

PEM: Experience Management Tool for Software Companies
Emanuele Danovaro

Free University of Bozen-Bolzano
Emanuele.Danovaro@unibz.it

Tadas Remencius
Free University of Bozen-Bolzano

Tadas.Remencius@unibz.it

Alberto Sillitti
Free University of Bozen-Bolzano

Alberto.Sillitti@unibz.it

Giancarlo Succi
Free University of Bozen-Bolzano

Giancarlo.Succi@unibz.it

Abstract
Process control and improvement are keys to successful
businesses. A working Experience Factory helps to achieve
them but it is not easy to implement. The PROM
Experience Manager (PEM) is designed to facilitate such
implementation with a flexible visual interface to an
experience base populated of metrics collected non
invasively.

Categories and Subject Descriptors D.2.9 [Software
Engineering]: Management; K.6.3 [Computing Milieux]:
Software Management;

General Terms Management, Measurement.

Keywords Experience Manager; Dashboard; Metric
Interpretation.

1. Introduction
Effective management of the processes of the company has
been recognized as one of the keys to success in business
and has been the focus of a number of standards, such as
ISO 9000, ISO 15939, TQM, CMMI, 6 Sigma, etc.
However, it is not easy to achieve in practice.

Managing the processes effectively means that managers
and developers need to be able to understand what and why
is happening, to be able to affect (e.g., change, improve)
the processes, to evaluate their results, and to learn from
them (Figure 1).

The Experience Factory (EF) [1] is an infrastructure that
can facilitate this. It is designed to capture the experiences
and products of the life-cycle, to package and to prepare
them for later reuse. The success of the EF and the benefit
it can bring to a company is largely dependent on the
acceptance of the framework by the employees and on their
willingness to participate in it [2].

PROM Experience Manager (PEM) is a tool designed (a)
to provide a framework for automatic data collection using
the PROM infrastructure [3] and (b) to help motivate users
to participate in the forming and use of the EF by providing
a visual interface to the experience base of the company.
The backbone of PEM is a goal oriented top-down
approach – we use an adaptation of the GQM.

The GQM (Goal/Question/Metric) [4] is a measurement
model composed of three levels: (a) conceptual (goals), (b)
operational (questions defining the goals in the quantifiable
way), and (c) quantitative (set of metrics associated with
questions to answer them in a measurable way).

In addition to the GQM, we also let users create and share
personalized collections of views not tied directly to the
underlying model. For example, alongside the visualization
of a GQM metric, one might place a view containing tasks
related to a goal or with user comments about usefulness of
particular metric. In this way the tool creates a bottom-up
feedback layer that facilitates user collaboration and helps
to discover personalized benefits from the experience.

Figure 1. The role of PROM Experience Manager (PEM).

2. Architecture of the Approach
We adapt the GQM by extending it with optional goal
properties and introducing a new “abstraction” level
(Figure 2) to “interpret” the values of the metrics.

We also support a hierarchy of goals, from higher level
(business) to low-level measurement goals, as in the GQM+
Strategies approach [5]. The new goal properties define:
o Expiration: when and if the goal expires (deadline);
o Condition: formula defining if the goal has been

reached (possible values: reached, not reached or
failed).

o Prediction / Estimation: formula predicting if the
goal is reached (possible values: reached or failed).

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

733

Figure 2. Adaptation of the GQM approach.

The abstraction level is composed of metric interpretations
that take the values of the metrics and convert them to an
abstract uniform scale of “goodness”.

Different metaphors can potentially be used to construct the
scale of abstraction. We use the metaphors of the traffic
light, which can assume three values: (a) green (OK;
everything is fine); (b) yellow (warning; neither good nor
bad and can potentially result in a problem); and (c) red
(problem; attention required). The metaphor of the traffic
light is easy to understand at-a-glance and simplifies the
interpretation of the metrics also for non IT/experts.

Metric interpretations have several optional properties that
are used to help evaluate interpretations and metrics:
o Significance: its importance (influence, weight) to the

goal on a scale from 0 (no effect) to 100 (perfectly
aligned with the goal).

o Maturity: the level of trustworthiness of the
interpretation. It can have one of three values:
unproven (default), proven, and unreliable.

o Accuracy: how often the metric represents the goal
correctly on a scale from 0 (never) to 100 (always).

3. Structure of the Solution
PEM is composed of two logical parts: (1) an Ajax-based
web-based system that uses Apache Tomcat (web server)
and PostgresSQL (DBMS); (2) a server side Java
application, for metric storage and external data import.

Figure 3. Screenshot of the system.

PEM uses the dashboard-based approach for its GUI
(Figure 3), which is composed of three main elements: (1)
toolbar with control buttons; (2) tab-based navigation
between available perspectives; and (3) views contained
inside the active perspective.

Views are of different types based on what their function is.
However, all views have the same visual structure: (a) title
bar with metric interpretation “light bulb”, view name and
state control buttons (minimize / maximize / restore); (b)
view contents (e.g. chart, data, text, GQM, etc.); and (c)
status bar with view description and additional controls
dependent on the user rights (e.g., resizing, removal).

4. Experience
Our experience from deploying the tool in software
companies showed us that PEM makes managers and
developers understand the value of a metrics program.
They can appreciate visually that metrics exist (really!) and
evolve in time without any additional effort for collection,
providing useful information on the development process
and product. This overcomes a lot of existing prejudices on
metrics programs.

Moreover, using metric interpretations motivates managers
and developers to think about them and thus to understand
the metrics better. The challenge becomes then to come up
with a good interpretation formula – which is in a sense
good, as it requires a more consistent understanding of the
metrics within an organization. A more consistent
interpretation of metrics is further promoted by the
visualization of the interpretations.

We are now starting a formal review process with ~20
industrial developers; the results will be ready in the next
year.

References
[1] V. Basili, G. Caldiera and D. Rombach, “Experience

Factory”, Encyclopedia of Software Engineering, Wiley,
Vol. 1, 476-496, 1994.

[2] C.B. Seaman, M.G. Mendonca, V. Basili and Y.M. Kim,
“User Interface Evaluation and Empirically-Based Evolution
of a Prototype Experience Management Tool.”, Transactions
on Software Engineering, Vol. 29, Issue 9, 838-850, 2003.

[3] A. Sillitti, A. Janes, G. Succi, and T. Vernazza, “Collecting,
Integrating and Analyzing Software Metrics and Personal
Software Process Data”, Proceedings of the 29th Conference
on EUROMICRO, 336, 2003.

[4] V. Basili, G. Caldiera and D. Rombach, “The Goal Question
Metrics Approach”, Encyclopedia of Software Engineering,
Wiley, Vol. 1, 528–532, 1994.

[5] V. Basili, J. Heidrich, M. Lindvall, J. Munch, M. Regardie
and A. Trendowicz, "GQM+ Strategies - Aligning Business
Strategies with Software Measurement", Proceedings of the
International Symposium on Empirical Software Engineering
and Measurement (ESEM), 488-490, 2007.

734

