
Multiprocessor Smalltalk: A Case Study of a Multiprocessor-Based
Programming Environment

Joseph Pallas”

David Ungar”
Computer Systems Laboratory

Stanford University
Stanford, CA 94305

Abstract 1 Introduction

We have adapted an interactive programming system
(Smalltalk) to a multiprocessor (the Firefly). The
task was not as difficult as might be expected, thanks
to the application of three basic strategies: serializa-
tion, replication, and reorganization. Serialization of
access to resources disallows concurrent access. Repli-
cation provides multiple instances of resources when
they cannot or should not be serialized. Reorganiza-
tion allows us to restructure part of the system when
the other two strategies cannot be applied.

We serialized I/O, memory allocation, garbage col-
lection, and scheduling, we replicated the interpreter
process, software caches, and a free-list, and we reor-
ganized portions of the scheduling system to deal with
some deep-seated assumptions. Our changes yielded
a fairly low static overhead. We attribute our suc-
cess to the choice of a small, flexible operating sys-
tem, a set of constraints which simplified the problem,
and the versatility of the three strategies for dealing
with concurrency. The current system has a mod-
erate amount of overhead when parallelism is being
used-25% to 65%. It is acceptable, but we believe
it can be improved.

*This research was supported by National Science Founda-
tion grant number CCR-8657631.

Permission to copy without fee all or pan of this material 1s granted provided

that the copies are not made or distributed for direct commercial advantage.

the ACM copyright notice and the title of the publication and its date appear.

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish. requires a fee and/

or specific permission.

o 1988 ACM O-8979 l-269- l/88/0006/0268 $1.50

Proceedings of the SIGPLAN ‘88
Conference on Programming
Language Design and Implementation
Atlanta, Georgia, June 22-24, 1988

268

Although it is clear that a multiprocessor will bene-
fit a multiuser, timesharing environment, it is not so
clear how to exploit a multiprocessor in the single-
user environment of the personal workstation. While
research into multiprocessor workstations is progress-
ing [6, 11, 171, we do not yet have a good understand-
ing of how to use them effectively as personal work-
stations. In the case of the interactive programming
environment (such as LISP, Smalltalk, etc.), the task
of adapting to and exploiting the multiprocessor will
fall first to the language system implementor.

We have adapted one particular interactive pro-
gramming system, the Berkeley Smalltalk (BS) im-
plementation of the Smalltalk-801 language [8, 201, to
an experimental multiprocessor, the DEC-SRC Fire-
fly. The result is called Multiprocessor Smalltalk
(MS). We found that the task was not as difficult
as might be expected, and, in particular, that a rel-
atively small set of strategies was sufficient to deal
with the problems involved. Although some of the
lessons learned may be applicable only to object-
oriented systems, the basic principles should apply to
any effort to adapt a single-threaded, single-address-
space program;ing system to a shared-memory mul-
tiprocessor; tasks such as storage management, in-
put/output, and process scheduling are common to
most integrated programming environments.

Although we will present some preliminary perfor-
mance figures, the focus of this paper is on the design
and implementation of MS, not the performance. In
particular, it should be noted that the performance
of MS has not been tuned yet, nor has it been ana-
lyzed in any detail. We expect to present that work
in a future paper, along with some comments on our
experience in using MS.

1 Smalltalk- is a trademark of PaxPlace Systems.

1.1 Context and Goals

This report describes only one part of a larger project
to implement, instrument, and analyze a multiproces-
sor Smalltalk. The ultimate objective of the project is
gather the information necessary to make design deci-
sions about the implementation of an object-oriented
system on a multiprocessor. The first part of the
project will produce information about the obsta-
cles to adapting a single-threaded uniprocessor pro-
gramming system to a multiprocessor. The second
stage will be devoted to gathering data appropriate
for characterizing the behavior of the system and pre-
dicting the behavior of similar systems. The experi-
ments will focus on how the choice of multiprocessor
architecture affects the performance of the system, as
well as the effects of different parallelization strategies
(i.e., choice of algorithm) at the user level.

1.2 Constraints

With these goals in mind, the implementation itself is
intended to be as straightforward as possible. Since
our interest is in the behavior of the programs, rather
than that of the system which interprets them, we
have applied two principles wherever possible:

1. Take the path of least resistance in adapting the
interpreter, except where such a path conflicts
with the goal of maximizing concurrency.

2. Make the minimum possible change to the user-
visible programming environment.

The latter principle is reflected as the least possible
change to the Smalltalk- virtual image, the exist-
ing hierarchy of object behavior.2 In particular, we
have not changed the existing Smalltalk abstractions
for dealing with concurrency. The basic mechanisms
remain the Process and the Semaphore.

1.3 Related Work

Other integrated programming environments for per-
sonal workstations include Cedar [16] and several Lisp
systems. Cedar is supposed to be structured so as to
avoid difficulties in running the system on a multi-
processor, although, as far as we know, it has not
been run on one. The SPUR project aims to pro-
duce a multiprocessor workstation for running LISP

2Usage note: WC use “Smalltalk” to refer to the language,
and “Smalltalk-80” to refer to the language, object hierarchy,
and virtual image defined in Smalltalk-80: The Language and
Its Implementation [8]. The virtual image is a static reprcsen-
tation or “snapshot” of the compiled code, class descriptions,
etc.

[22]. The project p s ans all the design levels from
processor to software. The Apiary [9] is a design
for an object-oriented multiprocessor that does not
use shared memory. It merges the Process and Ob-
ject concepts into Actors. Actors behave like active
objects, and provide implicit concurrency and serial-
ization. The Actra project [2, 181 aims to produce
an industrial multiprocessor Smalltalk system. One
significant difference between MS and Actra is that
MS avoided changes to the user-visible environment,
while Actra layers an Actor-like structure for dealing
with parallelism on top of the Smalltalk environment.
Bennett’s Distributed Smalltalk [3, 41 also addresses
distributed systems which do not use shared mem-
ory. Work which addresses the problems of garbage
collection in shared and distributed memory is cited
in Section 3.1.

2 Environment

The hardware base for the project is the Firefly,
an experimental shared-memory multiprocessor de-
veloped at Digital Equipment Corporation’s Systems
Research Center. The machine consists of five mi-
croVAX processors and 16 megabytes of shared mem-
ory. Each of the processors is approximately the
speed of a VAX 11/780, and each has a private cache
of 1GK bytes. The cache hardware guarantees the
consistency of shared data (details of the architecture
have been published elsewhere [17]).

The software platform for the project is the V dis-
tributed operating system [5]. The V kernel provides
a message-passing inter-process communication facil-
ity, along with address spaces and lightweight pro-
cesses, upon which most operating-system level ser-
vices, such as program loading and a file system, are
built. The current implementation of the V kernel on
the Firefly allows multiple user-level processes to run
concurrently on the five processors. Although there is
no support at this time for multiple processes inside
the kernel, this is only a minor consideration for our
work, because of the relative infrequency of requests
for kernel operations by the Smalltalk system.

The experimental subjects are the Berkeley
Smalltalk interpreter and the ParcPlace Systems
Smallta.lk-80 virtual image release V12.1. Berkeley
Smalltalk is a byte-code based interpreter for the
Smalltalk- virtual machine. The use of an inter-
preter may have some influence on the data generated
by the experiment, because some activities (such as
storage allocation) occur less often due to interpretive
overhead than they would in a compiled system. Un-
fortunately, the only readily-available Smalltalk sys-

269

tern that uses compiled machine code does not run
on the available hardware, and it is written in as-
sembly language, making it difficult to modify. The
version of Berkeley Smalltalk with which we are work-
ing differs from that described in Smalltalk-80: Bits
of History, Words of Advice [20] in that it employs
the Generation Scavenging garbage-collection scheme
[19] instead of reference counting. It also eliminates
the object table, which otherwise would add a level of
indirection to object references.

The overall structure of the system is depicted in
Figure 1. BS introduces a level of interpretation
into the system, as shown in Table 1. A Smalltalk
Process4 is a thread of execution of Smalltalk byte
codes. The byte codes are produced by the Smalltalk
compiler from Smalltalk source code, and they re-
side in the object memory. The execution of the
bytecodes is performed by the Smalltalk interpreter,
and the scheduling of Smalltalk Processes is done
by the Smalltalk ProcessorScheduler (whose be-
havior is defined by the language and implemented
both in Smalltalk code and by the interpreter). The
Smalltalk interpreter is itself a V process, which is the
execution of machine code generated by the C com-
piler. The machine code resides in the V process’s
address space15 and is executed directly by the pro-
cessor. Scheduling of V processes is done by the V
kernel.

3 Adaptation Strategies

Concurrent access to shared data must be controlled
to guarantee a consistent view of the state of a sys-
tem. This control, commonly known as synchroniza-
tion, is the common characteristic of almost all of the
problems involved in adapting single-threaded code
to run multi-threaded on a multiprocessor. Synchro-
nization problems may occur any time that more than
one thread of control makes use of the same data.
For this project, our chosen constraints allowed us to
ignore the most common references to global data:
the values of variables in the Smalltalk object space.
With the exception of storage management functions,
which are performed by the run-time system, we have
relegated to user-level code responsibility for the syn-
chronization of references to user-visible data. This
allows the interpreter to run at full speed most of the
time, and affords maximum flexibility for experiment-
ing with concurrency at the user level.

4To avoid confusion, we have tried to use “Process” con-
sistently whenever WC are referring to a Smalltalk Process as
distinct from a V process or the general concept of a process.

‘The interpreter processes share a single address space,
which is why they are called lightweight processes.

The interpreter itself, however, makes use of global
data for a number of purposes. These purposes in-
clude input and output operations, storage manage-
ment functions, a method lookup cache, and others.
We adopted three basic strategies to deal with the
synchronization problems of global data:

Serialization of concurrent access to shared re-
sources.

Replication of resources to allow concurrent access.

Reorganization of the computation’s structure to
avoid the need for shared data. This strategy is
used only as a last resort, because of the con-
straints we have specified (in Section 1.2).

Every problem of concurrent access we encountered
yielded to one of these three approaches.

3.1 Serialization

Serialization is the most familiar tactic for dealing
with concurrency problems (in various forms, such
as critical regions, semaphores, and monitors). On a
uniprocessor, locks on data are an acceptable way to
achieve serialization because (in the absence of dead-
lock) the process which holds a data lock is always
able to proceed. Hence, the number of ready pro-
cesses is not less than the number of processors avail-
able to run them. In a multiprocessor, however, se-
rialization with locks is a much more expensive form
of synchronization, because it eliminates parallelism.
When more than one processor is available, demand-
ing exclusive access to data can cause the number of
ready processes to drop below the number of proces-
sors, reducing processor utilization. This indicates
that serialization should be avoided if contention for
a lock is likely.

MS uses serialization when either:

l Access is brief and relatively infrequent, or

l No straightforward non-serial solution exists.

For very brief periods of exclusion, we rely on a spin-
lock mechanism based on the processor’s interlocked
test-and-set instruction.’ If the test fails, the lock-
ing code invokes the kernel’s Delay operation with a
minimal timeout, which allows V process switching
to occur, if necessary, and also avoids monopolizing
the memory bus.

Despite the potential drawbacks of spin-locks, we
solved the majority of the potential synchronization
problems in MS with serialization:

‘The V System spin-locks were implemented by Cary Gray.

270

Figure 1: System structure

The basic structural elements in MS are the virtual image,
the virtual machine (including the interpreter and run-time
library), and the V kernel. The thick lines indicate protec-
tion boundaries which can only be crossed by invoking spe-
cial primitive operations. The window system, compiler, and
other elements of the system that usually are inaccessible at
the user level are completely visible, and applications reside
in the same object-memory space as the rest of the Smalltalk
system.
Let’s’consider a typical sequence of events in order to illus-
trate the relationships among the various layers. Suppose
the Smalltalk compiler is reading a file which resides on a
remote file server. The compiler sends a Smalltalk read
message to a Smalltalk file object whose behavior is defined
by the Smalltalk file system. The file object, if it doesn’t
have the data buffered, invokes a file-read Smalltalk primitive
operation.3 This crosses the protection boundary into the BS
interpreter, which calls the V run-time library freado func-
tion (written in C). If the data requested are not buffered at
this level, that function will invoke a V kernel operation to
send a V READ message to the file server. This crosses the
lower protection boundary, where it is handled by the V in-
terprocess communication (IPC) manager. The IPC manager
then directs the message to the network through the low-level
device interface. The return path is similar, only reversed.

Virtual Image

Smlltalk Intorpretw

vrunt1nv c-z--J

Table 1: Process and interpreter relationships

Execution process is
Compiled code consists of
Code is written in
Code and data reside in
Execution is by
Execution scheduler is

Virtual image

Smalltalk Process
byte code
Smalltalk
object memory
Smalltalk interpreter
Smalltalk ProcessorScheduler

I/O: The interpreter places input events on a queue
which is shared (potentially) by several pro-
cesses. There is also an output queue associated
with the display controller, into which display
commands are placed. In both of these cases,
access to the shared resource is for very brief in-
tervals.

Memory allocation: Memory allocation in the
Generation Scavenging system is quite fast-
it amounts to little more than incrementing a
pointer. Allocation is also comparatively infre-
quent, making serialization appropriate in this

Interpreter

lightweight process
machine code
C
address space
machine processor
V kernel

case. It’s also simpler than the alternative of
having a separate allocation area for each of the
processors. These arguments may not hold when
multiple processes are busily allocating storage,
however, or in a non-interpretive system, which
would allocate storage more often.

Garbage collection: Several parallel garbage col-
lection algorithms have been proposed [l, 7, 10,
12, 13, 15, 211. Th ose which rely on an extra
level of indirection (as with forwarding pointers
or object tables) slow down common operations.
Without such indirection, it appears to be impos-

271

sible to have normal processing continue in par-
allel with garbage collection. It may, however,

be possible to apply multiple processors to the
garbage collection task, especially if the memory
system is divided into several spaces.

BS collects garbage using Generation Scaveng-
ing, a stop-and-copy scheme. Since scavenging

requires all of the live new objects to move, and
no indirection or forwarding is used except dur-

ing the scavenging activity, the interpreter must
suspend all other activity for the duration of the

operation. Fortunately, scavenging is fast-it
takes about 3% of the available processor time
on a uniprocessor [19].

The two factors influencing this figure of 3% are
how often scavenging is performed and how long
each scavenging operation takes. The first of
these is roughly $, where r is the rate of allo-
cation and s is the size of the allocation space,

and can be kept constant by increasing s as T in-
creases (provided memory is available). If scav-

enging occurs every t seconds in a uniprocessor
system with an allocation space of size s, then a

multiprocessor system with k processors should
require scavenging no more often than every t
seconds if the allocation space is of size k. s.

In the current version of MS, the size of the allo-
cation space, s, is only 80K bytes with the time
between scavenges, t, being roughly 10 seconds.
This leaves plenty of room for faster systems with
more processors before memory becomes a con-
cern.

Furthermore, the time for each scavenging oper-
ation is proportional to the amount of new live
data (that is, data which are not garbage). Al-
though we haven’t yet investigated the behav-

ior of parallel Smalltalk programs, it may be
that a k-processor system, when working coop-
eratively on a single computation, will not gener-

ate k times as much surviving data; so the total
scavenging overhead may be less than 3k% when
scavenging is done by a single processor. Apply-
ing multiple processors to the scavenging oper-
ation should yield a total overhead of no more
than 3%; we haven’t yet performed this experi-
ment.

Since garbage collection takes a long time com-
pared to other interpreter activities, we do not

employ spin-locks in serializing scavenging. In-
stead, all of the processes are synchronized with
a global flag and the V interprocess communica-
tion mechanism.

Entry Table Maintenance: Entry table mainte-
nance (also called remembering or store check-

ing) is an essential operation in generation-based
garbage collection schemes-it is the recording of
old objects which refer to younger ones, so that

the younger ones can be scavenged without scan-
ning all of the space containing old objects. BS
implements the set of remembered objects with
an array and a flag on each object indicating

whether it has already been remembered. MS
puts a lock on the array that also synchronizes

tests on the “remembered” flag.

Scheduling: The Smalltalk- system employs a
simple scheduling model. It is based on a
priority queue which is examined whenever a
Semaphore is signalled or a Process manipula-

tion primitive (e.g., suspend or resume) is in-
voked. These events are relatively infrequent, so
serialization through a lock on the queue is ade-
quate. Since the queue is visible at the user level,

there is some potential for concurrency problems
in its manipulation; this is discussed further in

Section 3.3.

3.2 Replication

When some resource is essential to the operation of
the system (for example, one that is used continu-

ously), replication of that resource is likely to be the
best way to make it available to multiple processes.
In the case of an interpreter, we obtain parallelism
by replicating the interpreter itself (or, rather, the
interpretation process). In MS, multiple light-weight

processes are supplied by the V kernel to achieve this.
We create processes for as many interpreters as are
desired, up to the maximum number of processors
available.7

Since the Smalltalk interpreter process is replicated
to achieve parallelism, any resources which are used
continuously by the interpreter must also be repli-
cated. Most of these resources are local to the in-
terpretation process, but one in particular is not.
The interpreter’s notion of the active process (that
is, which Smalltalk Process the interpreter is exe-
cuting) must be visible to the other interpreter pro-
cesses so that they can cooperate in implementing the
behavior of the ProcessorScheduler.

Although the interpretation process or virtual na-
chine was replicated, the Smalltalk representation of
the virtual machine, the ProcessorScheduler, was
not replicated. That is, at the Smalltalk level, in-

‘Additional professes could be created, but they could not
all run in parallel.

272

stead of seeing several virtual machines, we see a
single virtual machine which is able to run multiple
processes in parallel; there remains a single priority
queue of active Processes, rather than one for each
interpreter process. One reason for doing this was
that it would have a lesser impact on the existing

Smalltalk code which implements the scheduling of

Smalltalk Processes.’ Another reason for keeping a
single ready queue is to avoid the necessity of moving

Processes from one queue to another when an in-
terpreter process becomes available. The adaptation

of the V kernel to the multiprocessor, however, does

use replication to deal with the ready queue; the ker-
nel maintains a separate queue of ready processes for
each processor. At the moment, V processes are stat-
ically assigned to processors, so there may be cases in

which processors are idle even though there are pro-
cesses which could run. In MS, however, Smalltalk

Processes are dynamically assigned to V processes,
which is practical only because of the shared-memory

architecture, and convenient only because the ready
queue was not replicated.

A resource that we found necessary to replicate was

the method cache. A Smalltalk implementation per-
forms a “method lookup” (mapping from the name

of a polymorphic procedure to the actual code or
method) very frequently; in typical interactive use,

more than 10% of the bytecodes interpreted require
lookup [20]. As a result, most Smalltalk implementa-
tions rely heavily on software method-lookup caches
to achieve acceptable performance, and BS is no ex-

ception. We originally applied a serialization strat-
egy for the method cache, using a two-level locking
scheme to allow multiple readers. When the system

was finally up and running, however, we found that
contention for the lock was causing it to run much
too slowly. Replicating the cache on a per-processor

basis solved the problem. The drawback, of course, is
that more overhead is involved in access to the cache
because it is replicated. Some fine-tuning of the im-

plementation may reduce this.

Profiling of an earlier version of MS revealed that
serialization of access to the free context list caused
a bottleneck. The free context list serves as an
optimization of the memory allocation process for
Smalltalk stack frames, or Contexts. BS maintains

a list of unused stack frames, because it is more ef-
ficient to reuse one than to allocate and initialize a
new one. Replication of the free context list yielded
a reduction in the worst-case overhead from 160% to
65%, an improvement of 60%.

‘In retrospect, this should not have been a consideration;
existing Smalltalk code that manipulates the queue makes no
allowances for concurrency.

3.3 Reorganization

Sometimes there are assumptions which are embed-
ded so deeply in parts of a system that they cannot be

accomodated, but must instead be expunged. We call
this activity reorganization, because it involves more

than the simple locking or replicating of resources;

it may even require eliminating some data or rear-
ranging their use. Although a good designer tries to

confine such assumptions, they can be expressed in
many unexpected ways which are not immediately

obvious-until one tries to go against them.

The Smalltalk- code that manipulates Pro-

cesses displays one of these embedded assumptions-

that Smalltalk Processes run only one at a time.

Although there is but a single place where this as-
sumption is explicit (in the definition of the Proces-
sorSeheduler), it appears as an implicit assumption

of the following form: If an active Process manipu-

lates any Process other than itself, thut other Pro-

cess is not active. This assumption shows up in a

number of subtle ways, and, as might be expected, it
causes several problems.

The ProcessorScheduler has room for only one
active Process, which is not adequate to represent

the current state of the system in MS. Although repli-
cation would have been an acceptable strategy in this

case, for example, by making the activeProcess slot
hold an array or linked list of Processes, we in-
stead opted for compatibility with other Smalltalk
interpreters. Instead of replicating the activeProcess,
we ignored it; only the interpreter knows directly
whether a Process is running. By not changing the

structure of the ProcessorScheduler, MS retains
image-level compatibility with BS. The only require-

ment is to fill in the activeProcess slot before taking

a snapshot and to empty it afterwards.

Ignoring the activeProcess variable requires
changes in the implementation of the activeProcess

message. At this point the troublesome assumption
appears again: in the Smalltalk- system, there is no
distinction between the questions “Which Process is
this execution path?” and “1s Process z active?” In

the standard Smalltalk- image, both of these ques-
tions are folded into the question “Which Process is
active?“, which is not a well-formed question in the

multiprocessor context. Consequently, we replaced
sends to the ProcessorScheduler of the message
activeProcess with sends of the message thisPro-
cess or sends of the message canRun: somePro-
cess. Thanks to the way that primitives work in the
Smalltalk- system, if one of the new primitives fails
because it is not implemented (i.e., the virtual image
is not being running under MS), control falls through

273

to the code for the old activeProcess message, pre-
serving compatibility with BS.

The choice of name for the new canRun: mes-
sage reflects an important difference in its meaning
from that of a hypothetical isActive: message. The
reason for this is to make allowances for concurrency
which were not present in the original code. In a sys-
tem with multiple concurrent processes, it is not wise
to distinguish between a process which is currently
running and one which is ready to run, because a
change in the status of some other process could cause
a change in that of the process being examined. In
recognition of this, the MS system does not remove
a Process from the ready queue when it is made ac-
tive, so the ready queue contains all Processes which
are ready to run including those running. Existing
Smalltalk systems have avoided this problem because
only the Process which is actually running can query
its status, so the answer to a Process’s question “Is
Process z active?” depends only on whether the ask-
ing Process is itself x. We must note, however, that
even the canRun: message is dangerous, because
the status of the Process might change concurrently
with the execution of some code that tries to manip-
ulate it. Thus, in MS, the user-level is more likely
to see a consistent view of the ready queue, but still
is not guaranteed one. This reflects an unfortunate
appearance within the Smalltalk- system of a lack
of concern about concurrency which could affect even
a uniprocessor system.

One reason that the ProcessorScheduler is the
source of so many problems is that the Smalltalk-
80 virtual image and the interpreter are closely in-
tertwined at this point. The basic Process primi-
tives manipulate the ProcessorScheduler, the in-
terpreter must manipulate it asynchronously (in re-
sponse to input events, for example), and it is com-
pletely exposed at the user level. While this makes
the Smalltalk- system one of the few systems in
which one can directly examine the ready queue, it
also makes it very likely that one will see an in-
consistent view of that queue. Unfortunately, some
Smalltalk- code actually manipulates the ready
queue directly. A revised implementation of the Pro-
cessorScheduler should take concurrency into ac-
count and eliminate user-level manipulation of the
ready queue. In this case, some of Smalltalk’s flexi-
bility must be sacrificed for safety.

4 Preliminary Results

We have used a subset of the standard Smalltalk-
benchmarks [14], the “macro” benchmarks, in eval-

uating MS. These benchmarks measure the perfor-
mance of a number of typical user activities, such as
compiling code or searching for definitions or uses of
a particular message selector.

Two versions of the interpreter are represented in
the measurements. The version called “baseline BS”
represents the state of the interpreter after it was
modified to run on the Firefly under the V kernel but
before any multiprocessor support was added. This
serves as a reference point against which to measure
the overhead introduced by the multiprocessor sup-
port. The version called “MS” represents the inter-
preter with all of the multiprocessor support included.

The MS system was run in three states: with one
Smalltalk idle Process (in uniprocessor mode), with
four Smalltalk idle Processes, and with four busy
Smalltalk Processes. The idle Process used is the
trivial expression [true] whileTrue. It is impor-
tant to note that this expression is translated by the
compiler into bytecode which neither looks up mes-
sages nor allocates memory. Hence, the idle Process
represents the minimum possible interference with
other Processes. By contrast, the busy Process
is intended to represent the maximum possible in-
terference. Based on the “sweep hand” background
Process included in the Smalltalk- system, it in-
cludes message sends and object allocations, and also
contends for the display.

The preliminary results are graphicaily illustrated
in Figure 2, with the actual measurements in Ta-
ble 2.’ In Figure 2, the times for each benchmark
test have been normalized to the time for that test
on the baseline system, to ease comparison.

The current results are quite promising. The static
cost of the serialization, replication, and reorganiza-
tion of BS into MS is low: the architectural changes
cost less than 15% in the worst case, and we believe
that this figure can be reduced with fine tuning.

The cost of competitive multiprocessing in MS is
moderate. With only trivial competition, an addi-
tional 30% of overhead appears in the worst case.
This is more than we would like, but it may be pos-
sible to reduce it. Non-trivial competition drives the
total overhead up to 65% in the worst case, about 40%
on average. Our challenge is to identify the sources
of this overhead and reduce or eliminate them. Al-
though our analysis is not complete, we suspect that
a significant amount of the overhead is due to con-
tention in storage allocation, in which case replica-
tion of the new-object space should have significant

‘Due to non-determinism in the system, the benchmark

times arc somewhat variable-variations in the same test of
as much as 3% were noted, so differences of 3% or less should
be discounted.

274

Figure 2: Preliminary overhead measurements-normalized

1.2

iis 1 ‘S
aI
.gI 0.8
l-c!

2
0.6

0.4

Overhead
v-_m-_--.

Baseline

0.2

0
find all R/W print find ali compile decompile create print

calls class org class def imp1 met hod class insp. class hier
view

m Baseline BS m MS m MS with four idle 0 MS with four busy

Table 2: Preliminary performance results

read and print print find all create compile de-
write class class class find all imple- inspector dummy compile

State organization definition hierarchy calls mentors view method class
Baseline BS on multiprocessor 14.3 8.1 10.0 26 8.2 6.1 22 12.7
MS on multiprocessor 15.6 8.6 11.4 27 8.9 6.7 25 14.1

MS with four idle Processes 16.3 8.8 14.3 27 9.0 7.4 27 16.1
MS with four busy Processes 18.4 11.1 16.4 33 11.2 10.0 31 18.2

All times in seconds, from standard benchmarks
Differences of less than 3% are not significant

benefits.

5 Conclusions

We have adapted an object-oriented programming en-
vironment that was originally designed to run on a
uniprocessor to a shared-memory multiprocessor. We
found that the task was less difficult than one might
anticipate, for three reasons:

1. A small, flexible operating system, the V System,
which provided support for multiple processes
within a single address space and allowed inex-
pensive synchronization and communication.

2. A set of constraints which simplified the prob-
lem by minimizing changes to the programming
language.

3. A small set of strategies--serialization, replica-
tion, and reorganization-which were surpris-

Table 3: Applications of the three strategies

Serialization 1 Replication 1 Reorganization

allocation interpretation active process
garbage collection method caches
entry tables free contexts
scheduling

ingly general in their application, as summarized
in Table 3.

The performance of the resulting system is adequate,
and we believe that it can be improved without in-
troducing any new strategies, although we have seen
that the choice of which strategy to apply in a psr-
titular case can be very important. We also believe
that these strategies can be successfully applied to
other attempts to adapt uniprocessor programming

275

systems to multiprocessors, given appropriate sup-
port from the operating system.

Note that a different set of constraints could well
have a significant impact on the behavior of such a
system. Our future plans include gathering some data
on the effects of such constraints in an attempt to
characterize their influence.

6 Future Work

Our most immediate goals are to analyze the over-
head in the current version of MS and to eliminate
as much of it as possible, since the overhead in the
present version, while acceptable, is still high. Sub-
sequently, we expect to report on our experiences
in using parallelism in MS, perhaps including some
comparisons of various concurrent programming ap-
proaches. Finally, we plan to add sufficient instru-
mentation to MS to gather data about how differ-
ent concurrent programming paradigms affect mem-
ory reference patterns and contention for resources,
and how architectural constraints such as the choice
of shared or non-shared memory influence the system.

7 Acknowledgements

This work would not have been possible without
equipment and software supplied by Digital Equip-
ment Corporation, Sun Microsystems, Inc. and Parc-
Place Systems. The work was also supported by
National Science Foundation grant number CCR-
8657631, and by grants from Apple Computer, IBM,
NCR, and Texas Instruments. Special thanks are
due to David Cheriton and the Distributed Systems
Group for their work on the V System and especially
to Kieran Harty for making the V kernel run on the
Firefly.

References

[l] Khayri Abdel-Hamid Mohamed Ali. Object-
Oriented Storage Management and Garbage Col-
lection in Distributed Processing Systems. PhD
thesis, Royal Institute of Technology, Stockholm,
Sweden, December 1984. Published as TRITA-
CS-8406.

[2] Brian M. Barry, John R. Altoft, D. A. Thomas,
and Mike Wilson. Using objects to design and
build RADAR ESM systems. In OOPSLA ‘87
Conference Proceedings, pages 192-203, Associ-
ation for Computing Machinery, October 1987.

[3] John Bennett. Distributed Smalitalh: Inheri-
tance and Reactiveness in Distributed Systems.
PhD thesis, University of Washington, 1987. In
preparation.

[4] John K. Bennett. The design and implementa-
tion of Distributed Smalltalk. In OOPSLA ‘87
Conference Proceedings, pages 318-330, Associ-
ation for Computing Machinery, October 1987.

[5] David R. Cheriton. The V kernel: a software
base for distributed systems. IEEE Software,
l(Z), April 1984.

[6] David R. Cheriton, Gert A. Slavenburg, and
Patrick D. Boyle. Software-controlled caches in
the VMP multiprocessor. In Proceedings of the
13th Annual International Symposium on Com-
puter Architecture, pages 366-374, June 1986.

[7] E. W. Dijk t s ra, Leslie Lamport, A. J. Martin,
C. S. Scholten, and E. F. M. Steffens. On-the-
fly garbage collection: an exercise in coopera-
tion. Communications of the ACM, 21(11):966-
975, 1978.

[8] Adele Goldberg and David Robson. Smalltalk-
80: The Language and its Implementation.
Addison-Wesley, 1983.

[9] Carl Hewitt. The Apiary network architec-
ture for knowledgeable systems. In Conference
Record of the 1980 LISP Conference, pages 107-
117, August 1980.

[IO] Carl Hewitt and Henry Lieberman. A real-time
garbage collector based on the lifetimes of ob-
jects. Communications of the ACM, 26(6):419-
429, June 1983.

[ll] Hill, et al. SPUR: A VLSI Multiprocessor Work-
station. Technical Report UCB/CSD 86/273,
University of California, Berkeley, 1985.

[12] H. T. Kung and S. W. Song. An Eficient Par-
allel Garbage Collection System and its Correct-
ness Proof. Technical Report, Carnegie-Mellon
University, September 1977.

[13] Leslie Lamport. Garbage collection with mul-
tiple processes: an exercise in parallelism. In
Philip H. Enslow Jr., editor, Proceedings of the
1976 International Conference on PaTallel Pro-
cessing, pages 50-54, Computer Society Press of
the IEEE, August 1976.

276

[14] Kim McCall. The Smalltalk- benchmarks. In
Glenn Krasner, editor, Smalltalk-80: Bits of His-
tory, WOT& of Advice, chapter 9, pages 153-173,
Addison-Wesley, 1983.

Guy L. Steele Jr. Multiprocessing compactify-
ing garbage collection. Communications of the
ACM, 18(9):495-508, September 1975.

161 Daniel C. Swinehart, Polle T. Zellweger,
Richard 3. Beach, and Robert B. Hagmann. A
structural view of the Cedar programming en-
vironment . A CM Tmnsactions on Programming
Languages and Systems, 8(4):419-490, October
1986.

[I7 Charles P. Thacker and Lawrence C. Stewart.
Firefly: a multiprocessor workstation. In Pro-
ceedings of the Second International Conference
on Architectural Support GOT Programming Lan-
guages and Operating Systems (ASPLOS II),

pages 164-172, Computer Society Press of the
IEEE, October 1987.

[18] David A. Thomas, Wilf R. LaLonde, and John R.
Pugh. A ctra-A Multitasking/Multiprocessing
Smalltalk. Technical Report SCS-TR-92, Car-
leton University, May 1986.

[l 91 David Ungar. Generation scavenging: a non-
disruptive high performance storage reclama-
tion algorithm. In Softzoare Engineering Sympo-

sium on Practical Software Development Envi-
ronments, pages 157-167, Pittsburgh, PA, April
1984.

[20] David M.U g n ar and David A. Patterson. Berke-
ley Smalltalk: Who knows where the time goes?
In Glenn Krasner, editor, Smalltalk-80: Bits of

History, Words ofAdvice, chapter 11, pages 189-
206, Addison-Wesley, 1983.

[21] Stephen C. Vestal. Garbage Collection: An Ez-
ercise in Distributed, Fault- Tolerant Program-

ming. PhD thesis, University of Washington,
January 1987. Published as Technical Report
87-01-03.

[22] Zorn, et al. SPUR Lisp: Design and Imple-
mentation. Technical Report UCB/CSD 87/373,
University of California, Berkeley, 1987.

277

