An Abstract Machine for CLP(R)

JOXAN JAFFAR*
PETER J. STUCKEY!

Abstract

An abstract machine is described for the CLP(R) pro-
gramming language. It is intended as a first step
towards enabling CLP(R) programs to be executed
with efficiency approaching that of conventional lan-
guages. The core Constraint Logic Arithmetic Ma-
chine (CLAM) extends the Warren Abstract Machine
(WAM) for compiling Prolog with facilities for handling
rea’ arithmetic constraints. The full CLAM includes
facilities for taking advantage of information obtained
from global program analysis.

1 Introduction

The CLP(R) language is an instance of the Constraint
Logic Programming scheme (CLP) [3], a class of rule
based constraint languages. CLP(R) embodies con-
straints over the domain of uninterpreted functors over
real arithmetic terms. Appendix A contains an intro-
duction to CLP(R). In this paper we present the design
of the Constraint Logic Arithmetic Machine (CLAM)
for the efficient execution of CLP(R) programs.

*IBM T.J. Watson Research Center, P.O. Box 704, York-
town Heights, NY 10598, USA.

tSchool of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, USA.

i Dept. of Computer Science, Unw. of Melbourne, Parkville,
Victoria 3052, Australia.

8 On leave from Dept. of Computer Science, Monash Univer-
sity, Clayton, Victoria 3168, Australia.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ACM SIGPLAN ‘92 PLDI-6/92/CA
© 1992 ACM 0-89791-476-7/92/0006/0128...$1.50

SPIRO MICHAYLOV!
RoraND H.C. Yap*$

Abstract machines have been used for implementing
programming languages for many reasons. Portability
is one: only an implementation of the abstract machine
needs to be made available on each platform. Another
is simply convenience: it is easier to write a native
code compiler if the task is first reduced to compiling
for an abstract machine that is semantically closer to
the source language. The best abstract machines sit at
just the right point on the spectrum between the con-
ceptual clarity of the high-level source language and
the details of the target machine. In doing so they
can often be used to express programs in exactly the
right form for tackling the efficiency issues of a source
language. For example, the Warren Abstract Machine
(WAM) [10] revolutionized the execution of PROLOG,
since translating programs to the WAM exposed many
opportunities for optimization that were not apparent
at the source level. An example from further afield
is the technique of optimizing functional programs by
first converting them to Continuation Passing Style
(CPS) [4]. CPS conversion has lead to highly optimiz-
ing compilers for Scheme and Standard ML. The bene-
fit from designing an appropriate abstract machine for
a given source language can be so great that even exe-
cuting the abstract instruction code by interpretation
can lead to surprisingly efficient implementations of a
language. For example, many commercial PROLOG
systems compile to WAM-like code. Certainly more ef-
ficiency can be obtained from native code compilation,
but the step that made PROLOG usable was that of
compiling to the WAM.

While the WAM made PROLOG practical, global
analysis shows the potential of making another major
leap. For example, Taylor [8] and Van Roy [9] used
fairly efficient analyzers to generate high quality native
code. Based on certain examples, they showed that the
code quality was comparable to that obtained from a
C compiler. In the case of CLP(R), the opportunities
for obtaining valuable information from global analysis
[7] are even greater than in PROLOG [1].

128



In what follows we describe the core CLAM, which
includes a comprehensive set of basic instructions. The
full CLAM is described next, the focus being on spe-
cial instructions to take advantage of information ob-
tained from analysis. The subsequent discussion of em-
pirics compares the efficiency of interpretive code, core
CLAM code, and optimized CLAM code.

2 CLP(R) Implementation
Issues

The central implementation issue in CLP(R) is based
on an observation about programming methodology:
while the expressive power of the language comes from
its considerable generality, much of the execution of
typical programs involves solving simple constraints.
These are often just PROLOG-like unifications, arith-
metic tests, simple evaluations and assignments. This
suggests that the generality of the language should not
be allowed to compromise the efficiency of the more ba-
sic features. In particular, PROLOG programs should
run as efficiently as in a PROLOG system. Further-
more, it is desired that simple arithmetic should be per-
formed efficiently — without resorting to a general con-
straint solving mechanism. Another major implemen-
tation issue is incrementality. Throughout a computa-
tion, constraints are being added to or removed from
a typically large set of collected constraints. For effi-
ciency reasons this process should be performed with-
out constantly having to resolve all of the collected con-
straints.

The original CLP(R) interpreter [5] satisfied these
criteria in the semse that it executed PROLOG pro-
grams at least as efficiently as other PROLOG inter-
preters, and handled simple constraints directly with-
out using the constraint solver. The interpreter was
divided into a PROLOG-like inference engine, an in-
terface, and a constraint solver. The inference engine,
which was based on structure sharing, was responsi-
ble for search, control and unification. The job of the
interface was to directly execute arithmetic tests, as-
signments and simple evaluations where possible. Oth-
erwise it broke up complex constraints into a simpler
form to be passed to the constraint solver. The con-
straint solver itself was partitioned into an equation
solver based on Gaussian elimination, an inequality
solver which used a highly modified incremental sim-
plex algorithm, and a nonlinear handler which man-
aged the delay and wakeup of nonlinear constraints.

Clearly the desirable features of the interpreter
should be retained in a compiler-based system. Thus
the objectives of the core CLAM are as follows.

129

¢ It should be based on the WAM, because of the
latter’s suitability for PROLOG.

e It should provide a set of instructions directly “in-
terfacing” to the constraint solver. These being
used to replace the functions of the interface in
the interpreter.

e The granularity of instructions should be “right”
in the sense that constraints can be broken up in
a way corresponding to the structure of the con-
straint solver.

Another objective of the full CLAM is to effectively
make use of the kind of information that can be ob-
tained from a global analyzer.

e A special datatype of mutable arithmetic vari-
ables should be available. These assume fixed but
changeable values, as opposed to normal (logical)
variables.

Simple evaluation of expressions based on mutable
variables, and assignment to such variables, should
be supported. Mixed constraints, obtaining some
coefficients and constants from the mutable vari-
ables, should be supported.

Optimizations based on variables that will no
longer be used, and constraints that will become
redundant, should be expressible.

As is typical in PROLOG, we assume that optimizing
compilation is performed on a program in the context
of a calling pattern which defines the set of allowed
queries. Thus, for one program, different code may be
obtained for each different pattern. While the specific
nature of such patterns need not concern us here, they
typically describe which arguments of a predicate are
ground!, and what their types are.

Next we describe the CLAM, and as we shall see,
the extension from the WAM to the CLAM has two es-
sential aspects. One is the generalization to arithmetic
constraints, and the other is specialization for low-level
optimizations.

3 Core CLAM

Presented here is a set of basic instructions which are
sufficient to execute CLP(R) programs in general. In
order to understand the design of the instructions, it

1A variable is ground if it has one fixed value.



is necessary to discuss some key aspects of the con-
straint solver. Mainly, we will describe basic instruc-
tions which organize constraints for the solver. Some
specialized versions of these instructions are also de-
scribed. We conclude with a short discussion of run-
time structures.

3.1 Constraints

A linear parametric form is co+c Vi +- - -+c, Vy,, where
n 2> 1, each ¢; is a real number and each V; is a distinct
solver variable. A linear equation, say V = cg+ciWh +
-+ + ¢, W, equates a solver variable and a parametric
form. The variables W; are known as parameters and
V is a non-parameter. Linear inequalities are stored
in the form Ipf > 0 or Ipf > 0 where Ipf is a linear
parametric form. The solver ensures that every solver
variable appearing in an equation either is a parameter,
or appears as a non-parameter in at most one equation.
It also ensures that every variable in the inequalities is
parametric if it appears in an equation.

The basic instructions of the core CLAM build and
manipulate parametric forms:

o initpf? c0
initializes a parametric form with constant cO.

addpf_va{lr}® ci, Vi

adds the term ci * Vi to the parametric form?®.
The two versions of the instruction (var or val)
correspond to whether V; is a local variable ap-
pearing for the first time (a new variable). If so,
we need to create storage for the variable, and we
may also simplify constraint solving. The variable
Vi may be a parameter, in which case ¢, is added
to the coeflicient of V; in the parametric form, or
already have a parametric representation Ipf, in
which case ¢; * Ipf is added.

solve_eq0

signifies the end of the construction of the linear
form. The equation cg +c; Vi +-+-+¢,V, =0is
solved by the equation solver.

solve_ge0 and solve gt0
Similar to the above, but forming an inequality or
strict inequality instead of an equation.

For example, consider the constraint 5 + X — Y = 0,
where X is a new variable. It could be compiled

2The “pf” stands for parametric form.

3This brace notation indicates addpf_val or addpf.var

4V, is either a register or a local variable in the stack; the
distinction is not important for this paper.

130

as shown in Figure 1. We also indicate how the in-
structions are executed in the case where Y is non-
parametric, say Y = Z + 3.14 is in the solver.

Recall that a constructed parametric form contains
only parametric and new variables. The process of
solving an equation built using such a parametric form
roughly amounts to (a) finding a parameter V in the
form to become non-parametric, (b) writing the equa-
tion into the normalized form V = Ipf, (c) substituting
out V using Ipf in all other constraints, and finally (d)
adding the new constraint V = Ipf to the solver.

Suppose there is a new variable in the equation to be
compiled. Then it will always appear in the parametric
form at runtime hence it can be chosen in step (a).
Since this choice is made at compile time, much of the
work of step (b) can also be compiled away. Step (c)
is not needed since the variable is new. Hence all we
need is a new instruction for step (d), one for which
the solver always returns true. A similar simplification
can be made for the compilation of inequalities which
contain a new variable. The new instructions:

e solveno faileq V
e solveno_fail.ge V
e solveno fail.gt V

For example, the above constraint 54+ X —Y = 0, where
X is new, can be better compiled into the instructions
in Figure 2.

Finally, there are a number of simple enhancements we
can make to the instruction set to cater for commonly
occurring cases. The cases where the constant is zero
or the coefficient is 1 or —1 occur in the majority of
instances, so special instructions can be expected both
to keep down the code size and cut down on decode
time. This can be done using

e initpf0
start a new linear form with constant 0.

e addpf_va{lr} {+-} Vi
add a term consisting of a variable with
coefficient +1.

Nonlinear constraints are separated out at compile time
so that they appear in one of a few particular forms:
X=YxZ,X =pow(Y,Z), X = abs(Y), X = sin(Y),
X = cos(Y). CLP(R) delays the satisfiability of non-
linear constraints until they become linear. To detect
when a nonlinear constraint becomes linear, the nonlin-
ear constraint handler associates with each constraint
a number of wakeup degrees representing the informa-
tion currently known about the variables appearing in
the constraint. As variables become ground, a partic-



initpf 5 Ipf: 5
addpf._var 1, X Inf: 5+1=X
addpf_val -1, Y Ipf: 186+1xX~1xZ2
solve_eq0 solve: 1.86+ 1+ X —1%xZ =0
Figure 1: Core CLAM code for the constraint 5+ X -Y =0

initpf -5 Inf: -5
addpf _val 1, ¥ Ipf: -186+1x2Z
solveno fail eq X add: X =-186+1x2Z

Figure 2: Optimized CLAM code for the constraint 5+ X —Y =0

ular instance of a nonlinear constraint passes from one
degree to another until it reaches a point where it can
be awoken. For a full description see [6].

Instructions are provided for creating a nonlinear
constraint in any one of its degrees, so for example
there are five instructions for pow corresponding to the
various wakeup degrees:

epowvvv Vi, Vj, Vk for V; = pow(V;, V%)
with variables V;, V;, Vi

e powcvv Vj, Vk for ¢ = pow(V;, V)

epowvecy Vi, ¢, Vk  for V; = pow(c, V)

epowvve Vi, Vj, ¢ for V; = pow(Vj,c)

e pow.cvc c0, Vj, c2 for ¢y = pow(Vj,¢a)

For example, X = pow(3,Y) is compiled into the in-
struction pow.vev X, 3, Y. The remaining forms of a
pow constraint, e.g. 8 = pow(2,X), are equivalent to
linear equations and hence the exponentiation is evalu-
ated at compile time, and replaced with a linear equa-
tion, e.g. X = 3. There is also a class of variants
of these instructions, such as pow_Vcv, which allow a
variable (the one indicated by V) to be initialized. The
other nonlinears are handled similarly.

3.2 Data Structures

Some of the data structures needed to support the
CLAM are a routine extension of those for the WAM
— the usual register, stack, heap and trail organiza-
tion. The main new structures pertain to the solver.
Their description is beyond the scope of this paper; see
[5]. All that is needed here is that variables involved in
arithmetic constraints have a solver identifier, which
is used to refer to that variable’s location in the solver
data structures.

The routine modifications to the basic WAM archi-
tecture are:

131

o Solver identifiers
Arithmetic variables need to be represented differ-
ently from PROLOG variables. In addition to the
usual WAM cell data types, one more is required.
Cells of this type contain a solver identifier. Note
that the basic unification algorithm needs to be
augmented to deal with this new type.

Tagged trail

In the WAM, the trail merely consists of a stack
of addresses to be reset on backtracking. For
CLP(R), the trail is also used to store changes to
constraints. Hence a tagged value trail is required.

Choice points

Choice points are expanded slightly so as to save
the high water mark for solver identifiers and in-
equalities.

Linear form accumulator

A linear constraint is built up using one instruc-
tion for the constant term, and one for each linear
component. During this process, the partially con-
structed constraint is represented in an accumula-
tor. One of the solve instructions then passes the
constraint to the solver.

4 CLAM

Above we described the core CLAM and associated
runtime structures. Here we present specialized as well
as new instructions which implement some key opti-
mization steps in arithmetic constraint solving. Spe-
cific kinds of global analysis are required in order to uti-
lize these instructions. A compiler for the core CLAM,
in contrast, requires no global analysis.



4.1 Modes

One of the principle mechanisms for enhancing effi-
ciency is to avoid invoking the fully general solver in
cases where the constraints are simple. For exam-
ple when they are equivalent to tests or assignments.
Given some fixed calling pattern for a predicate, in-
cluding information about which variables are ground
or unconstrained at call time, we can determine which
constraints can be executed as tests or assignments.

Consider the following simple program, whose struc-
ture is typical of recursive definitions in CLP(R):

sum(0, 0).
sum(N, X)
N> 1, N> =N- 1,

X = X - N, sum(N’, X’).

and consider executing the query sum(7, X). The first
constraint encountered, N > 1, can be implemented
simply as a test since the value of N is known. The
second constraint, N’ = N — 1, can be implemented
simply as an evaluation and assignment to N’ because
N' is a new variable and the value of N is known.
These observations continue to hold when executing
the resulting subgoal sum(6, X’) and for each subse-
quent subgoal. Hence for any query sum(c, X), where
¢ is a number, the constraint N > 1 is always a test,
and N' = N — 1 is always an evaluation/assignment.

To take advantage of such constraints, a new data
type, fp-val, is provided to represent arithmetic vari-
ables whose value is known to be ground. (In CLP(R)
fp.vals are in fact stored in adjacent pairs of registers,
or in adjacent stack locations.) The new instructions
using fp_vals are given in Figure 3.

For example, the constraints N > 1,N' = N — 1 can
be compiled into

subct N, 1, Tmp
jgef Tmp, cont
fail

cont: mvf Tmp, N’

Even when compilation into the above special instruc-
tions is not possible, some simplifications can be made.
For example, consider the constraint V = I'* R+ V}
where the values of I and V; will be known when the
constraint is encountered. Since I will be known, it is
clear at compile time that the constraint will be linear
and hence there is no need to separate out the multipli-
cation. Furthermore, the constraint becomes a linear
equation on two variables since V; is also known.

We add new instructions for creating parametric forms
using fp_val variables:

132

o initpf fp FPi
begin a parametric form obtaining constant from
an fp.val.

e addpf.fp va{rl} FPi, Vi
add a linear component obtaining the coeflicient
from an fp_val.

The constraint V = I * R + Vj can be compiled to

initpf fp Vo
addpf fp.val I, R
addpf_val_- v
solve_eq0

We finally remark that the instructions for nonlinears
are also augmented to make use of variables stored in
fp_vals.

4.2 Redundancy

An obvious way to enhance efficiency is to minimize
the number of constraints in the solver. Toward this
aim we want to eliminate redundant constraints, and
an obvious starting point is to eliminate newly encoun-
tered constraints which are redundant. Unfortunately
such constraints are rare. What is more common how-
ever is that new constraints make some earlier collected
constraints redundant. We concentrate on linear con-
straints in this subsection since detecting redundancy
involving nonlinear constraints is intractable.

We now discuss two forms of redundancy: one asso-
ciated with variables and the other with constraints.

Redundancy of Variables

We say that a variable is redundant at a certain point
in the computation if it will never appear again. The
elimination of these variables from the solver produces
a more compact representation of the constraints on the
variables of interest. Eliminating these variables not
only saves space, but also reduces solver activity associ-
ated with these variables when adding new constraints.
Every variable becomes redundant eventually; thus to
gain the most compact representation we may project
the constraints onto the remaining variables. (For ex-
ample, if the only variables of interest are S and T', the
constraints T =T, T1 = To+Ta T4, Ty —-T3=1,T5 =
S§+2 can be better represented by T' = S+1.) However,
projection can be expensive, especially when inequali-
ties are involved. It is only worthwhile in certain cases,
one of which is identified below. We note that identify-
ing redundant variables could be achieved at runtime



add a constant to an fp_val; similarly for mulcf, subct, divce;

e litf c, FPi load a numeric constant into an fp_val;

e getf Vi, FPj convert a solver variable to an fp_val;

e putf FPi, Vj convert an fp_val to a solver variable;

o stf FPi, S put an fp_val on the stack frame (offset S);

o 1df S, FPi read an fp.val from stack frame (offset S);

o mvf FPi, FPj copy one fp_val to another;

e addf FPi, FPj, FPkx add fp_vals; similarly for mulf, subf, divf;

e addcf FPi, ¢, FPk

e jegf FPi, L jump to label L if FPi is zero;

e jgtf  FPi, L jump to label L if FPi is positive.

e jgef  FPi, L jump to label L if FPi is nonnegative.
Figure 3: Full CLAM instructions using fp_vals

as part of general garbage collection. However, greater
benefit can be obtained by utilizing CLAM instructions
to remove these variables in a timely fashion.

Consider the sum() program above. After compiling
away the simple constraints as described above, the
following sequence of constraints, among others, arise
from executing the goal sum(7, X) :

(1) X = X-7
(2) X" = (X-7)-6
xm (X-7)-6)-5

3)

Upon encountering the second equation X" = X' - 6
and simplifying into (2), note that the variable X'
will never occur in future. Hence equation (1) can be
deleted. Similarly upon encountering the third equa-
tion X"’ = X" —5 and simplifying into (3), the variable
X" is redundant and so (2) can be removed. In short,
only one equation involving X need be stored at any
point in the computation. We hence add the following
instructions to the CLAM:

e addpf_va{lr}e ci, Vi
e addpf_va{lr}e{+-} Vi
e addpf fp.va{lr}e FPi, Vi

As before, these augment the current parametric form
with an entry involving V;, but now they indicate that
the variable V; is redundant and can be eliminated
(hence the “e”). Returning to the example above, a
possible sequence of

&) init.pf -7
addpf_val_+ X
solve.no_fail_eq0 X’

(2) init_pf -6
addpf _vale. + x
solveno_fail_eq0 x"

133

(3) init_pf -5
addpf.vale_+ X"
solveno.fail eq0 X

Notice that a different set of instructions is required for
the first equation from that required for the remaining
equations. Hence the first iteration needs to be un-
rolled to produce the most efficient code.

We conclude this subsection with a brief discussion
about implementation. Eliminating a variable X from
the constraint solver is quite simple: if X is a non-
parametric variable, then we just remove the linear
form associated with X (as in the above example). If,
however, X is a parameter, then to eliminate X we
must (i) find an equation containing X, (ii) rewrite the
equation with X as the subject, (iii) substitute out X
everywhere else using this equation, and finally, (iv) re-
move the equation. Thus when X is a parameter, there
is a trade-off between having one less equation and per-
forming the work toward this aim (because this work
is essentially equivalent to adding one new equation).
For example, removing an equation is not worthwhile
if execution immediately backtracks after its removal.

The following illustrates a typical execution se-
quence. Suppose the solver contained X =Y + 1,T =
U+Y +1 and a new constraint Y + X — T = 0 is
encountered. Suppose further that it is known that ¥’
does not appear henceforth and so can be eliminated.
A straightforward implementation would (a) write the
new constraint into parametric form U — Y = 0, (b)
substitute out U everywhere by Y, (c) add the new
constraint U = Y, and finally (d) using the informa-
tion that Y is redundant, process the three resulting
equations X =Y +1,T=2+xY +1,U =Y in order to
eliminate Y in the manner described above. A much
better implementation will (a) write the new constraint
into parametric form U ~Y = 0, and (b) substitute out
Y everywhere by U (instead of vice versa).



program || Quintus 3.0b | CLP(R) interpreter | CLP(R) compiler
nrev 0.66 1.91 0.79
dnf 0.61 1.89 0.78
zebra 1.33 2.58 1.57

Figure 4: Prolog benchmarks

Redundancy of Constraints

Of concern here are constraints which become redun-
dant as a result of new constraints. One class of this
redundancy that is easy to detect is future redundancy
defined in [7], where a constraint added now will be
made redundant in the future, but it does not effect
execution in between these points.

Consider the sum() program once again, and exe-
cuting the goal sum(N, X) using the second rule. We
obtain the subgoal

N>1, NN =N -1, sum(N, X

and note that we have omitted writing the constraint
involving X. Continuing the execution we have two
choices: choosing the first rule we obtain the new con-
straint N' = 0, and choosing the second rule we obtain
the constraint N' > 1 (among others). In each case
the original constraint N > 1 is made redundant. The
main point of this example is that the constraint N > 1
in the second rule should be implemented simply as a
test®, and not added to the constraint store. We hence
add the new instructions

¢ solve no_add_eqO
e solve.no_add_ge0
® solveno.add_gt0

that behave like the solve class of instructions, but
which do not add the new constraint. In general this
task involves significantly less work than the usual con-
straint satisfiability check and addition since we do not
have to detect implicit equalities and may avoid sub-
stitutions.

We finally remark that, in our experiments, imple-
menting future redundancy has lead to the most sub-
stantial efficiency gains compared to the other opti-
mizations discussed here. The main reason is that
inequalities are prone to redundancy, and the cost of
maintaining inequalities in general is already relatively
high. Equations in contrast are maintained in a form
that is essentially free of this kind of redundancy.

5In general, these tests are not just simple evaluations.

134

4.3 Optimizing Compilation

The kinds of program analysis required to utilize the
specialized CLAM instructions include those familiar
from PROLOG — most prominently, detecting special
cases of unification and deterministic predicates. Algo-
rithms for such analysis have become familiar; see [1, 2]
for example. The extension to constraints involves no
more than a straightforward extension to these algo-
rithms.

Detecting redundant variables and future redundant
constraints can in fact be done without dataflow anal-
ysis. One simple method involves unfolding the pred-
icate definition (and typically once is enough), and
then, in the case of detecting redundant variables, sim-
ply inspecting where variables occur last in the un-
folded definitions. For detecting a future redundant
constraint, the essential step is determining whether
the constraints in an unfolded predicate definition im-
ply the constraint being analyzed. Some further dis-
cussions appear in [7].

While we do not have a fully engineered analyzer, our
experimental analyzer indicates that many CLP(R)
programs can be analyzed quite effectively.

5 Some Empirics

Throughout this section, all timings (in seconds)
were obtained on an IBM RS 6000/530 workstation
running AIX Version 3.0. The C compiler used
throughout was the standard AIX C compiler with
'—(’ level optimization. The systems tested are

o The CLP(R) interpreter, written entirely in C,
whose inference engine uses standard PROLOG
structure sharing techniques.

The CLP(R) compiler system, executing core
CLAM code. The CLAM code is interpreted, us-
ing an emulator written in C.

An emulator, as above, for the full CLAM, execut-
ing handwritten code.

Quintus PROLOG version 3.0b, a widely-used
commercial system.



mortgage(P, T, I, R, B) :-
T>1,
T1=T-1,
P >=0,
PL=P=x*x1I~-R,
mortgage(P1, Ti, I, R, B).
mortgage(P, T, I, R, B) :-
T=1,
B=PxI-~-R.

Figure 5: Program for reasoning about mortgage repayments

Q1 : mortgage(100000, 360, 1.01, 1025, B)

Q> : mortgage(P, 360, 1.01, 1025, 12625.9)

Qs : R >0AB>0Amortgage(P, 360, 1.01, R, B)

Q. : 0< BA B < 1030 A mortgage(100000, T, 1.01, 1030, B)

Figure 6: Four queries for the mortgage program

double mgi(p, t, i, r) double mg2(t, i, r, b)
double p, t, i, r; double t, i, r, b;
{ {
if (t == 1.0) return (p*i - r); double p;
else if (t > 1.0 && p >= 0.0) if (t == 1.0) return ((b + r)/i);
return mgl(p*i -~ r, t - 1.0, i, r); else if (¢t > 1.0) {
else exit(1); p = (mg2(t -~ 1.0, i, r, b) + r)/i;
} if (p >= 0.0) return p; else exit(1);
} else exit(1);
}

Figure 7: C functions for Q1 and Q2

CLP(R) CLP(R) CLP(R) full CLAM | CLP(R) [
query || interpreter | core CLAM | but no redundancy | full CLAM | program
(o 0.10 0.05 0.0042 0.0042 0.0010
Q2 2.08 1.78 0.0054 0.0054 0.0016
Qs 2.35 1.84 1.05 0.0700 n/a
Q4 4.20 2.05 1.78 0.0640 n/a

Figure 8: Timings for Mortgage program

135




e Two C programs, for comparison with a CLP(R)
program compiled into CLAM code.

In Figure 4 we compare CLP(R) with Quintus. The
programs chosen are a naive reverse benchmark (six
times on a 150 element list, built using a normal func-
tor rather than the list constructor), a program for con-
verting boolean formulae into disjunctive normal form,
and a program which solves a standard logic puzzle by
combinatorial search. The programs in themselves are
not interesting, and hence the code is omitted. The
important point is that they test major aspects of a
PROLOG inference engine. The purpose of this com-
parison is first to indicate the relative speeds of the in-
ference engines of the two CLP(R) systems, and more
importantly, to give evidence that the CLAM can be
implemented without significantly compromising PRO-
LOG execution speed.

The main part of this section deals with the con-
straint aspects of the CLAM. We use the program in
Figure b in four different ways, as shown in Figure 6, so
as to utilize different constraint solving instructions®.
Appendix C contains the core CLAM code for the
mortgage program, and also the (full) CLAM code ob-
tained for this program given the calling patterns of
the first and third queries. The code for the second

(fourth) query is similar to that for the first (third).

Given the calling pattern associated with the first
query, the program can be compiled as though it were
a simple recursive definition. Similarly for the sec-
ond query, though a different recursive definition is ob-
tained. Figure 7 contains C functions which implement
these two definitions. The third query essentially prop-
agates constraints, and hence it cannot be compiled so
simply. Similarly for the fourth query which essentially
carries out a search.

In Figure 8, timings are tabulated for the inter-
preter, core CLAM and full CLAM. To separate the
effects of the mode-based optimizations from those of
the redundancy-based optimizations, Figure 8 also con-
tains timings for full CLAM code that does not take
advantage of redundancy. The first two timing columns
illustrate the benefit of compilation over interpretation.
For the next two columns, the program is specialized
w.r.t. the modes corresponding to the four queries.

While we have not presented results for a comprehen-
sive set of benchmarks, the mortgage program is some-
what typical in structure for recursive definitions. It
was chosen because the four different classes of queries
require most of the main components of the constraint

5Similar measurements were carried out in [7] for this program
and queries. Their focus was evaluating specific analyses; here it
is the efficiency of specific CLAM code.

136

solver. Similar tests on a number of other programs,
not presented here for space reasons, yielded similarly
favorable results.

6 Conclusion

We have described an abstract machine for the efficient
execution of compiled CLP(R) programs. In addition
to providing a basis for executing CLP(R) programs
with an efficlency comparable to that of commercial
Prolog compilers, it is suitable for taking advantage of
global optimization techniques that are currently on
the leading edge of logic programming implementation
techniques.

References

(1] S. K. Debray, “Static Inference of Modes and
Data Dependencies in Logic Programs”, ACM
Transactions on Programming Languages and
Systems 11 (3), 1989, pp 418-450.

S. K. Debray and D.S. Warren, “Functional Com-
putations in Logic Programs”, ACM Transac-
tions on Programming Languages and Systems
11 (3), 1989, pp 451-481.

2l

J. Jaffar and J-L. Lassez, “Constraint Logic Pro-
gramming”, Proceedings 14** ACM Symposium
on Principles of Programming Languages, Jan-
vary 1987, pp 111-119.

D. Kranz, R. Kelsey, J. Rees, P. Hudak, J.
Philbin, and N. Adams, “ORBIT: an optimizing
compiler for Scheme”, SIGPLAN’86 Symposium
on Compiler Construction, June 1986, pp 219-
233.

(4]

J. Jaffar, S. Michaylov, P.J. Stuckey and R.H.C.
Yap”, “The CLP(R) Language and System”,
ACM Transactions on Programming Languages
and Systems, to appear, July 1992.

J. Jaffar, S. Michaylov and R.H.C. Yap, “A
Methodology for Managing Hard Constraints
in CLP Systems”, Proceedings ACM-SIGPLAN
Conference on Programming Language Design
and Implementation, June 1991, pp 306-316.

[6]

N. Jgrgensen, K. Marriott and S. Michaylov,
“Some Global Compile-time Optimizations for
CLP(R)”, Proceedings 1991 International Logic
Programming Symposium”, October 1991, pp
420-434.



(8] A. Taylor, “LIPS on a MIPS: Results from a Pro-
log Compiler for a RISC”, Proceedings 7th Inter-
national Conference on Logic Programming, June
1990, pp 174-185 [Also Ph.D. thesis, CS, Univ.
of Sydney, 1991].

[9] P. van Roy and A.M. Despain, “The Benefits of
Global Dataflow Analysis for an Optimizing Pro-
log Compiler”, Proceedings 1990 North Ameri-
can Conference on Logic Programming, October
1990, pp 501-515 [Also Ph.D. thesis by Van Roy,
CS/EE, UC Berkeley, 1990].

[10] D.H.D. Warren, “An Abstract PROLOG Instruc-
tion Set”, Technical note 309, Al Center, SRI In-
ternational, Menlo Park, October 1983.

Appendix

A An Overview of CLP(R)

Real constants and real variables are both arithmetic
terms. If t, 1 and t; are arithmetic terms, then so are
(t1+t2), (t1 —t2), (t1%t2), (t1/t2), abs(t), sin(t), cos(t)
and pow(t1,ts). Uninterpreted constants and functors
are like those in PROLOG. Uninterpreted constants
and arithmetic terms are terms, and so is any vari-
able. If f is an n-ary uninterpreted functor, n > 0,
and ty,...,t, are terms, then f(¢1,...,%,) is a term. If
t1 and £y are arithmetic terms, then ¢; = ¢3, t; < t3
and t; < tg are all arithmetic constraints. If at least
one of t; and ¢; is not an arithmetic term, then only
the expression t; = t; is a constraint.

An atom is of the form p(ty,ts,...,t,) where p is
a predicate symbol distinct from =, <, and <, and
t1, ...,y are terms. A CLP(R) program is defined to be
a finite collection of rules: Aoy : — a1, q2,...,a; where
each a;, 0 < i < k, is either a constraint or an atom. A
CLP(R) goal is of the form 7— C | au,a2,...,ar where
C is a conjunction of constraints and each o;, 1 < ¢ < k,
is either a constraint or an atom.

A derivation step for the above CLP(R) goal selects
the first atom or constraints ;. If a; is a constraint
¢, then if ¢ A C is satisfiable the new goalis 7~ C A
¢l og,...,0. If the constraints are unsatisfiable then
execution “backtracks” to a point where an alternate
choice of matching rule is available and proceeds using
this rule. If oy is an atom p(s;,...,s,) and a rule in
the program of the form p(ty,...,t,) : — B1,82,..-, B
The resulting new goal is of the form
-C l 81 =1t1,...,8n =tn,B1,..., B, Q1,...,0k.

Ideally the constraint solver would detect whenever the
constraints are unsatisfiable. In practice, because of
the intractability of detecting unsatisfiability of non-
linear constraints, our implementation of CLP(R) only
detects the satisfiability /unsatisfiability of all the non-
arithmetic and linear arithmetic constraints in the goal,
including nonlinear constraints that are effectively lin-
ear in the context of the non-arithmetic and linear con-
straints.

A derivation sequence is a possibly infinite sequence
of goals, starting with an initial goal, wherein there is
a derivation step to each goal from the preceding goal.
A derivation sequence is successful if it is finite and
its last goal contains only constraints. The constraints
in the last goal of successful derivation sequences are
called answer constraints.

Consider the program in Figure 5. and the goal 7-
| mg(P, 2, 1.1, MP, B).Execution proceeds by first
matching with the first rule to obtain the new goal

7-12>1, Tt=2-1, P> 0,
P1 = Px1.1 - MP,
mortgage(Pi, T1, 1.1, MP, B).

After four steps in which all the constraints are satisfi-
able, we obtain (ignoring trivial constraints)

?- P >=0, PL = Px1.1 - MP |
mortgage(P1, 1, 1.1, MP, B).

The next derivation step matches the first rule again,

?7-P >0, PL=Px1.1-MP | 1> 1,
Tt =1 -1, P1 >= 0, P’ = P1*1.1 - MP,
mortgage(P1’, T1', 1.1, MP, B).

In the next step, the constraint is unsatisfiable (1 > 1)
and hence execution backtracks and the next matching
rule is attempted, resulting in

?-P>=0,Pl=Px1.1-MP | 1 =1,
B = Pix1.1 - MP.

After two more steps the constraints have been added
to the solver and found to be satisfiable. Now as only
satisfiable constraints remain, the derivation is success-
ful. The answer constraint after simplification is

P = 0.826446%B + 1.73554*MP, P > 0.

137



B Summary of main CLAM instructions

litf
getf
putf
stf
1ldf
mvi
addf

addct

jeqf

jgtt

jget

initpf

initpf 0
initpf £fp
addpf_va{lr}
addpf _va{lr}_{+-}
addpf _fp_va{rl}
addpf_va{lr}le
addpf_va{lr}e_{+-}
addpf _fp_va{lr}e
solve_eq0
solve_ge0
solve_gt0
solvemo_fail.eq
solveno._fail._ge
solveno.fail. gt
solve no_add._eq0
solve no_add.ge0
solveno_add gt0
pow.vvY

pow_cvv

pow_vcv

pow_vvc

pow.cvc

c, FPi
Vi, FPj

FPi, Vj

FPi, S

S, FPi

FPi, FPj

FPi, FPj, FPk

FPi, ¢, FPk
FPi, L
FPi, L
FPi, L

c0

FPi

ci, Vi

Vi

FPi, Vi
ci, Vi

Vi

FPi, Vi

v

v

v

Vi, Vj, Vk
Vi, Vk

Vi, ¢, Vk
Vi, Vj, ¢
c0, Vj, <2

load numeric constant into fp_val

convert solver variable to fp_val

convert fp_val to solver variable

put fp_val on stack frame (offset S)

read fp_val from stack frame (offset S)

copy one fp.val to another

add fp.vals;

similarly for mulf, subf, divf

add a constant to an fp_val;

similarly for mulcf, subcf, divcf, subfc, divic
jump to label L if FPi is zero

jump to label L if FPi is positive

jump to label L if FPi is nonnegative

initialize accumulator Ipf with constant ¢0
initialize accumulator Ipf with constant 0
initialize Ipf with constant from fp_val

add ci * Vi to Ipf in accumulator

add linear component, with 1 or —1 coeflicient
add linear component, with coefficient from fp_val
like addpf _va{lr}, eliminating V; if possible

like addpf_va{lr}{+-} , eliminating V; if possible
like addpf fp_va{lr} , eliminating V; if possible
invoke equation solver on Ipf =0

invoke inequality solver on Ipf > 0

invoke inequality solver on Ipf > 0

simply add V = Ipf to solver

simply add V' > Ipf to solver

simply add V > Ipf to solver

check ipf = 0, do not add to solver

check Ipf > 0, do not add to solver

check Ipf > 0, do not add to solver

for V; = pow(V;, Vi) where V;,V;, V;, are variables
for ¢ = pow(V;, Vi)

for V; = pow(e, Vi)

for V; = pow(Vj, ¢)

for ¢y = pow(Vj, c2)

similar groups of instructions for cos,

sin, abs and multiplication

138



C Example CLAM Code

General Program

g

mgl

mg2

try

trust
initpf
addpf_val_+
solve _gt0
initpf
addpf_val -
addpf_var_+
solve_eq0
initpf 0
addpf _val +
solve._ge0
mult Vvv
initpf 0
addpf _val_+
addpf val_-
addpf_var_+
solve_eq0
getvar
getvar
jump
gettnum
mult Vvv
initpf.0
addpf._val_+
addpf_val_-
addpf_val._+
solve_eq0
proceed

mgl, 5
mg2
-1

Tmp3, P, 1

Tmp3
Tmp2

P, Tmp2
T, Tmpl
mg

1, T
Tmpl, P, I

Tmp1

139

Specialized for Q;

mg subct T, 1, Tmp
jgtt Tmp, mgl
jeqf Tmp, mg2
fail

mgi mvf Tmp, T
jgef P, cont
fail

cont mulf P, I, Tmp
subf Tmp, R, P
Jump mg

mg2  mulf P, I, Tmp
subf Tmp, R, B
proceed

Specialized for Qs

mg subct T, 1, Tmp
jgtt Tmp, mgl
jeqf Tmp, mg2
fail

mgl  subct T, 1, T
jgtf T, contl
fail

contl initpf.0
addpf_val_+ P
solveno.add_ge0
initpf 0
addpf_fp_val I, P
addpf.val_- R
solvemno._fail_eq Tmp3
getvar P, Tmp3
jump mg

mg2 subct T, 1, Tmp4
jeqf Tmp4, cont2
fail

cont2 subic 0, I, Tmp2
initpf 0
addpf_val_+ R
addpf fp._val Tmp2, P
addpf_val + B
solve_eq0
proceed



