdThread7). After one second of execution, that
same thread continues to run alone while all other applica-
tion threads have finished their work.

Pmd is a (Java) source code analyzer, and finds unused
variables, empty catch blocks, unnecessary object creation,
etc. It takes as input a list of source code files to be pro-
cessed. The default DaCapo input for pmd is a part of the
source code files of pmd itself. There is also a large input
set, which analyzes all of the pmd source code files. Inter-
nally, pmd is parallelized using a work stealing approach.
All files are put in a queue, and the threads pick the next un-
processed file from the queue when they finish processing
a file. Compared to static work partitioning, work stealing
normally improves balance, because one thread can process
a large job, while another thread processes many small jobs.
Imbalance can only occur when one or a few jobs have such
a large process time that there are not enough other small
jobs to be run in parallel. This is exactly the case for the de-
fault input set of pmd. There are 220 files, with an average
size of 3.8 KB. However, there is one file that is 240 KB,
which is around 63 times larger than the average. Therefore,
the thread that picks that file will always have a larger exe-
cution time than the other threads, and there are not enough
other files to keep the other threads concurrently busy.

This problem is partly solved when using the large input
set, which also has the same big file, but there are 570 files
in total, so more files can be processed concurrently with
the big file. Figures 13(a)–(c) show the bottle graphs for
the large input set with 2, 4 and 8 application threads. The
imbalance problem is solved for 2 and 4 application threads,
but is still present for 8 threads (although less pronounced
compared to the default input set). The more threads there
are, the more other jobs are needed to run concurrently with
the large job. Figure 13(d) shows the bottle graph for 8
threads and the large input set excluding that one big file,
which leads to a balanced execution.

365

(a) 2 Application threads (b) 4 Application threads (c) 8 Application threads

 0

 0.5

 1

 1.5

 2

3 2 1 0 1 2 3

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

PmdThread2

PmdThread1
Organizer

 0

 0.5

 1

 1.5

 2

4 3 2 1 0 1 2 3 4

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

PmdThread1
PmdThread2

PmdThread4
PmdThread3

Organizer

 0

 0.5

 1

 1.5

 2

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

PmdThread3
Organizer

PmdThread2
PmdThread1
PmdThread4
PmdThread6

PmdThread5
PmdThread7
PmdThread8

Figure 11. Pmd: scaling of application threads with 2 GC threads (default input set).

(a) First time interval (b) Second time interval

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

6 5 4 3 2 1 0 1 2 3 4 5 6

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer
PmdThread3

PmdThread2
PmdThread8
PmdThread4
PmdThread6

PmdThread7
PmdThread1
PmdThread5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

6 5 4 3 2 1 0 1 2 3 4 5 6

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
PmdThread7
PmdThread1

PmdThread2
PmdThread3
PmdThread4

PmdThread8
PmdThread5
PmdThread6

(c) Third time interval (d) Fourth time interval

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

6 5 4 3 2 1 0 1 2 3 4 5 6

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

PmdThread7 GarbageCollector

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

6 5 4 3 2 1 0 1 2 3 4 5 6

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread PmdThread7 GarbageCollector

Figure 12. Pmd: bottle graphs taken every 0.5 seconds with 2 GC threads and 8 application threads (default input set).

366

(a) 2 Application threads (b) 4 Application threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

3 2 1 0 1 2 3

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

PmdThread1

PmdThread2
Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread
GarbageCollector

PmdThread3
PmdThread2

PmdThread1
PmdThread4

Organizer

(c) 8 Application threads (d) 8 Application threads
w/o biggest file

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread
GarbageCollector

PmdThread6
PmdThread2

PmdThread7
PmdThread4
PmdThread3
PmdThread8

PmdThread1
PmdThread5

Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

PmdThread4
PmdThread8

PmdThread5
PmdThread6
PmdThread1
PmdThread2

PmdThread3
PmdThread7

Organizer

Figure 13. Pmd: scaling of application threads with 2 GC threads (large input set). For the fourth graph, the biggest source
file is removed from the input set.

We can conclude that users of pmd should make sure that
there is no file that is much larger than the others to prevent
an imbalanced, and therefore inefficient, execution. The bal-
ance can also be improved by making the scheduler in pmd
more intelligent. For example, the files to be processed can
be ordered by decreasing file size, such that big files are pro-
cessed first and not after a bunch of smaller files. In that case,
there are more small files left for the other threads, and bal-
ance is improved. Another, probably more intrusive, solution
is to provide the ability to split a single file across multiple
threads.

Apart from imbalance, there is also a problem of limited
parallelism in pmd. Figure 13(d) shows that the parallelism
of 8 application threads is only 3.5. We looked into the code
and found a synchronized map data structure that is shared
between threads and guarded by one lock. Reducing the time
the lock is held and/or using fine-grained locking should
improve parallelism, and therefore performance, for pmd.

6. Comparing Jikes to OpenJDK
In Section 4 we analyzed the performance of the garbage
collector and the application with Jikes RVM. We made two
novel observations: collector parallelism is limited, leading
to an optimal GC thread count of 2, and that the number

of GC threads and the number of application threads have
an impact on the amount of collection work. We present
here a similar analysis on the OpenJDK virtual machine,
revealing that OpenJDK’s garbage collector scales better
than in Jikes, benefiting from up to 8 GC threads. However,
we find that collection work still increases with the number
of application threads and GC threads.

Figure 14 shows the bottle graphs for pseudoJBB with
4 application threads on OpenJDK, with an increasing GC
thread count. We chose pseudoJBB graphs here because
they are most illustrative of collector behavior, but other
benchmarks have similar behavior. It is immediately clear
that GC scales much better for OpenJDK than for Jikes.
The average collection parallelism across all multi-threaded
benchmarks is 1, 1.9, 3.3 and 4.5, for 1, 2, 4 and 8 GC
threads, respectively. This parallelism is substantially larger
than the 1.8 parallelism for 8 GC threads on Jikes.

We further investigate the performance of OpenJDK by
viewing its collection work and time as a function of GC
and application thread count in Figure 15. We present aver-
age collection work (a) and time (b) for the multi-threaded
benchmarks normalized to the 1 GC and 2 application thread
configuration (contrasted with Figure 5). We confirm that
OpenJDK scales better than Jikes by seeing that collection

367

(a) 1 GC thread (b) 2 GC threads (c) 4 GC threads (d) 8 GC threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5 4 3 2 1 0 1 2 3 4 5

R
u
n

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

Thread-1

Thread-2
Thread-3
Thread-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5 4 3 2 1 0 1 2 3 4 5

R
u
n

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread
GarbageCollector

Thread-1

Thread-2
Thread-3
Thread-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5 4 3 2 1 0 1 2 3 4 5

R
u
n

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread
GarbageCollector

Thread-1

Thread-2
Thread-3
Thread-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9

R
u
n

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread
Thread-1
Thread-2

Thread-3
Thread-4

GarbageCollector

Figure 14. PseudoJBB: scaling of GC threads on OpenJDK, with 4 application threads.

(a) Garbage collection work (b) Garbage collection time

2

4

8

1

1.25

1.5

1.75

2

2.25

2.5

2.75

1
2

4
8

app threads

co
ll

e
ct

io
n

 w
o

rk

GC threads

2

4

8

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

1
2

4
8

app threads

co
ll

e
ct

io
n

 t
im

e

GC threads

Figure 15. Average OpenJDK garbage collection work (a) and time (b) as a function of application and GC thread count
(multi-threaded applications). Numbers are normalized to the 2 application and 1 GC thread configuration. Garbage collection
on OpenJDK scales better than on Jikes, but collection work also increases with increasing GC thread count and increasing
application thread count.

time decreases with an increasing number of GC threads in
Figure 15(b). There is less synchronization during garbage
collection in OpenJDK compared to Jikes, as evident in Fig-
ure 16 which shows the number of futex calls per unit of
time as a function of the number of GC threads. Although
the number of futex calls also increases with increasing GC
thread count, the increase is much smaller for OpenJDK than
for Jikes.

For OpenJDK, we found 4 GC threads to be optimal
with either 2 or 4 applications threads, and 8 GC threads
optimal for 8 application threads. Garbage collection on
OpenJDK scales better than for Jikes RVM, but we observe
that collector time slightly increases or does not decrease
much between 4 and 8 GC threads, which suggests that
garbage collection scaling on OpenJDK saturates at 4 to 8
GC threads. This is in line with the findings in [10], where
the authors observe a decrease in collection time when the
number of GC threads is increased from 1 to 6, but an
increase when the number of GC threads is increased to 12
and more.

Our two other observations for Jikes, namely that collec-
tion work increases with GC thread count and application
thread count, still hold for OpenJDK. Figure 15(a) for Open-

0

50

100

150

200

250

1 2 4 8

n
o

.
o

f
fu

te
x
 c

a
ll

s
p

e
r

m
s

no. of GC threads

Jikes

OpenJDK

Figure 16. Average number of futex calls per ms during
garbage collection as a function of GC thread count, with
4 application threads (multi-threaded applications).

JDK looks very similar to Figure 5(a) for Jikes. While we
have observed in both JVMs a saturation point in the utility
of increasing the parallelism of garbage collection threads,
we still find that inter-thread synchronization has a signifi-
cant impact on garbage collection performance.

368

7. Related Work
We now describe related work in performance visualization
and Java parallelism analysis. We detail one particularly
related visualization tool called WAIT in Section 7.1.1.

7.1 Performance Visualization
Software developers heavily rely on tools for guiding where
to optimize code. Commercial offerings, such as Intel VTune
Amplifier XE [12], Sun Studio Performance Analyzer [13],
and PGPROF from the Portland Group [20] use hardware
performance counters and sampling to derive where time
is spent, and point the software developer to places in the
source code to focus optimization. Additional features of-
fered include suggestions for potential tuning opportuni-
ties, collecting lock and wait behavior, visualization of run-
ning and waiting threads over time, etc. The key feature of
these tools is that they provide fairly detailed analysis at
fine granularity in small functions and individual lines of
code. Recent work focused on minimizing the overhead even
further, enabling the analysis of very small code regions,
such as critical sections [6]. Other related work [16] pro-
poses a simple and intuitive representation, called Parallel
Block Vectors (PBV), which map serial and parallel phases
to static code. Other research proposes the Kremlin tool,
which analyzes sequential programs to recommend sections
of code that would get the most speedup from paralleliza-
tion [9]. All of these approaches strive at providing fine-
grained performance insight. Unfortunately, none of these
approaches provide a simple and intuitive visualization and
understanding of gross performance scalability bottlenecks
in multi-threaded applications, as bottle graphs do and which
is needed by software developers to guide optimization.

Some recent work in performance visualization focused
on capturing and visualizing gross performance scalability
trends in multi-threaded applications running on multicore
hardware, but do not guide the programmer on where to fo-
cus optimization. Speedup stacks [8] present an analysis of
the causes of why an application does not achieve perfect
scalability, comparing achieved speedup of a multi-threaded
program versus ideal speedup. Speedup stacks measure the
impact of synchronization and interference in shared hard-
ware resources, and attribute the gap between achieved and
ideal speedup to the different possible performance delim-
iters. By doing so, speedup stacks easily point to scala-
bility limiters, but present no data on which thread could
be the cause, and do not suggest how to overcome these
scalability limitations. Bottle graphs, on the other hand,
provide detailed information on per-thread synchronization
events, showing where optimization effort should be tar-
geted, namely at the narrowest and tallest thread(s) in the
graph. In our most recent work, we presented criticality
stacks [7], which display per-thread contributions to total
program performance. Criticality stacks focus on synchro-
nization only, and do not incorporate parallelism as bottle

0

1

2

3

4

5

6

7

8

Th
re
ad
s

Time

CPU
Lock

Figure 17. Output of WAIT for pmd running on OpenJDK
with 8 application and 2 GC threads using a 1 second sam-
pling rate. The graph shows 3 samples that monitor appli-
cation thread status: CPU threads are active, while Lock
threads are inactive.

graphs do. Moreover, this work requires hardware modifi-
cations and, while it points out thread imbalances, it does
not suggest how much gain could be achieved by making a
particular thread better able to co-execute with other threads.

7.1.1 Comparison to IBM WAIT
IBM WAIT5 [2] is a performance visualization tool for di-
agnosing performance and scalability bottlenecks in Java
programs, particularly server workloads. It uses a light-
weight profiler that collects samples of information about
each thread at regular points in time (configurable through
a sampling rate parameter). WAIT records information on
each thread’s status (active, waiting or idle), locks (held or
waiting for), and where in the code the thread is execut-
ing. This data is used to construct a graph that visualizes
the threads’ status over time (x-axis), each bar showing a
sample point. The bar’s height is the total number of threads
for that sample, and the bar is color-coded by thread sta-
tus. Figure 17 shows the output of WAIT for pmd running
on OpenJDK with 8 application threads and 2 GC threads
during the 13th iteration using a 1 second sampling rate,
where CPU denotes active threads, and Lock denotes inac-
tive threads. Information about code position and locks can
be retrieved by clicking on the bars in the timeline.

While WAIT is a powerful analysis tool for Java pro-
grams, it has some limitations. First, it can be applied only to
Java application threads, not to parallel programs written in
other languages or to Java virtual machine service threads,
both of which can be analyzed easily with our bottle graphs
because we use OS modules. Second, WAIT is sampling-
based, and thus collects a snapshot of information only at
specific program points, with increasing overhead with finer-
granularity sampling. To demonstrate this, Figure 17 shows
results for pmd using at the lowest default sampling period
value of 1 second. WAIT only collects 3 samples, which sug-
gest that there is only one active (CPU) thread during the ex-
ecution. We lowered the sampling rate to 50 milliseconds by

5 https://wait.ibm.com/

369

0

1

2

3

4
5

6

7

8
Th

re
ad
s

Time

CPU

Lock

Figure 18. Output of WAIT for pmd running on OpenJDK with 8 application and 2 GC threads using a 50 millisecond
sampling rate. The graph shows one bar per sample that monitors application thread status: CPU threads are active, while Lock
threads are inactive.

modifying WAIT’s scripts, and produced the more detailed
graph in Figure 18 which reveals that the number of active
threads varies over time. However, the overhead of using the
1 second versus 50 millisecond sampling period jumps from
0.87% to 16.62%, an order of magnitude larger than for our
tool.

In contrast, bottle graphs contain much more information
for lower overhead. Our OS modules are continually mon-
itoring every thread status change, and aggregating our ex-
ecution time share and parallelism metrics at all times in
a multi-threaded program run, on a per-thread basis. For
roughly the same overhead, we contrast Figure 12 showing
bottle graphs at various times in a run of pmd with Figure 17
showing WAIT’s three thread samples. WAIT’s visual repre-
sentation makes it hard to know that one of pmd’s threads is
a bottleneck throughout the run. In the end, pmd’s parallel
imbalance due to input imbalance is difficult to detect with-
out analyzing the source code and input. In conclusion, bot-
tle graphs’ visualization of scalability per-thread facilitates
grouping by category (such as for thread pools or garbage
collection threads) in order to analyze the group’s execution
time share, parallelism, or work to pinpoint parallelism im-
balances.

7.2 Java Parallelism Analysis
Analyzing Java performance and parallelism has become an
active area of research recently. Most of these studies use
custom-built analyzers to measure specific characteristics of
interest. For example, Kalibera et al. [15] analyze concur-
rency, memory sharing and synchronization behavior of the
DaCapo benchmark suite. They provide concurrency met-
rics and analyze the applications in-depth, focusing on in-
herent application characteristics. They do not provide a vi-
sual analysis tool to measure and quantify performance and
scalability, and reveal bottlenecks on real hardware as we do.

Researchers recently analyzed the scalability problems of
the garbage collector in the OpenJDK JVM [10]. They also
confirm that the total collection times increase with the num-
ber of collector threads, without providing a visualization
tool. They did follow-on work to optimize scalability at large

thread-counts for the parallel stop-the-world garbage collec-
tion in OpenJDK [11]. Similarly, Chen et al. [5] analyzed
scalability issues in the OpenJDK JVM, and provided ex-
planations at the hardware level by measuring cache misses,
DTLB misses, pipeline misses, and cache-to-cache transfers.
They also explored the sizing of the young generation and
measured the benefits of thread-local allocation. They did
not, however, vary the number of collection threads or ex-
plore the scalability limitations of the parallel collector it-
self, or how it interacts with the application, as we do in this
paper.

8. Conclusions
We have presented bottle graphs, an intuitive and useful tool
for visualizing multi-threaded application performance, an-
alyzing scalability bottlenecks, and targeting optimization.
Bottle graphs represent each thread as a box, showing its
execution time share (height), parallelism (width), and to-
tal running time (area). The total height of the bottle graph
when these boxes are stacked on top of each other is the
total application execution time. Because we place threads
with the largest parallelism on the bottom, the neck of the
bottle graph points to threads that offer the most potential
for optimization, i.e. those with limited parallelism and large
execution time share.

We have built light-weight OS modules to calculate the
components of bottle graphs for unmodified parallel pro-
grams running on real hardware, with minimal overhead.
Then we have used bottle graphs to analyze a set of 12
Java benchmarks, revealing scalability limitations in several
well-known applications and suggesting optimizations. We
have also used bottle graphs to analyze Jikes’ JVM service
threads, revealing very limited parallelism when increasing
the number of garbage collection threads beyond two due
to extra synchronization activity. We have compared this to
OpenJDK’s garbage collector which scales much better for
our thread counts. Bottle graphs are a powerful visualization
tool that is necessary for tackling multi-threaded application
bottlenecks in modern multicore hardware.

370

Acknowledgments
We thank the anonymous reviewers for their constructive and
insightful feedback. Stijn Eyerman is supported through a
postdoctoral fellowship by the Research Foundation – Flan-
ders (FWO). Additional support is provided by the FWO
project G.0179.10N, the UGent-BOF project 01Z04109 and
the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013)
/ ERC Grant agreement no. 259295.

A. Appendix
See http://users.elis.ugent.be/~kdubois/bottle_
graphs_oopsla2013/ for more bottle graphs. This website
also contains the OS modules tool to measure the data to
construct bottle graphs.

References
[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith,

T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd, and M. Mer-
gen. Implementing Jalapeño in Java. In Proceedings of the
Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA),
pages 314–324, Nov. 1999.

[2] E. Altman, M. Arnold, S. Fink, and N. Mitchell. Performance
analysis of idle programs. In Proceedings of the Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), pages 739–
753, Oct. 2010.

[3] S. M. Blackburn and K. S. McKinley. Immix: A mark-region
garbage collector with space efficiency, fast collection, and
mutator performance. In Proceedings of the Annual ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 22–32, June 2008.

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. B. Lee,
J. Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In Proceedings
of the Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOP-
SLA), pages 169–190, Oct. 2006.

[5] K.-Y. Chen, J. M. Chang, and T.-W. Hou. Multithreading in
Java: Performance and scalability on multicore systems. IEEE
Transactions on Computers, 60(11):1521–1534, Nov. 2011.

[6] J. Demme and S. Sethumadhavan. Rapid identication of ar-
chitectural bottlenecks via precise event counting. In Pro-
ceedings of the Annual International Symposium on Computer
Architecture (ISCA), pages 353–364, June 2011.

[7] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout. Criti-
cality stacks: Identifying critical threads in parallel programs
using synchronization behavior. In Proceedings of the Annual

International Symposium on Computer Architecture (ISCA),
pages 511–522, June 2013.

[8] S. Eyerman, K. Du Bois, and L. Eeckhout. Speedup stacks:
Identifying scaling bottlenecks in multi-threaded applications.
In Proceedings of the International Symposium on Perfor-
mance Analysis of Software and Systems (ISPASS), pages
145–155, Apr. 2012.

[9] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor. Kremlin:
Rethinking and rebooting gprof for the multicore age. In
Proceedings of the Annual ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
pages 458–469, June 2011.

[10] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assessing
the scalability of garbage collectors on many cores. ACM
SIGOPS: Operating Systems Review, 45(3), Dec. 2011.

[11] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A study of
the scalability of stop-the-world garbage collectors on multi-
core. In Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), pages 229–240, Mar. 2013.

[12] Intel. Intel VTuneTM Amplifier XE 2011.
http://software.intel.com/en-us/articles/intel-vtune-amplifier-
xe/.

[13] M. Itzkowitz and Y. Maruyama. HPC profiling with the Sun
StudioTM performance tools. In Tools for High Performance
Computing 2009, pages 67–93. Springer, 2010.

[14] L. K. John. More on finding a single number to indicate
overall performance of a benchmark suite. ACM SIGARCH
Computer Architecture News, 32(4):1–14, Sept. 2004.

[15] T. Kalibera, M. Mole, R. Jones, and J. Vitek. A black-
box approach to understanding concurrency in DaCapo. In
Proceedings of the Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), pages 335–354, Oct. 2012.

[16] M. Kambadur, K. Tang, and M. A. Kim. Harmony: Collection
and analysis of parallel block vectors. In Proceedings of the
Annual International Symposium on Computer Architecture
(ISCA), pages 452–463, June 2012.

[17] OpenJDK. OpenJDK (Implementation of the Java SE 6 Speci-
fication), Version 1.6. Oracle, 2006. URL http://openjdk.

java.net/projects/jdk6/.

[18] J. B. Sartor and L. Eeckhout. Exploring multi-threaded Java
application performance on multicore hardware. In Proceed-
ings of the Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA), pages 281–296, Oct. 2012.

[19] SPEC. SPECjbb2005 (Java Server Benchmark), Release 1.07.
Standard Performance Evaluation Corporation, 2006. URL
http://www.spec.org/jbb2005.

[20] STMicroelectronics. PGProf: parallel profiling for scientists
and engineers. http://www.pgroup.com/products/pgprof.htm,
2011.

371

