
GL - A Denotational Testhed with Continuations and Partial Continuation s

as First-Class Objects

Gregory F . Johnso n

University of Marylan d

College Park, MD 2074 2

1 . Abstract

In this paper we describe GL, a language designed to support interactive experimentatio n

with denotational semantics of programming languages, and the novel features of its interpreter .

CL is an expressional language that might best he described as an implementation of lambda cal-

culus augmented with several useful basic data types including 1-values .

A unique aspect of the GL environment is that it presents a visible, user-accessible imple-

mentation of the continuation semantics of GL . The user is expected to understand a denota-

tional definition of GL, and to interact with the system in terms of that definition . In particular ,

if a computation is temporarily halted the expression continuation extant at that point can b e

interactively captured and later applied to other values and stores . The implementation of thi s

feature is via a pair of routines called set jmpup and longjinpup that provide what might b e

called a partial continuation facility . A partial continuation is a function over stores o r

store/value pairs that represents execution of a partially executed program from its current stat e

to some later state possibly before its halt state . The semantics of partial continuations i s

interesting, and an extension of GL is presented that contains continuations and partial continua-

tions as first-class objects .

The GL environment is fairly complete ; it has an experimental polymorphic type inferenc e

mechanism that supports self-application and reports likely sources of user error in a robus t

manner, and it has a flexible breakpoint and trace facility that permits program execution to b e

observed and controlled at a variety of levels of granularity . Moreover, it has been used success -

fully to teach a graduate course in Theory of Programming Languages .

Permission to copy without fee all or part of this material is granted provide d
that the copies are not made or distributed for direct commercial advantage ,
the ACM copyright notice and the title of the publication and its date appear ,
and notice is given that copying is by permission of the Association fo r
Computing Machinery . To copy otherwise, or to republish, requires a fee and/
or specific permission .

©1987 ACM 0-89791-235-7/87/0006/0165	 75(G

165

2 . Continuation Semantics as a Basis for a Program Development Environmen t

Denotational semantics [1] has proved to be a versatile tool for many aspects of program-

ming language research . We explore the notion that a denotational language definition, in partic-

ular one based on continuations, is also useful as a basis for user interaction with a programmin g

environment . The environment is for a new strongly typed, expressional language called GL (fo r

Gedanken-like language after Reynolds's language [2]) .

The environment, is designed around a continuation semantics for GL, and the user of th e

environment interacts with the computer in terms of this denotational definition . At any point

when execution of a program has been stopped, the user can interactively obtain a continuatio n

for the computation in progress and bind it to an identifier in the programming environment .

The captured continuation can then be applied to a variety of arguments in an explorator y

manner. The use of continuations as first-class objects in a programming language is extremel y

useful ; the language Scheme [3] exemplifies this principle . For a discussion of the flexibility an d

power offered by the presence of continuations in a language see [4] . We present here a notion o f

partial continuations, discuss the denotational semantics of a language that has them as first-clas s

objects, and indicate a method for their efficient implementation in an imperative systems imple-

mentation language . Related work on partial continuations is being conducted by Friedman ,

et .al . at the University of Indiana [5] .

The normal mode of use is for users to capture continuations in their programs at variou s

interesting points and apply them in a flexible, interactive way to a variety of arguments an d

stores . Since GL permits functions to be used as fully general first-class objects, applications o f

captured continuations can be imbedded in arbitrary GL program fragments . A user could thu s

easily write a small program to apply a given continuation to all odd integers between 100 an d

1000, and algorithmically determine if his program behaves as desired under those circumstances .

Efficient implementation of an interactive continuation-based environment required a nove l

approach to the internal design of the execution component of the system . The GL environment

provides a Read-Eval-Print loop that permits recursive invocations of itself . Thus the runtim e

activation record stack consists of an activation of Read followed by some number of invocation s

of Eval, another activation of Read followed by more invocations of Eval, etc . From the point o f

view of implementation a continuation is simply a sequence of Eval activation records betwee n

two successive activations of Read .

As mentioned above we implementated two procedures that implement what might b e

called partial continuations . The routines are called set jmpup and long jmpup to suggest a n

analogy with the Unix system calls set jmp and long jmp . Set jmpup captures a continuatio n

from after its point of call to the completion of one of its ancestors in the called-by relation . This

is accomplished by capturing some number of activation records off the top of the runtime stack .

166

Longjmpvp evaluates such a continuation by concatenating a vector of activation records ont o

the runtime stack . This mechanism provides an efficient way to implement dynamically obtain -

able continuations ; if the user assigns the continuation of a function he is executing to a variable ,

the object assigned to the variable is the stack of Eval frames down to the previous Read frame .

This technique has proved to be feasible within a relatively low-level implementation languag e

(Pascal) and to be adequately efficient .

3 . Continuations and partial continuations as first-class object s

The CL interpreter makes use of the routines set jmpup and Iongjmpup to achieve a degre e

of efficiency in implementing interactively capturable GL continuations . The semantics o f

setjm.pup and longjm.pup have themselves proved interesting ; we understood them originally onl y

in operational terms as a technique useful at the implementation level, and understanding the m

semantically proved challenging . We would like eventually to define an environment written i n

GL that implements user-accessible continuations semantics, much like the classic Lisp interprete r

written in Lisp . So, it seems natural to augment CL and its denotational semantics with a

feature analogous to setjmnpup and Tong jmpup . This amounts to introducing continuations a s

first-class objects into the language . The result is a powerful device that introduces into a n

expressional language a facility that can be used to create such effects as co-routines an d

catch/throw error recovery .

We recently heard that a large project for an ML machine is about to be undertaken i n

Europe [61 ; if an expressional language such as ML were to be used as a system implementatio n

language, some form of co-routine mechanism such as the one we suggest here for CL would b e

desirable .

As expression continuations are perhaps a bit less intuitive than command continuations, w e

first give a semantics for a simple statement-oriented language that has continuations as first-clas s

objects . The syntax follows :

Pgm ::= S
S : := a := E
S : := if b then Si else S 2
S : :=S1 ;S2
S : := exi t

S : := a := CurCont

{stop the program or skip ahead to the nex t
pending fork statement if one exists }

The statement `a := CurCont' means that the current, command continuation should be stored in

`a', i .e . the address of the next sequential intruction should be put in ` a ' .

167

S : := continue a

	

{resume execution at the address stored in a }

S : := fork a

The statement `fork a' causes execution to proceed to the address stored in `a' . When the pro -

gram stops because of ann `exit' statement or because execution advances past the last statement ,

execution continues after the `fork' statement .

Unusual features of this language are a statement that captures a command continuatio n

into a variable and two ways to invoke such a command continuation . If this simple languag e

were to be implemented, ` a := CurCont' would cause the address of the next sequential instruc-

tion to be put in ` a ' ; `continue a' would cause the address in ` a ' to be put into the progra m

counter . `Fork a' would cause the address of the next sequential instruction to be pushed on `for k

stack' and then the contents of `a' to be put in the program counter . Under such an implementa-

tion, whenever the program stops (by executing an `exit' or by advancing past the last statement)

the fork stack is examined . If it is nonempty, the top element is popped into the program

counter . Otherwise, execution of the program is complete . We now give a continuation seman-

tics for the above language . In what follows we suppress type considerations . In particular, th e

domain Value is a disjoint sum, and so properly we should have all sorts of injection and projec-

tion operations in our equations, together with type consistency tests and error values . The addi-

tion of all of this is left to the interested reader . Its omission makes for a much clearer focus i n

the equations on what is really of interest .

AMIp : Syntax --y Store
Ms: Syntax —+ Store -4 Cont -4 Store
Me : Expr-Syntax —+ Store --> Value

	

{ this is not elaborated }
Mn : Int-String --* Integer

Cont: Store --> Store
Store: Ident-String --• Valu e

Value : Cont + Integer + (any other basic types)

Mp[[S]] = Ms[[S

	

(X id .0) (X s .$)

Somewhat arbitrarily we initialize all identifiers to contain the value O . We could as well initial-

ize to bottom .

Ms[[a :=e]]sc=cs[aF--Me[[e]]s]
Ms[[if b then Si else S2]] s c = if Me[[b]] s then Ms[[Si]] s c else Ms[[S2]] s c
Ms[[S1 ; S2]] s c = Ms[[S1]] s (X s1 .Ms[[S2]] sl c)

The above definitions are standard . The last four are of more interest :

Ms[[exit]] s c = s
Ms[[a :=CurCont]]sc=cs[a4--c]

168

This expression involves a form of self-application ; the continuation `c' is applied to a stor e

in which `c' itself has been bound to an identifier in the store . If effect, `a' becomes a label .

Before ` a ' can be branched to, however, the statement involving definition of the label must b e

executed . This is similar to setjmpnp ; set j=mpup captures an execution context that can later b e

used by long jmpup , but obviously one can't re-enter an execution context until set jmpvp has

been executed to capture the context .

Ms[[continue a]] s c = (s a) s

One obtains from the store the continuation bound to `a' and then applies it to the current store .

The pair of statements `a := CurCont' and `continue a' has a very simple semantics that con-

trasts with the semantics of labels and arbitrary goto ' s . The latter requires a complex applicatio n

of the paradoxical combinator to a functional over vectors of continuations . The heart of th e

paradoxical combinator is of course a clever use of self-application, and in our simple semantic s

given above we also rely on an indirect form of self-application, in which a continuation is applie d

to a structure that has the same continuation imbedded in it .

Ms[[fork a]] s c = c((s a) s)

Ilere we simply compose the continuation of the fork statement with the continuation bound t o

` a ' , and apply the resulting larger continuation to the current store .

We now consider an expressional language with first-class functions, and augment it wit h

continuations as above . The resulting language is considerably more subtle than the above simpl e

statement-oriented language, but its continuation semantics turns out to be surprisingly natural .

We should mention that it took a significant amount of work to achieve such a natural semantics ;

we reformulated the language several times before a clean denotational definition for it could b e

constructed .

A syntax for the language follows :

Pgm : := e
e : := Int
e : := ident
e : := e + e
e : := func id . e
e : := el (e2)
e : := if el then e2 else e3 fi
e : := bind id to el in e2 en d
e : := new e
e : := el := e2
e : :=e .

a representative binary operation }
an unnamed function whose formal parameter is `id' }
apply el as a function to e2 }

statically scoped declaration }
allocate a new location and initialize it with the value of e }
put the value of e2 in the storage location specified by el }
obtain the value in the storage location specified by e }

Note: a conventional constant declaration would b e

bind p to 31415 in p * 3 * 3 div 1000 en d

169

whereas a variable declaration (with initialization) would be declared a s

bind r to new 4 in p * r . * r . div 1000 end

Finally, the novel features of the language :

e : := exit el

Stop the program, returning el as the result of its execution . As in the previous example ,

this construct is meant to be executed primarily when a `fork' is pending, and is used to imple-

ment partial continuations .

e : := CurCon t

This expression evaluates to its own expression continuation . As in the previous language it s

semantics entails a form of self-application . The expression ` a := CurCont' puts a marker in `a' ;

at some later time execution can be resumed at that point .

e : := continue el (e2)

This expression applies el to e2 (and the store resulting from evaluation of el and e2) . Opera-

tionally speaking, control is transferred to the `CurCont' that el produces, never to return . This

can be used to implement a Lisp-like catch/throw mechanism, for instance . It is of course muc h

more powerful; it can be used to jump into the middle of a function activation that has long sinc e

completed execution . This is precisely the effect of iongjnzpup . As for the value of e2, that is th e

value of the expression `CurCont' in the resumed expression . So, if we execute `a := CurCont '

and later execute `continue a. (4)', we jump back into the middle of the assignment, assign 4 t o

`a', and proceed from there . This would of course prevent us from ever resuming using `a' again ,

which leads to the following idiom :

Felllnto := true ;
a := CurCont ;
if FellInto the n

Felllnto := false ;
b := a ;

else Ignor e
fi ;

Then, we execute `continue b (5)' . `B' is the mechanism for invoking the continuation an d

`a' becomes in effect the formal parameter of the invocation .

Finally, we have fork expressions :

e : := fork el (e2)

The continuation to which el evaluates is applied to the value of e2 ; when the program stops an d

produces a value, that value is returned as the value of the fork expression . When a fork is per-

170

formed, it is conventional to expect the program to stop because of execution of an `exit (e)', an d

so the value of e is transferred to the fork expression and returned as its value .

We now give the interesting features of the denotational semantics of the above language :

Mp : Syntax

	

Value
Me : Syntax -4 Envt -4 Store

	

Cont —> <Value X Store >
Mn : Int-String

	

Integer
Cont: <Value X Store> —> <Value X Store >
Envt: Ident-String --r Value
Store: LValue —> Valu e
Value : Cont + LValue + Int + . . . (other basic data types)

We use the notation <el, e2> for ordered pairs of values and fst(e), snd(e) to obtain th e

first (resp . second) component of e, which should an ordered pair .

Me[[Int]]esc=c <Mn[[Int]],s >

Apply the continuation to the pair consisting of the given integer and the store .

Me[[CurCont]] e s c = c <c, s >

Apply the continuation to a pair consisting of the continuation itself and the given store . Thus,

`CurCont' can be used much more generally and flexibly than as the right-hand side of an assign-

ment operation .

Me[[func x .el]] e s c = c < X cl .X <vl,sl> .Me[[el]] e[x <— vl] sl cl, s >

` Func x .e ' denotes a function from continuations and value/store pairs to value/store pairs .

Me[[el(e2)]]esc =
Me[[el]] e s (\ <vl,sl> .Me[[e2]] e sl (X <v2,s2> . vl c <v2,s2>))

(f * g represents function composition, i .e . g(f x))

As usual in continuation semantics, if there are two sub-expressions (el and e2 in this case) ,

one creates a continuation using the meaning of the second expression and gives it as an argumen t

to the meaning function applied to the first function . Here `first' and `second' indicate the orde r

in which the expressions would be evaluated, which matters in the presence of an updatab]e store .

The value to which e1 evaluates, namely vl, is applied to the application's continuation and th e

value/store pair produced by evaluation of e2 . The semantics of application is applicative order ;

in particular if either el or e2 evaluates an `exit' expression the application does not actually tak e

place . Similarly, if the body of el executes an `exit', the continuation of the application i s

ignored .

Me[[exit e]] e s c =Me[[e]] e s (X <v,s> .<v.s>)

171

We evaluate e with respect to the identity continuation, discarding the remainder of th e

program up to any pending `fork' expressions .

Me[[continue el (e2)]] e s c =
Me[[el]] e s (X <vl,sl> .Me[[e2]] e sl vl)

Here, we evaluate el to obtain a continuation vl, and then we evaluate e2 using v1 as it s

continuation .

IMle[[fork el(e2)]]esc =
c (Me[[el]] e s (X <vl,sl> .Me[[e2]] e sl v1))

We evaluate el to obtain a continuation vl, and then evaluate e2 using the value of el a s

the continuation for the evaluation of e2 . After that computation exits, we resume by applyin g

the continuation of the fork expression to the result . Thus, the third argument 'c' to the meanin g

function Me is actually a partial continuation, reflecting the future of a compuation up to th e

next pending `fork' expression . The `fork' expression is in effect an expressional version of th e

setjrnpup and long jmpup implementation routines .

4. The GL interprete r

The GL interpreter is written in Berkeley Pascal and presently runs on VAX and Sun sys-

tems running 4 .3 Berkeley Unix . Since GL has first-class functions, the interpreter maintains a

cactus stack of activation records, and periodically garbage collects unreachable ones . A routin e

named Parse reads from the keyboard and creates an abstract syntax tree . The parser then

invokes an evaluator that recursively walks the abstract syntax tree to produce a value . There

are two conditions that can cause evaluation to stop : evaluation-time errors and `exit' expres-

sions . Pascal nonlocal goto's are used to handle these situations . So, Parse actually calls a rou-

tine named CatchError which consists of not much more than a label that the recursive evaluato r

can branch to and a call to a routine named CatchExit . CatchExit is also just a shell that has a

label for the recursive evaluator . CatchExit invokes DoEval, the routine that actually performs

evaluation . As will be seen, the separation of CatchError and CatchExit is crucial for the imple-

mentation of continuations in GL .

The main novel feature of the interpreter is the implementation of continuations and partia l

continuations in GL . When DoEval is asked to compute the value of a component of the abstrac t

syntax tree that turns out to be CurCont, it calls setjmpup to obtain the stack of AR's down t o

and including the first one for CatchExit . This object is the value returned by DoEval . When a

`continue el(e2)' expression is executed, the values of el and e2 are determined . El is an AR

stack (otherwise an error is indicated) . Its top component is modified to return the value of e2 ,

and then a long jmpup is performed using that AR stack . When control returns to the instance o f

DoEval that performed the longjmpup , that invocation of DoEval performs a nonlocal branch t o

172

its containing CatchExit activation instance to terminate execution . On the other hand, if a `for k

el(e2) ' is performed DoEval does not execute a nonlocal branch to its CatchExit ; it proceeds nor-

mally with evaluation of the abstract syntax tree .

From the above discussion, it becomes clear that in our implementation a continuatio n

corresponds to a sequence of DoEval AR's followed by a CatchExit AR . Composition of continua-

tions is implemented as concatenation of sequences of AR's, and ignoring a continuation is accom-

plished by a nonlocal branch to an instance of CatchExit . Termination of execution because of a n

error condition is accomplished by a branch to CatchError ; above the top Parse AR there is onl y

one CatchError AR, whereas there may be many CatchExit AR's, if there are several fork expres-

sions pending .

5 . Overview of GL programming facilitie s

GL has several features that have proved helpful to users, some of which are absent fro m

other implementations of similar languages such as the ML implementation from ATT Bell Lab s

that we have used . These include :

pretty printing of closure s

function tracing, step-wise execution, and breakpoints

symbol table tree examination and modification

application of the interpreter to strings (interp `a :— 12') ;

a facility for parsing strings into functions that represent abstract syntax . This last is par-

ticularly convenient when experimenting with denotational language definitions .

(6)

	

the ability to choose between call-by-value and call-by-name semantics, dynamic versu s

static scoping, and automatic or explicit formation of closures .

Before exiting, each activation of' DoEval determines if a pause in execution should occur ; i f

so, DoEval invokes Parse, which has the effect of opening up the keyboard to the user . Befor e

invoking the parser, however, DoEval places in a global variable named LastCont the result of a

set jmpiap operation that captures AR's clown to the highest CatchError AR . a variable name d

LastPrefix receives the stack of AR's down to the highest CatchExit AR . So, if the user choose s

to do so he can assign the value of LastCont to some other variable and obtain the continuatio n

that is active at that point in the program . Also, the partial continuation corresponding to execu-

tion of the program ignoring any pending fork expressions is available in the variable LastPrefix .

The user can mark a function as traceable :

SelfAp := func * x .x x

If tracing is turned on, argument binding takes place, the new activation record is created, an d

then execution stops . The user can then use facilities in the environment to wander through th e

173

activation record tree, examining and if desired modifying values . Users of GL have indicate d

that the flexibility of controlled execution and examination of the environment are extremel y

helpful in getting programs to work . Also helpful is that fact that if a variable that the user ask s

the system to print contains a closure, the function is pretty-printed, together with a `short-form '

listing of the contents of any variables in the corresponding environment .

8 . Implementation of setjmpup and long jmpup

As indicated previously, set jmpup copies a number of stack frames off the top of the run -

time stack into an array that is passed to it as a var parameter . Set jmpup is given an integer

argument f lag , and it uses the flag to determine which AR is the last one it should save . It

copies all AR's down to and including that AR . Long jmpup takes an array returned by

setjmpup and places it on top of the runtime stack, and then branches to the return point of th e

corresponding setjmpup . So, long jmpup is similar to the Unix call long jmp in that it does no t

directly return to its caller ; rather it causes a nonlocal branch. Unlike long jmp , long jmpup

causes a change in the runtime stack that effects what amounts to an upward funarg . The las t

restored AR has its return address modified so that the routine returns to the code following th e

long jmpup call .

The essential difficulty in implementing set jmpup and long jmpup is that pointers to stack

objects may be imbedded in the vector of stack frames that are saved and restored . The tw o

most important examples of this are dynamic and static links and var parameters . We wil l

briefly describe the implementation of setjmpup and long jmpup , focusing on the solution to thi s

problem .

The data stored by setjmpup are the following :

The length of the saved stack in machine word s

The resume address of the call to setjmpup

The stack top address before the call to set jmpup

The number of activation records saved

The contents of non-volatile registers before the call to setjmpup

The saved stack, modified as described below to allow for the proper treatment of pointer s

to stack objects

Each activation record that may be captured by setjmpup also must have a packet of infor-

mation . Our current implementation requires that this information be contained in a record tha t

is the first parameter of the activation ; this is all information that is readily available at compil e

time, and could be automatically included by a compiler . Since the information is relatively easy

to include at the source language level, we have not modified the compiler to produce the infor-

mation automatically . The required information is the following :

174

(1) A tag indicating that the procedure is set up to be captured by setjmpup

(2) A flag used by set jmpup in determining whether this is the last AR it should captur e

(3) A bit vector indicating which longwords in the AR contain addresses pointing to objects i n

the stack

(4) An indication of where the boundary is between this AR and that of its caller ; this is give n

as an offset from the dynamic link field of the current AR and is used to determine the siz e

of the last AR so that it can be saved properly

When setjinpup is called, it uses the bit vector in each AR to find and examine each pointe r

to a stack object in the AR . A pointer either refers to an object that is in the set of vectors bein g

saved or to an object in the lower portion of the stack that is not, being saved . In the former cas e

no action is required . In the latter case, the address is replaced by a longword that contains tw o

pieces of information :

(1)

	

An identifying tag for the procedure containing the object pointed to (this is basically a

numerical encoding of the name of the routine)

(2)

	

The offset of the object pointed to in the AR that contains i t

When long jmpup is called it restores the saved stack, modifying the last return address s o

that a return to the point after the longjnapup call will be effected when that last routine returns .

It then processes each AR, examining stack pointers . If a stack pointer refers to an object in th e

restored stack a constant is added to it reflecting the difference between the original memory posi-

tion of the stack when it was saved and its current position . Otherwise, the appropriate destina-

tion for the pointer is obtained by searching AR's starting from the top AR before the call t o

long jnipup until one is found with the desired key . The pointer is then set to have the desire d

offset within that AR. This amounts to a form of shallow static binding; it is desirable in ou r

application, because the set of AR's extant when the set jmpup is executed may differ from th e

set of AR's extant when long jmpup gets called .

7. Conclusion s

GL represents a successful experience with providing continuations as first-class objects i n

an expressional programming language and its environment . An efficient implementation involve d

system-level primitives for saving and restoring execution contexts . Our experience leads us to

recommend our implementation techniques and programming environment features to implemen-

tors of similar systems .

8. Acknowledgement s

Alan Demers was very helpful as a sounding board in formulating the ideas contained in thi s

paper . Dominic Duggan has been extremely helpful in many discussions about gl and partial con -

175

tinuations .

References

1.

	

Scott, D., "Data Types as Lattices," SIAM Journal of Computing 5(1976) .

2.

	

Reynolds, J . C., "GEDANKEN - a simple typeless language based on the principle of com-

pleteness and the reference concept," CALM 13 pp. 308-319 (May 1970) .

3.

	

Sussman, Gerald Jay and Guy Lewis Steele, Jr ., "Scheme: an interpreter for an extended

lambda calculus," MIT Artificial Intellegence Memo 349 (December 1975) .

4.

	

Friedman, Daniel P . and Christopher T . Haynes, "Constraining Control, " Proc . 12th ACM

Syinp . Principles of Programming Languages, (January 1985) .

5. Felleisen, Matthias, Daniel P . Friedman, Bruce Duba, and John Murrow, "Beyond Con-

tinuations," Tech Report #216, Indiana University Computer Science Department (Febru-

ary 1987) .

6.

	

Joloboff, Vania . personal communication . December 1986 .

176

