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Abstract 1 Introduction 

We have adapted an interactive programming system 
(Smalltalk) to a multiprocessor (the Firefly). The 
task was not as difficult as might be expected, thanks 
to the application of three basic strategies: serializa- 
tion, replication, and reorganization. Serialization of 
access to resources disallows concurrent access. Repli- 
cation provides multiple instances of resources when 
they cannot or should not be serialized. Reorganiza- 
tion allows us to restructure part of the system when 
the other two strategies cannot be applied. 

We serialized I/O, memory allocation, garbage col- 
lection, and scheduling, we replicated the interpreter 
process, software caches, and a free-list, and we reor- 
ganized portions of the scheduling system to deal with 
some deep-seated assumptions. Our changes yielded 
a fairly low static overhead. We attribute our suc- 
cess to the choice of a small, flexible operating sys- 
tem, a set of constraints which simplified the problem, 
and the versatility of the three strategies for dealing 
with concurrency. The current system has a mod- 
erate amount of overhead when parallelism is being 
used-25% to 65%. It is acceptable, but we believe 
it can be improved. 
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Although it is clear that a multiprocessor will bene- 
fit a multiuser, timesharing environment, it is not so 
clear how to exploit a multiprocessor in the single- 
user environment of the personal workstation. While 
research into multiprocessor workstations is progress- 
ing [6, 11, 171, we do not yet have a good understand- 
ing of how to use them effectively as personal work- 
stations. In the case of the interactive programming 
environment (such as LISP, Smalltalk, etc.), the task 
of adapting to and exploiting the multiprocessor will 
fall first to the language system implementor. 

We have adapted one particular interactive pro- 
gramming system, the Berkeley Smalltalk (BS) im- 
plementation of the Smalltalk-801 language [8, 201, to 
an experimental multiprocessor, the DEC-SRC Fire- 
fly. The result is called Multiprocessor Smalltalk 
(MS). We found that the task was not as difficult 
as might be expected, and, in particular, that a rel- 
atively small set of strategies was sufficient to deal 
with the problems involved. Although some of the 
lessons learned may be applicable only to object- 
oriented systems, the basic principles should apply to 
any effort to adapt a single-threaded, single-address- 
space program;ing system to a shared-memory mul- 
tiprocessor; tasks such as storage management, in- 
put/output, and process scheduling are common to 
most integrated programming environments. 

Although we will present some preliminary perfor- 
mance figures, the focus of this paper is on the design 
and implementation of MS, not the performance. In 
particular, it should be noted that the performance 
of MS has not been tuned yet, nor has it been ana- 
lyzed in any detail. We expect to present that work 
in a future paper, along with some comments on our 
experience in using MS. 

1 Smalltalk- is a trademark of PaxPlace Systems. 



1.1 Context and Goals 

This report describes only one part of a larger project 
to implement, instrument, and analyze a multiproces- 
sor Smalltalk. The ultimate objective of the project is 
gather the information necessary to make design deci- 
sions about the implementation of an object-oriented 
system on a multiprocessor. The first part of the 
project will produce information about the obsta- 
cles to adapting a single-threaded uniprocessor pro- 
gramming system to a multiprocessor. The second 
stage will be devoted to gathering data appropriate 
for characterizing the behavior of the system and pre- 
dicting the behavior of similar systems. The experi- 
ments will focus on how the choice of multiprocessor 
architecture affects the performance of the system, as 
well as the effects of different parallelization strategies 
(i.e., choice of algorithm) at the user level. 

1.2 Constraints 

With these goals in mind, the implementation itself is 
intended to be as straightforward as possible. Since 
our interest is in the behavior of the programs, rather 
than that of the system which interprets them, we 
have applied two principles wherever possible: 

1. Take the path of least resistance in adapting the 
interpreter, except where such a path conflicts 
with the goal of maximizing concurrency. 

2. Make the minimum possible change to the user- 
visible programming environment. 

The latter principle is reflected as the least possible 
change to the Smalltalk- virtual image, the exist- 
ing hierarchy of object behavior.2 In particular, we 
have not changed the existing Smalltalk abstractions 
for dealing with concurrency. The basic mechanisms 
remain the Process and the Semaphore. 

1.3 Related Work 

Other integrated programming environments for per- 
sonal workstations include Cedar [16] and several Lisp 
systems. Cedar is supposed to be structured so as to 
avoid difficulties in running the system on a multi- 
processor, although, as far as we know, it has not 
been run on one. The SPUR project aims to pro- 
duce a multiprocessor workstation for running LISP 

2Usage note: WC use “Smalltalk” to refer to the language, 
and “Smalltalk-80” to refer to the language, object hierarchy, 
and virtual image defined in Smalltalk-80: The Language and 
Its Implementation [8]. The virtual image is a static reprcsen- 
tation or “snapshot” of the compiled code, class descriptions, 
etc. 

[22]. The project p s ans all the design levels from 
processor to software. The Apiary [9] is a design 
for an object-oriented multiprocessor that does not 
use shared memory. It merges the Process and Ob- 
ject concepts into Actors. Actors behave like active 
objects, and provide implicit concurrency and serial- 
ization. The Actra project [2, 181 aims to produce 
an industrial multiprocessor Smalltalk system. One 
significant difference between MS and Actra is that 
MS avoided changes to the user-visible environment, 
while Actra layers an Actor-like structure for dealing 
with parallelism on top of the Smalltalk environment. 
Bennett’s Distributed Smalltalk [3, 41 also addresses 
distributed systems which do not use shared mem- 
ory. Work which addresses the problems of garbage 
collection in shared and distributed memory is cited 
in Section 3.1. 

2 Environment 

The hardware base for the project is the Firefly, 
an experimental shared-memory multiprocessor de- 
veloped at Digital Equipment Corporation’s Systems 
Research Center. The machine consists of five mi- 
croVAX processors and 16 megabytes of shared mem- 
ory. Each of the processors is approximately the 
speed of a VAX 11/780, and each has a private cache 
of 1GK bytes. The cache hardware guarantees the 
consistency of shared data (details of the architecture 
have been published elsewhere [17]). 

The software platform for the project is the V dis- 
tributed operating system [5]. The V kernel provides 
a message-passing inter-process communication facil- 
ity, along with address spaces and lightweight pro- 
cesses, upon which most operating-system level ser- 
vices, such as program loading and a file system, are 
built. The current implementation of the V kernel on 
the Firefly allows multiple user-level processes to run 
concurrently on the five processors. Although there is 
no support at this time for multiple processes inside 
the kernel, this is only a minor consideration for our 
work, because of the relative infrequency of requests 
for kernel operations by the Smalltalk system. 

The experimental subjects are the Berkeley 
Smalltalk interpreter and the ParcPlace Systems 
Smallta.lk-80 virtual image release V12.1. Berkeley 
Smalltalk is a byte-code based interpreter for the 
Smalltalk- virtual machine. The use of an inter- 
preter may have some influence on the data generated 
by the experiment, because some activities (such as 
storage allocation) occur less often due to interpretive 
overhead than they would in a compiled system. Un- 
fortunately, the only readily-available Smalltalk sys- 
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tern that uses compiled machine code does not run 
on the available hardware, and it is written in as- 
sembly language, making it difficult to modify. The 
version of Berkeley Smalltalk with which we are work- 
ing differs from that described in Smalltalk-80: Bits 
of History, Words of Advice [20] in that it employs 
the Generation Scavenging garbage-collection scheme 
[19] instead of reference counting. It also eliminates 
the object table, which otherwise would add a level of 
indirection to object references. 

The overall structure of the system is depicted in 
Figure 1. BS introduces a level of interpretation 
into the system, as shown in Table 1. A Smalltalk 
Process4 is a thread of execution of Smalltalk byte 
codes. The byte codes are produced by the Smalltalk 
compiler from Smalltalk source code, and they re- 
side in the object memory. The execution of the 
bytecodes is performed by the Smalltalk interpreter, 
and the scheduling of Smalltalk Processes is done 
by the Smalltalk ProcessorScheduler (whose be- 
havior is defined by the language and implemented 
both in Smalltalk code and by the interpreter). The 
Smalltalk interpreter is itself a V process, which is the 
execution of machine code generated by the C com- 
piler. The machine code resides in the V process’s 
address space15 and is executed directly by the pro- 
cessor. Scheduling of V processes is done by the V 
kernel. 

3 Adaptation Strategies 

Concurrent access to shared data must be controlled 
to guarantee a consistent view of the state of a sys- 
tem. This control, commonly known as synchroniza- 
tion, is the common characteristic of almost all of the 
problems involved in adapting single-threaded code 
to run multi-threaded on a multiprocessor. Synchro- 
nization problems may occur any time that more than 
one thread of control makes use of the same data. 
For this project, our chosen constraints allowed us to 
ignore the most common references to global data: 
the values of variables in the Smalltalk object space. 
With the exception of storage management functions, 
which are performed by the run-time system, we have 
relegated to user-level code responsibility for the syn- 
chronization of references to user-visible data. This 
allows the interpreter to run at full speed most of the 
time, and affords maximum flexibility for experiment- 
ing with concurrency at the user level. 

4To avoid confusion, we have tried to use “Process” con- 
sistently whenever WC are referring to a Smalltalk Process as 
distinct from a V process or the general concept of a process. 

‘The interpreter processes share a single address space, 
which is why they are called lightweight processes. 

The interpreter itself, however, makes use of global 
data for a number of purposes. These purposes in- 
clude input and output operations, storage manage- 
ment functions, a method lookup cache, and others. 
We adopted three basic strategies to deal with the 
synchronization problems of global data: 

Serialization of concurrent access to shared re- 
sources. 

Replication of resources to allow concurrent access. 

Reorganization of the computation’s structure to 
avoid the need for shared data. This strategy is 
used only as a last resort, because of the con- 
straints we have specified (in Section 1.2). 

Every problem of concurrent access we encountered 
yielded to one of these three approaches. 

3.1 Serialization 

Serialization is the most familiar tactic for dealing 
with concurrency problems (in various forms, such 
as critical regions, semaphores, and monitors). On a 
uniprocessor, locks on data are an acceptable way to 
achieve serialization because (in the absence of dead- 
lock) the process which holds a data lock is always 
able to proceed. Hence, the number of ready pro- 
cesses is not less than the number of processors avail- 
able to run them. In a multiprocessor, however, se- 
rialization with locks is a much more expensive form 
of synchronization, because it eliminates parallelism. 
When more than one processor is available, demand- 
ing exclusive access to data can cause the number of 
ready processes to drop below the number of proces- 
sors, reducing processor utilization. This indicates 
that serialization should be avoided if contention for 
a lock is likely. 

MS uses serialization when either: 

l Access is brief and relatively infrequent, or 

l No straightforward non-serial solution exists. 

For very brief periods of exclusion, we rely on a spin- 
lock mechanism based on the processor’s interlocked 
test-and-set instruction.’ If the test fails, the lock- 
ing code invokes the kernel’s Delay operation with a 
minimal timeout, which allows V process switching 
to occur, if necessary, and also avoids monopolizing 
the memory bus. 

Despite the potential drawbacks of spin-locks, we 
solved the majority of the potential synchronization 
problems in MS with serialization: 

‘The V System spin-locks were implemented by Cary Gray. 
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Figure 1: System structure 

The basic structural elements in MS are the virtual image, 
the virtual machine (including the interpreter and run-time 
library), and the V kernel. The thick lines indicate protec- 
tion boundaries which can only be crossed by invoking spe- 
cial primitive operations. The window system, compiler, and 
other elements of the system that usually are inaccessible at 
the user level are completely visible, and applications reside 
in the same object-memory space as the rest of the Smalltalk 
system. 
Let’s’consider a typical sequence of events in order to illus- 
trate the relationships among the various layers. Suppose 
the Smalltalk compiler is reading a file which resides on a 
remote file server. The compiler sends a Smalltalk read 
message to a Smalltalk file object whose behavior is defined 
by the Smalltalk file system. The file object, if it doesn’t 
have the data buffered, invokes a file-read Smalltalk primitive 
operation.3 This crosses the protection boundary into the BS 
interpreter, which calls the V run-time library freado func- 
tion (written in C). If the data requested are not buffered at 
this level, that function will invoke a V kernel operation to 
send a V READ message to the file server. This crosses the 
lower protection boundary, where it is handled by the V in- 
terprocess communication (IPC) manager. The IPC manager 
then directs the message to the network through the low-level 
device interface. The return path is similar, only reversed. 

Virtual Image 

Smlltalk Intorpretw 

vrunt1nv c-z--J 

Table 1: Process and interpreter relationships 

Execution process is 
Compiled code consists of 
Code is written in 
Code and data reside in 
Execution is by 
Execution scheduler is 

Virtual image 

Smalltalk Process 
byte code 
Smalltalk 
object memory 
Smalltalk interpreter 
Smalltalk ProcessorScheduler 

I/O: The interpreter places input events on a queue 
which is shared (potentially) by several pro- 
cesses. There is also an output queue associated 
with the display controller, into which display 
commands are placed. In both of these cases, 
access to the shared resource is for very brief in- 
tervals. 

Memory allocation: Memory allocation in the 
Generation Scavenging system is quite fast- 
it amounts to little more than incrementing a 
pointer. Allocation is also comparatively infre- 
quent, making serialization appropriate in this 

Interpreter 

lightweight process 
machine code 
C 
address space 
machine processor 
V kernel 

case. It’s also simpler than the alternative of 
having a separate allocation area for each of the 
processors. These arguments may not hold when 
multiple processes are busily allocating storage, 
however, or in a non-interpretive system, which 
would allocate storage more often. 

Garbage collection: Several parallel garbage col- 
lection algorithms have been proposed [l, 7, 10, 
12, 13, 15, 211. Th ose which rely on an extra 
level of indirection (as with forwarding pointers 
or object tables) slow down common operations. 
Without such indirection, it appears to be impos- 
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sible to have normal processing continue in par- 
allel with garbage collection. It may, however, 

be possible to apply multiple processors to the 
garbage collection task, especially if the memory 
system is divided into several spaces. 

BS collects garbage using Generation Scaveng- 
ing, a stop-and-copy scheme. Since scavenging 

requires all of the live new objects to move, and 
no indirection or forwarding is used except dur- 

ing the scavenging activity, the interpreter must 
suspend all other activity for the duration of the 

operation. Fortunately, scavenging is fast-it 
takes about 3% of the available processor time 
on a uniprocessor [19]. 

The two factors influencing this figure of 3% are 
how often scavenging is performed and how long 
each scavenging operation takes. The first of 
these is roughly $, where r is the rate of allo- 
cation and s is the size of the allocation space, 

and can be kept constant by increasing s as T in- 
creases (provided memory is available). If scav- 

enging occurs every t seconds in a uniprocessor 
system with an allocation space of size s, then a 

multiprocessor system with k processors should 
require scavenging no more often than every t 
seconds if the allocation space is of size k. s. 

In the current version of MS, the size of the allo- 
cation space, s, is only 80K bytes with the time 
between scavenges, t, being roughly 10 seconds. 
This leaves plenty of room for faster systems with 
more processors before memory becomes a con- 
cern. 

Furthermore, the time for each scavenging oper- 
ation is proportional to the amount of new live 
data (that is, data which are not garbage). Al- 
though we haven’t yet investigated the behav- 

ior of parallel Smalltalk programs, it may be 
that a k-processor system, when working coop- 
eratively on a single computation, will not gener- 

ate k times as much surviving data; so the total 
scavenging overhead may be less than 3k% when 
scavenging is done by a single processor. Apply- 
ing multiple processors to the scavenging oper- 
ation should yield a total overhead of no more 
than 3%; we haven’t yet performed this experi- 
ment. 

Since garbage collection takes a long time com- 
pared to other interpreter activities, we do not 

employ spin-locks in serializing scavenging. In- 
stead, all of the processes are synchronized with 
a global flag and the V interprocess communica- 
tion mechanism. 

Entry Table Maintenance: Entry table mainte- 
nance (also called remembering or store check- 

ing) is an essential operation in generation-based 
garbage collection schemes-it is the recording of 
old objects which refer to younger ones, so that 

the younger ones can be scavenged without scan- 
ning all of the space containing old objects. BS 
implements the set of remembered objects with 
an array and a flag on each object indicating 

whether it has already been remembered. MS 
puts a lock on the array that also synchronizes 

tests on the “remembered” flag. 

Scheduling: The Smalltalk- system employs a 
simple scheduling model. It is based on a 
priority queue which is examined whenever a 
Semaphore is signalled or a Process manipula- 

tion primitive (e.g., suspend or resume) is in- 
voked. These events are relatively infrequent, so 
serialization through a lock on the queue is ade- 
quate. Since the queue is visible at the user level, 

there is some potential for concurrency problems 
in its manipulation; this is discussed further in 

Section 3.3. 

3.2 Replication 

When some resource is essential to the operation of 
the system (for example, one that is used continu- 

ously), replication of that resource is likely to be the 
best way to make it available to multiple processes. 
In the case of an interpreter, we obtain parallelism 
by replicating the interpreter itself (or, rather, the 
interpretation process). In MS, multiple light-weight 

processes are supplied by the V kernel to achieve this. 
We create processes for as many interpreters as are 
desired, up to the maximum number of processors 
available.7 

Since the Smalltalk interpreter process is replicated 
to achieve parallelism, any resources which are used 
continuously by the interpreter must also be repli- 
cated. Most of these resources are local to the in- 
terpretation process, but one in particular is not. 
The interpreter’s notion of the active process (that 
is, which Smalltalk Process the interpreter is exe- 
cuting) must be visible to the other interpreter pro- 
cesses so that they can cooperate in implementing the 
behavior of the ProcessorScheduler. 

Although the interpretation process or virtual na- 
chine was replicated, the Smalltalk representation of 
the virtual machine, the ProcessorScheduler, was 
not replicated. That is, at the Smalltalk level, in- 

‘Additional professes could be created, but they could not 
all run in parallel. 
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stead of seeing several virtual machines, we see a 
single virtual machine which is able to run multiple 
processes in parallel; there remains a single priority 
queue of active Processes, rather than one for each 
interpreter process. One reason for doing this was 
that it would have a lesser impact on the existing 

Smalltalk code which implements the scheduling of 

Smalltalk Processes.’ Another reason for keeping a 
single ready queue is to avoid the necessity of moving 

Processes from one queue to another when an in- 
terpreter process becomes available. The adaptation 

of the V kernel to the multiprocessor, however, does 

use replication to deal with the ready queue; the ker- 
nel maintains a separate queue of ready processes for 
each processor. At the moment, V processes are stat- 
ically assigned to processors, so there may be cases in 

which processors are idle even though there are pro- 
cesses which could run. In MS, however, Smalltalk 

Processes are dynamically assigned to V processes, 
which is practical only because of the shared-memory 

architecture, and convenient only because the ready 
queue was not replicated. 

A resource that we found necessary to replicate was 

the method cache. A Smalltalk implementation per- 
forms a “method lookup” ( mapping from the name 

of a polymorphic procedure to the actual code or 
method) very frequently; in typical interactive use, 

more than 10% of the bytecodes interpreted require 
lookup [20]. As a result, most Smalltalk implementa- 
tions rely heavily on software method-lookup caches 
to achieve acceptable performance, and BS is no ex- 

ception. We originally applied a serialization strat- 
egy for the method cache, using a two-level locking 
scheme to allow multiple readers. When the system 

was finally up and running, however, we found that 
contention for the lock was causing it to run much 
too slowly. Replicating the cache on a per-processor 

basis solved the problem. The drawback, of course, is 
that more overhead is involved in access to the cache 
because it is replicated. Some fine-tuning of the im- 

plementation may reduce this. 

Profiling of an earlier version of MS revealed that 
serialization of access to the free context list caused 
a bottleneck. The free context list serves as an 
optimization of the memory allocation process for 
Smalltalk stack frames, or Contexts. BS maintains 

a list of unused stack frames, because it is more ef- 
ficient to reuse one than to allocate and initialize a 
new one. Replication of the free context list yielded 
a reduction in the worst-case overhead from 160% to 
65%, an improvement of 60%. 

‘In retrospect, this should not have been a consideration; 
existing Smalltalk code that manipulates the queue makes no 
allowances for concurrency. 

3.3 Reorganization 

Sometimes there are assumptions which are embed- 
ded so deeply in parts of a system that they cannot be 

accomodated, but must instead be expunged. We call 
this activity reorganization, because it involves more 

than the simple locking or replicating of resources; 

it may even require eliminating some data or rear- 
ranging their use. Although a good designer tries to 

confine such assumptions, they can be expressed in 
many unexpected ways which are not immediately 

obvious-until one tries to go against them. 

The Smalltalk- code that manipulates Pro- 

cesses displays one of these embedded assumptions- 

that Smalltalk Processes run only one at a time. 

Although there is but a single place where this as- 
sumption is explicit (in the definition of the Proces- 
sorSeheduler), it appears as an implicit assumption 

of the following form: If an active Process manipu- 

lates any Process other than itself, thut other Pro- 

cess is not active. This assumption shows up in a 

number of subtle ways, and, as might be expected, it 
causes several problems. 

The ProcessorScheduler has room for only one 
active Process, which is not adequate to represent 

the current state of the system in MS. Although repli- 
cation would have been an acceptable strategy in this 

case, for example, by making the activeProcess slot 
hold an array or linked list of Processes, we in- 
stead opted for compatibility with other Smalltalk 
interpreters. Instead of replicating the activeProcess, 
we ignored it; only the interpreter knows directly 
whether a Process is running. By not changing the 

structure of the ProcessorScheduler, MS retains 
image-level compatibility with BS. The only require- 

ment is to fill in the activeProcess slot before taking 

a snapshot and to empty it afterwards. 

Ignoring the activeProcess variable requires 
changes in the implementation of the activeProcess 

message. At this point the troublesome assumption 
appears again: in the Smalltalk- system, there is no 
distinction between the questions “Which Process is 
this execution path?” and “1s Process z active?” In 

the standard Smalltalk- image, both of these ques- 
tions are folded into the question “Which Process is 
active?“, which is not a well-formed question in the 

multiprocessor context. Consequently, we replaced 
sends to the ProcessorScheduler of the message 
activeProcess with sends of the message thisPro- 
cess or sends of the message canRun: somePro- 
cess. Thanks to the way that primitives work in the 
Smalltalk- system, if one of the new primitives fails 
because it is not implemented (i.e., the virtual image 
is not being running under MS), control falls through 
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to the code for the old activeProcess message, pre- 
serving compatibility with BS. 

The choice of name for the new canRun: mes- 
sage reflects an important difference in its meaning 
from that of a hypothetical isActive: message. The 
reason for this is to make allowances for concurrency 
which were not present in the original code. In a sys- 
tem with multiple concurrent processes, it is not wise 
to distinguish between a process which is currently 
running and one which is ready to run, because a 
change in the status of some other process could cause 
a change in that of the process being examined. In 
recognition of this, the MS system does not remove 
a Process from the ready queue when it is made ac- 
tive, so the ready queue contains all Processes which 
are ready to run including those running. Existing 
Smalltalk systems have avoided this problem because 
only the Process which is actually running can query 
its status, so the answer to a Process’s question “Is 
Process z active?” depends only on whether the ask- 
ing Process is itself x. We must note, however, that 
even the canRun: message is dangerous, because 
the status of the Process might change concurrently 
with the execution of some code that tries to manip- 
ulate it. Thus, in MS, the user-level is more likely 
to see a consistent view of the ready queue, but still 
is not guaranteed one. This reflects an unfortunate 
appearance within the Smalltalk- system of a lack 
of concern about concurrency which could affect even 
a uniprocessor system. 

One reason that the ProcessorScheduler is the 
source of so many problems is that the Smalltalk- 
80 virtual image and the interpreter are closely in- 
tertwined at this point. The basic Process primi- 
tives manipulate the ProcessorScheduler, the in- 
terpreter must manipulate it asynchronously (in re- 
sponse to input events, for example), and it is com- 
pletely exposed at the user level. While this makes 
the Smalltalk- system one of the few systems in 
which one can directly examine the ready queue, it 
also makes it very likely that one will see an in- 
consistent view of that queue. Unfortunately, some 
Smalltalk- code actually manipulates the ready 
queue directly. A revised implementation of the Pro- 
cessorScheduler should take concurrency into ac- 
count and eliminate user-level manipulation of the 
ready queue. In this case, some of Smalltalk’s flexi- 
bility must be sacrificed for safety. 

4 Preliminary Results 

We have used a subset of the standard Smalltalk- 
benchmarks [14], the “macro” benchmarks, in eval- 

uating MS. These benchmarks measure the perfor- 
mance of a number of typical user activities, such as 
compiling code or searching for definitions or uses of 
a particular message selector. 

Two versions of the interpreter are represented in 
the measurements. The version called “baseline BS” 
represents the state of the interpreter after it was 
modified to run on the Firefly under the V kernel but 
before any multiprocessor support was added. This 
serves as a reference point against which to measure 
the overhead introduced by the multiprocessor sup- 
port. The version called “MS” represents the inter- 
preter with all of the multiprocessor support included. 

The MS system was run in three states: with one 
Smalltalk idle Process (in uniprocessor mode), with 
four Smalltalk idle Processes, and with four busy 
Smalltalk Processes. The idle Process used is the 
trivial expression [true] whileTrue. It is impor- 
tant to note that this expression is translated by the 
compiler into bytecode which neither looks up mes- 
sages nor allocates memory. Hence, the idle Process 
represents the minimum possible interference with 
other Processes. By contrast, the busy Process 
is intended to represent the maximum possible in- 
terference. Based on the “sweep hand” background 
Process included in the Smalltalk- system, it in- 
cludes message sends and object allocations, and also 
contends for the display. 

The preliminary results are graphicaily illustrated 
in Figure 2, with the actual measurements in Ta- 
ble 2.’ In Figure 2, the times for each benchmark 
test have been normalized to the time for that test 
on the baseline system, to ease comparison. 

The current results are quite promising. The static 
cost of the serialization, replication, and reorganiza- 
tion of BS into MS is low: the architectural changes 
cost less than 15% in the worst case, and we believe 
that this figure can be reduced with fine tuning. 

The cost of competitive multiprocessing in MS is 
moderate. With only trivial competition, an addi- 
tional 30% of overhead appears in the worst case. 
This is more than we would like, but it may be pos- 
sible to reduce it. Non-trivial competition drives the 
total overhead up to 65% in the worst case, about 40% 
on average. Our challenge is to identify the sources 
of this overhead and reduce or eliminate them. Al- 
though our analysis is not complete, we suspect that 
a significant amount of the overhead is due to con- 
tention in storage allocation, in which case replica- 
tion of the new-object space should have significant 

‘Due to non-determinism in the system, the benchmark 

times arc somewhat variable-variations in the same test of 
as much as 3% were noted, so differences of 3% or less should 
be discounted. 
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Figure 2: Preliminary overhead measurements-normalized 
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Table 2: Preliminary performance results 

read and print print find all create compile de- 
write class class class find all imple- inspector dummy compile 

State organization definition hierarchy calls mentors view method class 
Baseline BS on multiprocessor 14.3 8.1 10.0 26 8.2 6.1 22 12.7 
MS on multiprocessor 15.6 8.6 11.4 27 8.9 6.7 25 14.1 

MS with four idle Processes 16.3 8.8 14.3 27 9.0 7.4 27 16.1 
MS with four busy Processes 18.4 11.1 16.4 33 11.2 10.0 31 18.2 

All times in seconds, from standard benchmarks 
Differences of less than 3% are not significant 

benefits. 

5 Conclusions 

We have adapted an object-oriented programming en- 
vironment that was originally designed to run on a 
uniprocessor to a shared-memory multiprocessor. We 
found that the task was less difficult than one might 
anticipate, for three reasons: 

1. A small, flexible operating system, the V System, 
which provided support for multiple processes 
within a single address space and allowed inex- 
pensive synchronization and communication. 

2. A set of constraints which simplified the prob- 
lem by minimizing changes to the programming 
language. 

3. A small set of strategies--serialization, replica- 
tion, and reorganization-which were surpris- 

Table 3: Applications of the three strategies 

Serialization 1 Replication 1 Reorganization 

allocation interpretation active process 
garbage collection method caches 
entry tables free contexts 
scheduling 

ingly general in their application, as summarized 
in Table 3. 

The performance of the resulting system is adequate, 
and we believe that it can be improved without in- 
troducing any new strategies, although we have seen 
that the choice of which strategy to apply in a psr- 
titular case can be very important. We also believe 
that these strategies can be successfully applied to 
other attempts to adapt uniprocessor programming 
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systems to multiprocessors, given appropriate sup- 
port from the operating system. 

Note that a different set of constraints could well 
have a significant impact on the behavior of such a 
system. Our future plans include gathering some data 
on the effects of such constraints in an attempt to 
characterize their influence. 

6 Future Work 

Our most immediate goals are to analyze the over- 
head in the current version of MS and to eliminate 
as much of it as possible, since the overhead in the 
present version, while acceptable, is still high. Sub- 
sequently, we expect to report on our experiences 
in using parallelism in MS, perhaps including some 
comparisons of various concurrent programming ap- 
proaches. Finally, we plan to add sufficient instru- 
mentation to MS to gather data about how differ- 
ent concurrent programming paradigms affect mem- 
ory reference patterns and contention for resources, 
and how architectural constraints such as the choice 
of shared or non-shared memory influence the system. 
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