
The Poor Man’s Proof Assistant
Using Prolog to Develop Formal Language Theoretic Proofs

Joey Eremondi
University of Saskatchewan
joey.eremondi@usask.ca

Abstract
While proving a theorem from a set of axioms is undecidable in
first order logic, recent development has produced several tools
which serve as automated theorem provers. However, often these
systems are too complex for a given problem. Their usefulness is
outweighed by the difficulty of learning a new tool or translating
results into computer-readable form.

I describe tools developed in Prolog to partially characterize
the shuffle-inclusion problem. These tools allowed for rapid devel-
opment of proofs with little intellectual overhead. While focused
around a specific problem, the techniques described are general,
and well suited to many problems on discrete structures.

Categories and Subject Descriptors D.1.6 [PROGRAMMING
TECHNIQUES]: Logic programming

Keywords Prolog; shuffle; proof assistant

1. Problem and Motivation
This paper shows how logic languages such as Prolog provide a
fast and easy way to develop assistive tools in theorem proving.
As a case study, I use the characterization of the shuffle inclusion
problem.

The shuffle operator, which represents the set of all ways of
“merging” two strings, has received much attention in recent re-
search. Its main application is in modelling parallelism [10]. More-
over, it represents a fundamental operation on strings, so research-
ing it contributes to a greater understanding of the theory underly-
ing computation.

I examined shuffle inclusion, the question of whether one shuf-
fle set was a subset of another. The search tools I developed for this
problem serve as an example of how logic languages can be used
to facilitate the development of proofs in formal languages and dis-
crete mathematics.

2. Background and Related Work
2.1 The Prolog Language
A detailed introduction to Prolog can be found in [6]. There are
three features which are particularly relevant here. Unification al-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-1995-9/13/10. . . $15.00.
http://dx.doi.org/10.1145/2508075.2508088

lows logical predicates to generate answers, rather than simply test
conditions, by leaving some variables unbound. Roughly, Prolog
searches for a value causing a goal to succeed. Nondeterminism al-
lows for multiple definitions of a predicate. These are each tried in
sequence when proving a goal, allowing queries to return multiple
answers. The Definite Clause Grammar (DCG) feature provides
tools for string parsing and generation. While based on context-
free grammars, they can be mixed with arbitrary Prolog code for
context-sensitve testing.

2.2 Shuffle Inclusion
I use Σ∗ to denote the set of all (possibly empty) words over the
alphabet Σ, and |w| to denote the length of a word w. The shuffle
operator � denotes all ways of interleaving the letters from two
words while preserving their order relative to the original words. It
maps two strings to a finite set of strings, and is formally defined in
[3] as follows:

u� v = {u1v1 · · ·unvn | u = u1 · · ·un,v = v1 · · · vn,
ui ∈ Σ∗, vi ∈ Σ∗, 1 ≤ i ≤ n}

In [3] and [2] it was shown that u� v = x� y ⇐⇒ {u, v} =
{x, y} when u and v contain at least two distinct letters. When
equality is so easily described, it is natural to ask a similar question
about the inclusion problem, and to examine when u� v ⊆ x� y.

2.3 Proof Assistants
Despite the undecidability of first-order logic [5], many successful
proof-assistants exist. HOL [9] is based on higher-order logic. Coq
uses dependent types, and was used to verify proof of the four
color theorem [8]. Several of these languages have counter-example
search packages, such as Nitpick [4] and Kodkod [11]. The Alloy
Analyzer provides counter-example search with SAT-solvers, with
a focus on specifying Object-Oriented systems [1]. However, these
languages can be challenging to learn, and translating statements
into computer-readable code is difficult and tedious. Some Prolog
tools, such as PFLAT [12] have been developed for formal language
work, but these are geared more towards education rather than real
theorem proving.

3. Approach and Uniqueness
My approach to the inclusion problem was to find a complete char-
acterization of cases when the subset relation holds. For example,
xwy � w ⊆ xw � wy for all w, x, y ∈ Σ∗. My research fol-
lowed a cyclic approach. Initially, a list of all u, v, x, y fulfilling
u� v ⊆ x� y and |uv| ≤ k was generated. I examined this list
to find patterns and develop hypotheses about the subset relation.
Once a conjecture was formulated, I would use a search framework
to search for counter-examples of length k. If no counter-example
was found, I attempted a pen-and-paper formal proof, then wrote a

75

predicate to test which strings matched its pattern. The process was
repeated, but strings matching previously proved theorems were fil-
tered out. Thus I could gauge the completeness of my characteriza-
tion, continually narrowing the list of strings I examined.

3.1 Enumeration
Since strings are discrete objects, it is possible to enumerate all
cases where u � v ⊆ x � y with bounds on |uv|. In order to
help find patterns, my program printed all such u, v, x, y of a given
length. With Prolog’s nondeterminism and unification, the predi-
cate specifying such u, v, x, y also served to enumerate them. This
predicate declared a list with unbound members, then declared u, v
as a partition of that list. Another predicate, hasSameParikh, se-
lected a number of a’s and b’s for uv to have, then unified x, y
with words having the same number of each letter. Finally, x, y
were unified with words fulfilling the subset relation. Once a the-
orem was proved and added to the characterization, any u, v, x, y
which fulfilled the conditions of the theorem were filtered out. This
enumeration allowed me to experimentally prove that my charac-
terization was complete up to length 8.

3.2 Counter-example Search and Hypothesis Testing
The hypothesis-testing tool generated strings u, v, x, y matching a
hypothesis’ conditions with |uv| = k, then tested if u�v ⊆ x�y.
Two k-element lists were declared with unbound contents. Then
u, v and x, y were declared as a partitioning of these lists.

The search called a rule counterCond which unified a query
u, v, x, y with strings matching my hypothesis. The rule was rewrit-
ten for each conjecture being tested, usually using DCG clauses.

By passing an unbound list to counterCond, the predicate
generated strings that matched the hypothesis condition. This was
more efficient than generating every pair of strings of a given length
and testing if they matched the hypothesis condition. The logic-
programming approach meant that no additional code was written
to perform this optimization.

Restricting search to a given length was necessary, since recur-
sion on unbound-length strings caused infinite loops. Continually
increasing k led to an iterative-deepening search, ensuring that the
search would halt and find a counter-example of length k if it ex-
isted.

3.3 Definite clause grammars
The task of matching a set of strings against a given “pattern”
arose frequently. DCG’s provided a useful tool for expressing such
patterns. Regularly used clauses were written, such as aToMbToN to
match ambn, m,n ∈ N0. These could be combined and composed.
For example, concatStr concatenated strings matching different
DCG clauses. Likewise, calling concatStr on two different words
could then be used to test for a common infix between them. By
using Prolog’s DCG tool, patterns and conditions could be coded
in an easily readable form without requiring a parser or generator
to be written.

3.4 Inductive queries
Prolog is designed to have programs run interactively from a con-
sole, rather than compiled to an executable. This allowed my frame-
work to answer queries without having to write any sort of user
interface. A common usage of this feature was querying which dis-
covered patterns, if any, proved u�v ⊆ x�y for a given u, v, x, y.
Many of the proofs that patterns held were based on induction, con-
structing new relations from ones I had already proved. While these
proofs were completed manually, the process was made much eas-
ier with the ability to query previously-proved theorems.

4. Results and Contribution
Using the techniques described above, I found a list of over 40
patterns which completely characterize when u� v ⊆ x� y, with
uv ∈ {a, b}∗, |uv| ≤ 8. For example, w� xwy ⊆ xw� wy, and
apwbk � aqwbl ⊆ ap+qw � wbk+l.

While human-developed proofs verified the correctness of each
subset relation, their completeness for length 8 was verified using
my search tools. The development of pen-and-paper proofs was
made easier with the use of my assistive tools. The full list of pat-
terns, as well as proof of each pattern’s correctness, can be found in
[7]. The techniques used here can be generalized to other problems.
In particular, the counter-example search could be used to test any
hypothesis involving a finite number of discrete structures.

5. Conclusion
I presented Prolog tools for assisting with proofs and formal
language-theoretic research. These demonstrate how software can
help automate the proof developing process, and how Prolog’s
unique feature-set allows for rapid development and interactive use
of such software. While more complete tools exist, my framework
provided a shallower learning curve better suited to the day-to-day
challenges of formal language research. My success in partially
characterizing the shuffle inclusion problem provides a strong ex-
ample of both the ease and effectiveness of these tools.

Acknowledgments
The author was supervised by Dr. Ian McQuillan and supported
by the Natural Sciences and Engineering Research Council of
Canada.

References
[1] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. On challenges

of model transformation from uml to alloy. Software & Systems
Modeling, 9(1):69–86, 2010. ISSN 1619-1366. .

[2] J. Berstel and L. Boasson. Shuffle factorization is unique. Theoretical
Computer Science, 273:47–67, 2002.

[3] F. Biegler, M. Daley, M. Holzer, and I. McQuillan. On the unique-
ness of shuffle on words and finite languages. Theoretical Computer
Science, 410:3711–3724, 2009.

[4] J. Blanchette and T. Nipkow. Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In M. Kaufmann
and L. Paulson, editors, Interactive Theorem Proving, volume 6172 of
Lecture Notes in Computer Science, pages 131–146. Springer Berlin
Heidelberg, 2010. ISBN 978-3-642-14051-8. .

[5] A. Church. A note on the entscheidungsproblem. J. Symb. Log., 1(1):
40–41, 1936.

[6] W. F. Clocksin and C. S. Mellish. Programming in Prolog: Using the
ISO Standard. Springer, 5th edition, 9 2003. ISBN 9783540006787.

[7] J. Eremondi and I. McQuillan. A Partial Characterization of the
Shuffle Inclusion Problem on Words. Manuscript in preparation, 2013.

[8] G. Gonthier. Formal proof the four-color theorem. Notices of the
AMS, 55(11):1382–1393, 2008.

[9] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:
a theorem proving environment for higher order logic. Cambridge
University Press, New York, NY, USA, 1993. ISBN 0-521-44189-7.

[10] A. Mateescu, G. Rozenberg, and A. Salomaa. Shuffle on trajectories:
Syntactic constraints. Theoretical Computer Science, 197(1–2):1–56,
1998.

[11] E. Torlak and D. Jackson. Kodkod: A relational model finder. Tools
and Algorithms for the Construction and . . . , pages 632–647, 2007.

[12] M. Wermelinger and A. M. Dias. A prolog toolkit for formal languages
and automata. SIGCSE Bull., 37(3):330–334, June 2005. ISSN 0097-
8418. .

76

