GL - A Denotational Testbed with Continuations and Partial Continuations

as First-Class Objects

Gregory F. Johnson
University of Maryland

College Park, MD 20742

1. Abstract

In this paper we describe GL, a language designed to support interactive experimentation
with denotational semantics of programming languages, and the novel features of its interpreter.
CL is an expressional language that might best be described as an implementation of lambda cal-

culus augmented with several useful basic data types including l-values.

A unique aspect of the GL environment is that it presents a visible, user-accessible imple-
mentation of the continuation semantics of GL. The user is expected to understand a denota-
tional definition of GL, and to interact with the system in terms of that definition. In particular,
if a computation is temporarily halted the expression continuation extant at that point can be
interactively captured and later applied to other values and stores. The implementation of this
feature is via a pair of routines called seiympup and longympup that provide what might be
called a partial continuation facility. A partial continuation is a function over stores or
store/value pairs that represents execution of a partially executed program from its current state
to some later state possibly before its halt state. The semantics of partial continuations is

interesting, and an extension of GL is presented that contains continuations and partial continua-

tions as first-class objects.

The GL environment is fairly complete; it has an experimental polymorphic type inference
mechanism that supports self-application and reports likely sources of user error in a robust
manner, and it has a flexible breakpoint and trace facility that permits program execution to be
observed and controlled at a variety of levels of granularity. Moreover, it has been used success-

fully to teach a graduate course in Theory of Programming Languages.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

®1987 ACM 0-89791-235-7/87/0006/0165. 75¢

165

2. Continuation Semantics as a Basis for a Program Development Environment

Denotational semantics [1] has proved to be a versatile tool for many aspects of program-
ming language research. We explore the notion that a denotational language definition, in partic-
ular one based on continuations, is also useful as a basis for user interaction with a programming
environment. The environment is for a new strongly typed, expressional language called GL (for

Gedanken-like language after Reynolds’s language [2]).

The environment is designed around a continuation semantics for GL, and the user of the
environment interacts with the computer in terms of this denotational definition. At any point
when execution of a program has been stopped, the user can interactively obtain a continuation
for the computation in progress and bind it to an identifier in the programming environment.
The captured continuation can then be applied to a variety of arguments in an exploratory
manner. The use of continuations as first-class objects in a programming language is extremely
useful; the language Scheme [3] exemplifies this principle. For a discussion of the flexibility and
power offered by the presence of continuations in a language see [4]. We present here a notion of
partial continuations, discuss the denotational semantics of a language that has them as first-class
objects, and indicate a method for their eflicient implementation in an imperative systems imple-
mentation language. Related work on partial continuations is being conducted by Friedman,

et.al. at the University of Indiana [5].

The normal mode of use is for users to capture continuations in their programs at various
interesting points and apply them in a flexible, interactive way to a variety of arguments and
stores. Since GL permits functions to be used as fully general first-class objects, applications of
captured continuations can be imbedded in arbitrary GL program fragments. A user could thus
easily write a small program to apply a given continuation to all odd integers between 100 and

1000, and algorithmically determine if his program behaves as desired under those circumstances.

Efficient implementation of an interactive continuation-based environment required a novel
approach to the internal design of the execution component of the system. The GL environment
provides a Read-Eval-Print loop that permits recursive invocations of itself. Thus the runtime
activation record stack consists of an activation of Read followed by some number of invocations
of Eval, another activation of Read followed by more invocations of Eval, etc. From the point of
view of implementation a continuation is simply a sequence of Eval activation records between

two successive activations of Read.

As mentioned above we implementated two procedures that implement what might be
called partial continuations. The routines are called setijmpup and longympup to suggest an
analogy with the Unix system calls setymp and longjmp . Setympup captures a continuation
from after its point of call to the completion of one of its ancestors in the called-by relation. This

is accomplished by capturing some number of activation records off the top of the runtime stack.

166

Longympup evaluates such a continuation by concatenating a vector of activation records onto
the runtime stack. This mechanism provides an efficient way to implement dynamically obtain-
able continuations; if the user assigns the continuation of a function he is executing to a variable,
the object assigned to the variable is the stack of Eval frames down to the previous Read frame.
This technique has proved to be feasible within a relatively low-level implementation language

(Pascal) and to be adequately efficient.

3. Continuations and partial continuations as first-class objects

The GL interpreter makes use of the routines sefympup and longjmpup to achieve a degree
of efficiency in implementing interactively capturable GL continuations. The semantics of
setympup and longympup have themselves proved interesting; we understood them originally only
in operational terms as a technique useful at the implementation level, and understanding them
semantically proved challenging. We would like eventually to define an environment written in
GL that implements user-accessible continuations semantics, much like the classic Lisp interpreter
written in Lisp. So, it scems natural to augment GL and its denotational semantics with a
feature analogous to setympup and longympup . This amounts to introducing continuations as
first-class objects into the language. The result is a powerful device that introduces into an

expressional language a facility that can be used to create such ellects as co-routines and

catch/throw error recovery.

We recently heard that a large project for an ML machine is about to be undertaken in
Europe [6]; if an expressional language such as ML were to be used as a system implementation

language, some form of co-routine mechanism such as the one we suggest here for GL would be

desirable.

As expression continuations are perhaps a bit less intuitive than command continuations, we
first give a semantics for a simple statement-oriented language that has continuations as first-class

objects. The syntax follows:

Pgm == §

Si=a.=F8E

S = if b then S1 else S2

S o= 81,52

S 1= exit {stop the program or skip ahead to the next

pending fork statement if one exists}

S ii= a ;== CurCont

The statement ‘a := CurCont’ means that the current command continuation should be stored in

‘a’, l.e. the address of the next sequential intruction should be put in ‘a’.

167

S 1= continue a {resume execution at the address stored in a}

S = fork a

The statement ‘fork a’ causes execution to proceed to the address stored in ‘a’. When the pro-
gram stops because of ann ‘exit’ statement or because execution advances past the last statement,

execution continues after the ‘fork’ statement.

Unusual features of this language are a statement that captures a command continuation
into a variable and two ways to invoke such a command continuation. If this simple language
were to be implemented, ‘a := CurCont’ would cause the address of the next sequential instruc-
tion to be put in ‘a’; ‘continue a’ would cause the address in ‘a’ to be put into the program
counter. ‘Fork a’ would cause the address of the next sequential instruction to be pushed on ‘fork
stack’ and then the contents of ‘a’ to be put in the program counter. Under such an implementa-
tion, whenever the program stops (by executing an ‘exit’ or by advancing past the last statement)
the fork stack is examined. If it is nonempty, the top element is popped into the program
counter. Otherwise, execution of the program is complete. We now give a continuation seman-
tics for the above language. In what follows we suppress type considerations. In particular, the
domain Value is a disjoint sum, and so properly we should have all sorts of injection and projec-
tion operations in our equations, together with type consistency tests and error values. The addi-
tion of all of this is left to the interested reader. Its omission makes for a much clearer focus in
the equations on what is really of interest.

Mp: Syntax — Store
Ms: Syntax — Store — Cont — Store

Me: Expr-Syntax — Store — Value { this is not elaborated }
Mn: Int-String — Integer

Cont: Store — Store
Store: Ident-String — Value

Value: Cont + Integer + (any other basic types)

Mp([S]] = Ms[[S]] (\ id.0) () s.5)

Somewhat arbitrarily we initialize all identifiers to contain the value 0. We could as well initial-
ize to bottom.
Ms([a:==¢e]]sc=cs[a« Me[[e]]s]
Ms([if b then SI else S2]] s ¢ = if Me[[b]] s then Ms[[S1]] s ¢ else Ms[[$S2]] s ¢
Ms[[S1;82]] s ¢ = Ms[[SL]] s (A s1.Ms[[S2]] sl ¢)

The above definitions are standard. The last four are of more interest:

Ms[[exit]]sc =s
Ms[[a := CurCont]]sc =c s a « c|

168

This expression involves a form of self-application; the continuation ‘¢’ is applied to a store
in which ‘¢’ itself has been bound to an identifier in the store. If effect, ‘a’ becomes a label.
Before ‘a’ can be branched to, however, the statement involving definition of the label must be
executed, This is similar to setjmpup ; setympup captures an execution context that can later be
used by longjmpup , but obviously one can’t re-enter an execution context until setympup has

been executed to capture the context.
Ms|[[continue a)] s ¢ = (s a) s

One obtains from the store the continuation bound to ‘a’ and then applies it to the current store.
The pair of statements ‘a ;= CurCont’ and ‘continue a’ has a very simple semantics that con-
trasts with the semantics of labels and arbitrary goto’s. The latter requires a complex application
of the paradoxical combinator to a functional over vectors of continuations. The heart of the
paradoxical combinator is of course a clever use of self-application, and in our simple semantics
given above we also rely on an indirect form of self-application, in which a continuation is applied

to a structure that has the same continuation imbedded in it.
Ms[[fork a]] s ¢ = ¢((s a) s)

Here we simply compose the continuation of the fork statement with the continuation bound to

‘a’, and apply the resulting larger continuation to the current store.

We now consider an expressional language with first-class functions, and augment it with
continuations as above. The resulting language is considerably more subtle than the above simple
statement-oriented language, but its continuation semantics turns out to be surprisingly natural.
We should mention that it took a significant amount of work to achieve such a natural semantics;

we reformulated the language several times before a clean denotational definition for it could be

constructed.

A syntax for the language follows:

Pgm =¢e

e = Int

e ;= ident

e=—e+e { a representative binary operation }

e = func id.e { an unnamed function whose formal parameter is ‘id’ }

e n==el (e2) { apply ¢l as a function to e2 }

e = if el then e2 else e3 fi

e ::= bind id to el in e2 end { statically scoped declaration }

e == new e { allocate a new location and initialize it with the value of e }
e n==¢l == ¢2 { put the value of e2 in the storage location specified by el }
e n==¢e, { obtain the value in the storage location specified by e }

Note: a conventional constant declaration would be

bind p to 31415 in p ¥ 3 * 3 div 1000 end

169

whereas a variable declaration (with initialization) would be declared as
bind r to new 4in p * r. * r. div 1000 end

Finally, the novel features of the language:
e 1= exit el

Stop the program, returning el as the result of its execution. As in the previous example,
this construct is meant to be executed primarily when a ‘fork’ is pending, and is used to imple-

ment partial continuations.
e ;= CurCont

This expression evaluates to its own expression continuation. As in the previous language its
semantics entails a form of self-application. The expression ‘a := CurCont’ puts a marker in ‘a’;

at some later time execution can be resumed at that point.

e 1= continue el (e2)

This expression applies el to e2 (and the store resulting from evaluation of el and e2). Opera-
tionally speaking, control is transferred to the ‘CurCont’ that el produces, never to return. This
can be used to implement a Lisp-like catch/throw mechanism, for instance. It is of course much
more powerful; it can be used to jump into the middle of a function activation that has long since
completed execution. This is precisely the effect of longympup . As for the value of €2, that is the
value of the expression ‘CurCont’ in the resumed expression. So, if we execute ‘a := CurCont’
and later execute ‘continue a. (4)’, we jump back into the middle of the assignment, assign 4 to
‘a’, and proceed from there. This would of course prevent us from ever resuming using ‘a’ again,
which leads to the following idiom:
Felllnto := true;
a ;== CurCont;
if Ielllnto then
Felllnto :== false;
b = a;

else Ignore

fi;

Then, we execute ‘continue b (58)’. ‘B’ is the mechanism for invoking the continuation and

‘a’ becomes in eflect the formal parameter of the invocation.

Finally, we have fork expressions:
e n= fork el (e2)

The continuation to which el evaluates is applied to the value of e2; when the program stops and

produces a value, that value is returned as the value of the fork expression. When a fork is per-

170

formed, it is conventional to expect the program to stop because of execution of an ‘exit (e)’, and

so the value of e is transferred to the fork expression and returned as its value.
We now give the interesting features of the denotational semantics of the above language:

Mp: Syntax — Value

Me: Syntax — [nvt — Store — Cont — < Value X Store>
Mn: Int-String — Integer

Cont: <Value X Store> — <Value X Store>

Envt: Ident-String — Value

Store: LValue — Value

Value: Cont + LValue + Int + ... (other basic data types)

We use the notation <el, e2> for ordered pairs of values and fst(e}, snd(e) to obtain the

first (resp. second) component of e, which should an ordered pair.

Me[[Int]] esc=c < Mn[[Int]], s>

Apply the continuation to the pair consisting of the given integer and the store.

Me[[CurCont]] e s ¢ = ¢ <Cc, s>

Apply the continuation to a pair consisting of the continuation itself and the given store. Thus,
‘CurCont’ can be used much more gencrally and flexibly than as the right-hand side of an assign-

ment operation.
Me[[func x.el JJesc=1c < X cl.X <vlsl>Me[[el]]e[x — vl]slecl, s>

‘Func x.¢’ denotes a function from continuations and value/store pairs to value/store pairs.

Mef{el (e2)]]esc=
Mef[el]] es{ X <vlsl>Me[[e2]] esl (N <v2,52>. vl e <v2,52>))

(f * g represents function composition, i.e. g(f x))

As usual in continuation semantics, if there are two sub-expressions (el and e2 in this case),
one creates a continuation using the meaning of the second expression and gives it as an argument
to the meaning function applied to the first function. Here ‘first’ and ‘second’ indicate the order
in which the expressions would be evaluated, which matters in the presence of an updatable store.
The value to which el evaluates, namely v1, is applied to the application’s continuation and the
value/store pair produced by evaluation of e2. The semantics of application is applicative order;
in particular if either el or e2 evaluates an ‘exit’ expression the application does not actually take

place. Similarly, if the body of el exccutes an ‘exit’, the continuation of the application is

ignored.

Me[[exite]] ese =Me[[e]]es (N <vs>.<vs>)

171

We evaluate e with respect to the identity continuation, discarding the remainder of the
program up to any pending ‘fork’ expressions.

Me|[continue el (e2)]l esc =
Me[[el]] es (N <vlsl>Me[[e2]] eslvl)

Here, we evaluate el to obtain a continuation v1, and then we evaluate e2 using v1 as its

continuation.
Me|[fork el (e2)] esc =
c(Mel[el]]es (N <vlsl>Me[[e2]]esl vl))

We evaluate el to obtain a continuation vi, and then evaluate e2 using the value of el as
the continuation for the evaluation of e2. After that computation exits, we resume by applying
the continuation of the fork expression to the result. Thus, the third argument 'c’ to the meaning
function Me is actually a partial continuation, reflecting the future of a compuation up to the
next pending ‘fork’ expression. The ‘fork’ expression is in effect an expressional version of the

setympup and longympup implementation routines.

4. The GL interpreter

The GL interpreter is written in Berkeley Pascal and presently runs on VAX and Sun sys-
tems running 4.3 Berkeley Unix. Since GL has first-class functions, the interpreter maintains a
cactus stack of activation records, and periodically garbage collects unreachable ones. A routine
named Parse reads from the keyboard and creates an abstract syntax tree. The parser then
invokes an evaluator that recursively walks the abstract syntax tree to produce a value. There
are two conditions that can cause evaluation to stop: evaluation-time errors and ‘exit’ expres-
sions. Pascal nonlocal goto’s are used to handle these situations. So, Parse actually calls a rou-
tine named CatchError which consists of not much more than a label that the recursive evaluator
can branch to and a call to a routine named CatchExit. CatchExit is also just a shell that has a
label for the recursive evaluator. CatchExit invokes DoEval, the routine that actually performs
evaluation. As will be seen, the separation of CatchError and CatchExit is crucial for the imple-

mentation of continuations in GL.

The main novel feature of the interpreter is the implementation of continuations and partial
continuations in GL. When DoEval is asked to compute the value of a component of the abstract
syntax tree that turns out to be CurCont, it calls setympup to obtain the stack of AR’s down to
and including the first one for CatchExit. This object is the value returned by DoEval. When a
‘continue el(e2)’ expression is executed, the values of el and e2 are determined. El is an AR
stack (otherwise an error is indicated). Its top component is modified to return the value of 2,
and then a longympup is performed using that AR stack. When control returns to the instance of

DoEval that performed the longgmpup , that invocation of DoEval performs a nonlocal branch to

172

its containing CatchExit activation instance to terminate execution. On the other hand, if a ‘fork
el(e2)’ is performed DoEval does not execute a nonlocal branch to its CatchExit; it proceeds nor-

mally with evaluation of the abstract syntax tree.

From the above discussion, it becomes clear that in our implementation a continuation
corresponds to a sequence of DoEval AR’s followed by a CatchExit AR. Composition of continua-
tions is implemented as concatenation of sequences of AR’s, and ignoring a continuation is accom-
plished by a nonlocal branch to an instance of Catchlxit. Termination of execution because of an
error condition is accomplished by a branch to CatchError; above the top Parse AR there is only
one Catchirror AR, whereas there may be many CatchExit AR’s, if there are several fork expres-

sions pending.

5. Overview of GL programming facilities

GL has several features that have proved helpful to users, some of which are absent from
other implementations of similar languages such as the ML implementation from ATT Bell Labs

that we have used. These include:

1 pretty printing of closures

2) function tracing, step-wise execution, and breakpoints
) symbol table tree examination and modification

(3
(4) application of the interpreter to strings (interp ‘a := 12’};
(5) a facility for parsing strings into functions that represent abstract syntax. This last is par-

ticularly convenient when experimenting with denotational language definitions.

{6) the ability to choose between call-by-value and call-by-name semantics, dynamic versus

static scoping, and automatic or explicit formation of closures.

Before exiting, each activation of DoEval determines if a pause in execution should occur; if
so, DoEval invokes Parse, which has the effect of opening up the keyboard to the user. Before
invoking the parser, however, DoEval places in a global variable named LastCont the result of a
setympup operation that captures AR’s down to the highest CatchError AR, a variable named
LastPrefix receives the stack of AR’s down to the highest Catchlixit AR. So, if the user chooses
to do so he can assign the value of LastCont to some other variable and obtain the continuation
that is active at that point in the program. Also, the partial continuation corresponding to execu-

tion of the program ignoring any pending fork expressions is available in the variable LastPrefix.

The user can mark a function as traceable:

SelfAp = func * x.x x

If tracing is turned on, argument binding takes place, the new activation record is created, and

then execution stops. The user can then use facilities in the environment to wander through the

173

activation record tree, examining and if desired modifying values. Users of GL have indicated
that the flexibility of controlled execution and examination of the environment are extremely
helpful in getting programs to work. Also helpful is that fact that if a variable that the user asks
the system to print contains a closure, the function is pretty-printed, together with a ‘short-form’

listing of the contents of any variables in the corresponding environment,

8. Implementation of setympup and longijmpup

As indicated previously, setympup copies a number of stack frames off the top of the run-
time stack into an array that is passed to it as a var parameter. Setympup is given an integer
argument flag, and it uses the flag to determine which AR is the last one it should save. It
copies all AR’s down to and including that AR. Longympup takes an array returned by
setympup and places it on top of the runtime stack, and then branches to the return point of the
corresponding setympup . So, longympup is similar to the Unix call longjmp in that it does not
directly return to its caller; rather it causes a nonlocal branch. Unlike longjmp , longjmpup
causes a change in the runtime stack that effects what amounts to an upward funarg. The last
restored AR has its return address modified so that the routine returns to the code following the

longympup call.

The essential difliculty in implementing setjmpup and longimpup is that pointers to stack
objects may be imbedded in the vector of stack frames that are saved and restored. The two
most important examples of this are dynamic and static links and ver parameters, We will
briefly describe the implementation of setympup and longimpup , focusing on the solution to this

problem.

The data stored by setjmpup are the following:
The length of the saved stack in machine words
The resume address of the call to setjmpup
The stack top address before the call to setjmpup

)
)
4) The number of activation records saved
) The contents of non-volatile registers before the call to setympup
)

The saved stack, modified as described below to allow for the proper treatment of pointers

to stack objects

Each activation record that may be captured by setympup also must have a packet of infor-
mation. Our current implementation requires that this information be contained in a record that
is the first parameter of the activation; this is all information that is readily available at compile
time, and could be automatically included by a compiler. Since the information is relatively easy
to include at the source language level, we have not modified the compiler to produce the infor-

mation automatically. The required information is the following:

174

(1) A tag indicating that the procedure is set up to be captured by setympup
(2) A flag used by setympup in determining whether this is the last AR it should capture

(3) A bit vector indicating which longwords in the AR contain addresses pointing to objects in

the stack

(4) An indication of where the boundary is between this AR and that of its caller; this is given
as an offset from the dynamic link field of the current AR and is used to determine the size

of the last AR so that it can be saved properly

When setympup is called, it uses the bit vector in each AR to find and examine each pointer
to a stack object in the AR. A pointer either refers to an object that is in the set of vectors being
saved or to an object in the lower portion of the stack that is not being saved. In the former case
no action is required. In the latter case, the address is replaced by a longword that contains two

pieces of information:

(1) An identifying tag for the procedure containing the object pointed to (this is basically a

numerical encoding of the name of the routine)
(2) The offset of the object pointed to in the AR that contains it

When longgmpup is called it restores the saved stack, modifying the last return address so
that a return to the point after the longympup call will be effected when that last routine returns.
It then processes each AR, examining stack pointers. If a stack pointer refers to an object in the
restored stack a constant is added to it reflecting the difference between the original memory posi-
tion of the stack when 1t was saved and its current position. Otherwise, the appropriate destina-
tion for the pointer is obtained by searching AR’s starting from the top AR before the call to
longympup until one is found with the desired key. The pointer is then set to have the desired
offset within that AR. This amounts to a form of shallow static binding; it is desirable in our
application, because the set of AR’s extant when the sefjmpup is executed may differ from the

set of AR’s extant when longjmpup gets called.

7. Conclusions

GL represents a successful experience with providing continuations as first-class objects in
an expressional programming language and its environment. An efficient implementation involved
system-level primitives for saving and restoring execution contexts, Our experience leads us to
recommend our implementation techniques and programming environment features to implemen-

tors of similar systems.

8. Acknowledgements

Alan Demers was very helpful as a sounding board in formulating the ideas contained in this

paper. Dominic Duggan has been extremely helpful in many discussions about gl and partial con-

175

tinuations.

References

1. Scott, D., “Data Types as Lattices,” SIAM Journal of Computing 5(19786).

2. Reynolds, J. C., “GEDANKEN - a simple typeless language based on the principle of com-
pleteness and the reference concept,” CACM 18 pp. 308-319 (May 1970).

3. Sussman, Gerald Jay and Guy Lewis Steele, Jr., “Scheme: an interpreter for an extended
lambda calculus,” MIT Artificial Intellegence Memo 349 (December 1975).

4, Friedman, Daniel . and Christopher T. Haynes, “Constraining Control,” Proc. 12th ACM
Symp. Principles of Programming Languages, (January 1985).

5, Felleisen, Matthias, Daniel P. Friedman, Bruce Duba, and John Murrow, “Beyond Con-
tinuations,” Tech Report #216, Indiana University Computer Science Department (Febru-
ary 1987).

6. Joloboff, Vania. personal communication. December 1986,

176

