
Towards Client-Aware Interface Specifications

Henrique Rebêlo
Federal University of Pernambuco, Recife, PE, Brazil

hemr@cin.ufpe.br

Abstract
Runtime assertion checking (RAC) is a well-established technique
for runtime verification of object-oriented (OO) programs. Con-
temporary RACs use specifications from the receiver’s dynamic
type when checking method calls. This implies that in presence
of subtyping and dynamic dispatch features of object-oriented pro-
gramming, these specifications differ from the ones used by static
verification tools, which rely on the specifications associated with
the static type of the receiver. Besides the heterogeneity problem,
this also hinders the benefits of modular reasoning achieved by
the notion of supertype abstraction. In this context, we propose a
more precise runtime assertion checking for OO programs that bet-
ter matches the semantics used in static verification tools. While we
describe our approach, we discuss how it can be used to avoid the
heterogenous semantics problem and among others.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Programming by contract, Assertion checkers; F.3.1
[Specifying and Verifying and Reasoning about Programs]: Asser-
tions, Pre and postconditions, Specification techniques

General Terms Design, Languages, Verification

Keywords Modular Reasoning, Runtime Verification, Client-
Aware Interface Specifications

1. Introduction
Object-oriented programming (OOP) has been presented for many
virtues, of which we can emphasize subtyping and dynamic dis-
patch. Both are useful and problematic in relation to the procedural
approach that OOP replaces. They are useful because one can ab-
stract away details in the specifications of subtypes using the super-
type ones. This allows variations in data structures and algorithms
to be handled uniformly with subtype polymorphism. They are
problematic for reasoning about object-oriented (OO) programs,
because dynamic dispatch selects different methods depending on
the exact runtime type of an object. For example, a dynamically
dispatched method call such as o.m() requires a case analysis to
deal with all possible dynamic types of o’s value. Hence, we need
to re-specify or re-verify the method m whenever new subtypes are
added to the program. However, such an approach is not modular,
because it requires re-specifying or re-verifying existing code when
the program is extended.

Copyright is held by the author/owner(s).

SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
ACM 978-1-4503-0940-0/11/10.

In this context, Leavens and Weihl [7] proposed a strategy for
modular reasoning, which they call “supertype abstraction”. Such a
strategy is modular in that it does not depend on receiver’s dynamic
type. For instance, What specification should one use to reason
about a call, such as o.m(), given that the static type of o is T?.
Based on the supertype abstraction technique, one should use the
specification associated with the static type of o (T in this case)
to reason about the correctness of a method call. As supertype
abstraction does no depend on the o’s dynamic type, the method
m does not need to be re-specified or re-verified when the existing
subtypes of T are changed or when new subtypes are added to a
program.

The benefits of the supertype abstraction idea are related to the
Liskov’s invited talk at OOPSLA 1987 [9]. Liskov stated an easily-
remembered test for subtyping, also called Liskov Substitutability
Principle (LSP), (p. 25): “if for each object o1 of type S there is an
object o2 of type T such that for all programs P defined in terms of
T, the behavior of P is unchanged when o1 is substituted for o2 then
S is a subtype of T”.

Problems. Although supertype abstraction is a helpful tech-
nique to reason about object-oriented programs, current runtime
assertion checkers use specifications from the receiver’s dynamic
type when checking client method calls. As a consequence, to rea-
son about the method call o.m(), one need to perform a case anal-
ysis with all possible dynamic types of receiver o. This approach
hinders modular reasoning and raises other problems. To illustrate,
consider the code in Figure 1 from the canonical figure editor ex-
ample [6, 10]. We use JML [8] as our formal interface specifica-
tion language for concreteness, but the problems and solution we
present can also be exploited to other interface specification lan-
guages (e.g. Spec# [2]). In JML, annotation comments start with an
at-sign (@) and specification cases for methods start with a visibil-
ity modifier and normal behavior, both appear before the method’s
header. Preconditions are introduced by keyword requires and post-
conditions by ensures.

Figure 1 gives protected specifications for classes Point and
ScreenPoint . In the class Point, the method setX’s precondition states
that the argument x must be greater than or equal to zero. The
postcondition ensures that the coordinate Point .x (the field x of
Point class) is equal to the value of the argument x. The Point’s
subclass ScreenPoint overrides the inherited setX method and pro-
vides an additional JML specification case that describes how the
method behaves for arguments that do not satisfy the precondi-
tion of the inherited protected specification case (in JML the key-
word also means that the specification of Point .setX is inherited
to ScreenPoint .setX). Hence, when the argument x is less than zero
(precondition) the inherited coordinate Point .x must be zero (post-
condition).

Heterogeneous Semantics Problem. The first problem with
runtime verification of specified OO programs is that the specifi-
cations used to check the correctness of a method call is based on
its dynamic type, thus hindering modular reasoning (supertype ab-

71

1 package p ;
2 c l a s s Fig {}
3 c l a s s P o i n t extends Fig {
4 p r o t e c t e d i n t x , y ;
5 /∗@ p r o t e c t e d normal behavior
6 @ r e q u i r e s x >= 0 ;
7 @ ensures t h i s . x == x ; @∗ /
8 p u b l i c vo id s e tX (i n t x) {
9 t h i s . x = x ;

10 }
11 }

12 package p ;
13 c l a s s S c r e e n P o i n t extends P o i n t{
14 /∗@ a l s o
15 @ p r o t e c t e d normal behavior
16 @ r e q u i r e s x < 0 ;
17 @ ensures t h i s . x == 0 ; @∗ /
18 p u b l i c vo id s e tX (i n t x) {
19 i f (x >=0) t h i s . x = x ;
20 e l s e x = 0 ;
21 }
22 }

23 package p ; / / p r o t e c t e d c l i e n t
24 c l a s s c l i e n t C l a s s 1 {
25 vo id c l i e n t M e t h 1 (P o i n t p) {
26 p . s e tX (−1);
27 }
28 }
29 package q ; / / p u b l i c c l i e n t
30 c l a s s c l i e n t C l a s s 2 {
31 vo id c l i e n t M e t h 2 (P o i n t p) {
32 p . s e tX (−1);
33 }
34 }

Figure 1. Behavioral contracts for the figure editor [6, 10] using JML [8].

1 package p ;
2 c l a s s P o i n t extends Fig {
3 p r o t e c t e d i n t x , y ;
4 p u b l i c vo id s e tX (i n t x) {
5 t h i s . x = x ;
6 }
7 }

8 package p ;
9 / / B e h a v i o r a l I n t e r f a c e S p e c i f i c a t i o n

10 c l a s s P o i n t extends Fig {
11 /∗@ p r o t e c t e d normal behavior
12 @ r e q u i r e s x >= 0 ;
13 @ ensures t h i s . x == x ; @∗ /
14 p u b l i c vo id s e tX (i n t x) ;
15 }

16 package p ; / / p r o t e c t e d c l i e n t
17 c l a s s c l i e n t C l a s s 1 {
18 vo id c l i e n t M e t h 1 (P o i n t p) {
19 / /@ a s s e r t −1 >= 0 ;
20 p . s e tX (−1);
21 / /@ assume t h i s . x == −1;
22 }
23 }

Figure 2. Formulation of Client-Aware Interface Specifications.

straction) and resulting in a heterogenous semantics in contrast to
some verification tools, which are static type reasoning-based [4].
For example, consider the call to method setX on line 26 (Figure 1).
The technique of supertype abstraction [7] uses the specification of
the static type of the receiver to reason about such a call. Hence,
since p’s static type is Point, supertype abstraction tell us to rea-
son about the call p.setX(−1) using the specification given on lines
5−7. As a result such a call violates the precondition (line 6) when
passing −1 as argument to method setX.

However, by using the classical JML runtime assertion checker
(RAC) [4], we got no precondition violation when the receiver p
represents the dynamic type ScreePoint . This happens because the
effective precondition used is the specifications given on lines 5−7
is joined with the specification on lines 14−17 (this give us the ef-
fective precondition (x >= 0) || (x < 0)). In other words, this prob-
lem happens because the instrumentation technique is done locally
at the method declaration site. For instance, the JML RAC com-
piler (jmlc) uses an approach called wrapper approach [4]. This
approach translates pre- and postcondition specifications into sep-
arate assertion checking methods which wraps the original method
implementation with such assertion checking methods. Thus, all
client calls now go to the wrapper method. In addition, the wrapper
approach is responsible for calling corresponding assertion check-
ing methods of supertypes if any. Because of that, the method call
p.setX(−1) includes the specifications of type ScreePoint when the
receiver p matches it (thus, going against supertype abstraction).

On the other hand, if we use the static checker ESC/Java2 [4]
on the same method (call on line 26 in Figure 1), we can now detect
the expected precondition violation based on the specifications of
class Point (lines 5−7). Therefore, this causes another fundamental
problem for program verification; the existing tools [4] use a het-
erogeneous semantics for program verification. For instance, the
static checker is based on static type reasoning, whereas the run-
time assertion checker is based on dynamic type reasoning.

Visibility Rules Checking Problem. Leavens and Müller [6]
present rules for information hiding in specifications for Java-like
languages. Their rules restrict proof obligations on method calls
to only satisfy visible specifications. Consider the method call
p.setX(−1) on line 32 (Figure 1). According to the supertype ab-
straction technique, the Point’s specification must be used to rea-

son about the correctness of such a call. The Point’s specification
has a protected specification case for the method setX. Thus, only
privileged clients (i.e. subclasses or code in the same package) are
required to obey such specifications. Since the method call on line
32 is originated from a public client (the call is located in a differ-
ent package), the effective precondition on such a call defaults to
true [6, Rule 2].

However, the instrumented code generated by current RACs ig-
nore visibility modifiers in specifications (our second problem).
Hence, by using the jmlc [4] on the same method call (line 32)
results in no contract violation, but the effective precondition (as-
suming that the dynamic type of the receiver p is ScreenPoint) that
is checked is the disjunction of the precondition on line 6 with the
one in line 16 ((x >= 0) || (x < 0)), instead of the default one ex-
plained. Due to the server side instrumentation approach adopted
by RACs, all specifications (with different visibility levels) are
checked without respecting the information hiding rules [6]. It is
important to note that none of existing tools [4] check visibility
rules properly in interface specification languages. According to
Leavens and Müller [6], the practical enforcement of such visibil-
ity rules is future work.

Library Checking Problem. Nowadays we have a large-scale
reuse of components. This is due to the standardization of large
libraries and frameworks in popular programming languages such
as C++, Java, and C#. Such a standardization and heavy use of
libraries keep module specification important and useful. However
source code of libraries is not available for proprietary libraries [5].
This issue poses our third problem with runtime verification of OO
programs. Since the contemporary RACs (e.g. jmlc [4]) need the
source code in order to generate the runtime checks, we can neither
specify nor verify programs during runtime when source code is
not available.

2. Client-Aware Interface Specifications
To solve the three afore-mentioned problems, we propose the no-
tion of client-aware interface specifications, or CAIS. We call our
approach client-aware because all clients must be aware of the for-
mal specifications contained in a special interface. We say special

72

interface in the sense that specifications do not necessarily be writ-
ten in the source code.

Formulation of Client-Aware Interface Specifications. Fig-
ure 2 illustrate the formulation of client-aware interface specifica-
tions. For simplicity, we just consider the type Point (lines 1−7),
its specifications (lines 8−15), and a client (lines 16−23). In a pro-
gram logic, CAIS are embodied by the proof rule for method calls,
which allows us to derive {P} p.m() {Q} only from a specifica-
tion (preTm, postTm) associated with the static type T for the re-
ceiver p. Usually, an automated verifier uses weakest precondition
semantics and achieves modularity by replacing a call p.m() by the
sequence of “assert preTm[�a/�f]; assume postTm[�a/�f]” [1]. We use
the notation [�a/�f] to denote the substitution of the formal parame-
ters by the actual ones. Since we are concerned with runtime verifi-
cation, all the assume statements are checked like the assert ones.
The instrumentation in the call site can be observed on lines 19−21
(Figure 2). Therefore we use a call site instrumentation approach in
contrast to existing works [4, 11]. Another important concept of our
CAIS is about abstraction. According to Liskov, we should specify
the behavior, but keep it separated from implementation details [9].
This is an important concept when considering libraries specifica-
tion and runtime verification.

Usefulness of Our Approach. Since our instrumentation mech-
anism is based on the static type of the receiver of a particular
method call, we can again exploit all the benefits achieved with su-
pertype abstraction (i.e. modular reasoning) during runtime verifi-
cation. Moreover, since we adopt a static type reasoning for check-
ing method calls, we can get similar results when using other tools
like a static checker (tackling our first problem). As our approach
is a call site driven, once our clients are known, we can instrument
them according their interface specifications respecting the visibil-
ity rules (tackling our second problem). Finally, with client-aware
interface specifications (as observed in Figure 2), one can detail
specify and check during runtime the behavior of class libraries
even if their source code are not available. The runtime verifica-
tion is possible since our CAIS uses a client side instrumentation.
Hence, we neither need the source code nor modify proprietary
bytecode APIs (tackling our third problem).

Tool. We built these ideas on the Aspect-JML RAC compiler
(ajmlc) [11] which is available online at http://www.cin.ufpe.

br/~hemr/JMLAOP/ajmlc.htm (its current release is 3.0).
Evaluation. We intend to conduct experiments with real sys-

tems and compare the traditional runtime assertion checkers with
our new approach proposed here and embedded in ajmlc [11]. So,
we are looking for bugs that the contemporary runtime assertion
checkers do not catch. Additionally, we want to analyze how pre-
cise is the error reporting including the visibility specifications.
This is intended to blame different kinds of clients (e.g. subclasses).
We also intend to evaluate the impact of our approach in relation
to the classical ones in terms of source code and bytecode instru-
mentation sizes. Eventually, we are also interested to analyze the
runtime performance of each approach.

Limitation. Since our approach is based on clients, the more
new clients we have, more instrumentation code will be generated.
On the other hand, in the classical approach the instrumentation is
achieved only once at the declaration side which the methods being
called are physically declared.

Future Work. We hope to increase expressiveness of the client-
aware interface specifications to enable specifications of more com-
plex design rules which are already found in JML [8]. We need to
adapt our approach to use model program specifications [12]. Thus,
this allows us to go beyond the traditional black box approach [3].
We also intend to investigate how to improve the separation of the
design by contract concern in a separated interface. Preliminaries
results can be found in [10].

Summary. Our hypothesis is that by using the client-aware in-
terface specifications developers can achieve a more precise run-
time verification of constrained OO programs. Our Benefits in-
clude: (i) modular reasoning by the use of supertype abstraction
without drawbacks caused by runtime verification; (ii) the choice to
switch from a static checker to a runtime assertion checker without
surprises while getting error reporting; (iii) applying runtime ver-
ification including visibility levels achieved by information hiding
principles, and (iv) precise specification and runtime verification of
class libraries even if the source code is not available.

Acknowledgments
I would like to thank Professors Ricardo Lima and Gary T. Leavens
(my supervisors) for the fruitful discussions we had about the ideas
of my PhD thesis proposal.

References
[1] M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured

programs. SIGSOFT Softw. Eng. Notes, 31:82–87, September 2005.
ISSN 0163-5948. doi: http://doi.acm.org/10.1145/1108768.1108813.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming
system: an overview. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean, editors, Post Conference Proceedings of CASSIS:
Construction and Analysis of Safe, Secure and Interoperable Smart
devices, Marseille, volume 3362 of LNCS. Springer-Verlag, 2005.

[3] M. Buchi and W. Weck. The greybox approach: When blackbox
specifications hide too much. Technical report, 1999.

[4] L. Burdy et al. An overview of JML tools and applications. Int. Jour-
nal on Soft. Tools for Tech. Transfer (STTT), 7(3):212–232, June 2005.
URL http://dx.doi.org/10.1007/s10009-004-0167-4.

[5] G. T. Leavens. The future of library specification. In Proceed-
ings of the FSE/SDP workshop on Future of software engineering re-
search, FoSER ’10, pages 211–216, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0427-6. doi: http://doi.acm.org/10.1145/1882362.
1882407.

[6] G. T. Leavens and P. Müller. Information hiding and visibility in
interface specifications. In International Conference on Software
Engineering (ICSE), pages 385–395. IEEE, May 2007. URL http:
//dx.doi.org/10.1109/ICSE.2007.44.

[7] G. T. Leavens and W. E. Weihl. Specification and verification of
object-oriented programs using supertype abstraction. Acta Infor-
matica, 32(8):705–778, Nov. 1995. doi: http://dx.doi.org/10.1007/
BF01178658.

[8] G. T. Leavens et al. Preliminary design of JML: A behavioral interface
specification language for Java. ACM SIGSOFT Software Engineering
Notes, 31(3):1–38, Mar. 2006.

[9] B. Liskov. Keynote address - data abstraction and hierarchy. In Ad-
dendum to the proceedings on Object-oriented programming systems,
languages and applications (Addendum), OOPSLA ’87, pages 17–
34, New York, NY, USA, 1987. ACM. ISBN 0-89791-266-7. doi:
http://doi.acm.org/10.1145/62138.62141.

[10] H. Rebêlo, R. Lima, and G. T. Leavens. Modular contracts with proce-
dures, annotations, pointcuts and advice. In SBLP ’11: Proceedings of
the 2011 Brazilian Symposium on Programming Languages. Brazilian
Computer Society, 2011. to appear.

[11] H. Rebêlo et al. Implementing java modeling language contracts with
aspectj. In Proceedings of the 2008 ACM symposium on Applied
computing, SAC ’08, pages 228–233, New York, NY, USA, 2008.
ACM. ISBN 978-1-59593-753-7. doi: http://doi.acm.org/10.1145/
1363686.1363745.

[12] S. M. Shaner, G. T. Leavens, and D. A. Naumann. Modular verification
of higher-order methods with mandatory calls specified by model
programs. In Proceedings of the 22nd OOPSLA, OOPSLA ’07, pages
351–368, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-786-
5. doi: http://doi.acm.org/10.1145/1297027.1297053.

73

