
Incremental Evaluation for a General Class of Circular Attribute Grammars

Janet A. Walz
Cornell University (in absentia)

Ithaca, NY 14853

Gregory F. Johnson
University of Maryland

College Park, MD 20742

1. Introduction.

The strengths of attribute grammars as a basis for

programming environments are well known.

Several environment research projects rely on

attribute grammars to support incremental seman-

tic analysis ([ReT84], [FJM83], [BaS86]). Attribute

grammars provide a high-level, declarative style for

describing the static semantics of programming

languages. Further, such descriptions are amenable

to automated analysis and the production of

programming environments that incrementally

perform various semantic analyses of programs.

Such automatically generated environments have

several desirable properties; even though the

writer of an attribute grammar need not be

concerned with editor-time, dynamic issues such as

order of attribute evaluation, an editor generator

can produce environments that incrementally re-

evaluate attribute values in an optimal fashion

after user changes to the program ([RTD83]).

Attribute grammars have traditionally been

required to be noncircular; that is, no parse tree

derivable from the associated context-free gram-

mar is allowed to give rise to cyclical or circular

functional dependencies among attributes. In fact.,

This work was partially supported by the Air Force Office of

Sclenttfic Research.

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage.

the ACM copyrIght notice and the title of the publication and its date appear.

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy othenvise. or to republish. requires a fee and/

or specitic perm~ssmn.

0 I988 ACM O-8979 I -269- I /88/0006/0209 $1.50

Language Design and Implementation
Atlanta, Georgia, June 22-24, 1988

the main result of the seminal paper on attribute

grammars, [Knu68], is an algorithm for testing

attribute grammars for noncircutarity. However,

several researchers have discovered applications in

which relaxation of the requirement of non.-

circularity has given rise to natural, elegant

solutions. Among these applications are instruction

selection for code generation ([Ske78]), control and

data flow analyses ([Far86)), and VLSI design

problems ([JoS86]). Attention has recently been

given to incremental attribute evaluation in the

presence of circular functional dependencies in

order to make it possible for programming

environments to be based on such circular attribute

grammars. Results obtained previously have

imposed various restrictions such as monotonicity

of evaluation functions and domains that are

lattices of finite height ([JoS86]) in order to assure

termination of the evaluation process. However,

there are some important classes of functions for

which termination is not assured, such as inter-

preters. The work described herein is motivated by

a desire to obtain optimal or near optimal

incremental re-evaluation behavior for this

important category of problems.

If a user is manipulating a fairly large or

computationally expensive program and asks for it

to be executed by an interpreter in the

environment, then subsequently modifies it and

asks for an interpretation of the slightly modified

program, the program should be re-interpreted in a

minimal way, preserving as much information as

possible from the previous execution, rather than

209

being re-interpreted from the beginning. This

approach contrasts, for instance, with the tech-

nique of using a noncircular attribute grammar to

produce code that is then interpreted or directly

~ executed; in that technique, code is incrementally

kept in agreement with the user’s program, but

interpretation or execution always starts from the

beginning rather than making use of the results of

previous interpretations. In another related

approach [BMS87], interpreters and debuggers are

automatically generated from denotational des-

criptions of programming language semantics, but

subsequent re-interpretations of a possibly slightly

modified programs again result in re-execution

from the beginning. The new approach described

here requires use of stores as attributes; since there

may be several distinct store-valued attributes in a

parse tree, a form of version management aids

efficiency.

Our approach provides a general, rigorous,

generator-based framework which addresses many

of the same issues as the hand-coded system of

[KaW87]. This approach gives rise to a very

appealing VisiCalc-like style of programming, in

which every program modification causes fast

update of the contents of input/output windows

that show the result of program execution on

sample inputs. Our implementation was built on

the POE system [FJM83], an attribute grammar

based programming environment. The addition of

run-time semantics via circular attribute grammars

permits automatically generated environments to

be fairly complete, in that incremental static

semantic checking and fast incremental execution

are now available within a single framework.

The approach we employ is based on a new

category of attribute grammars called gated

attribute grammars. In a gated attribute grammar,

every cycle in an attribute dependency graph must

have a gate attribute that specifies the location in

the cycle at which evaluation is to start. To evaluate

the attributes in a tree, one temporarily views

strongly connected components as single nodes and

evaluates the nodes of the collapsed graph in

topological order. Evaluation of a strongly con-

nected component involves an inductive appli-

cation of this scheme: one removes incoming arcs

to the gate attribute of the outer XC to obtain an

acyclic graph, identifies nested strongly connected

components, and considers these SCCs to be

individual nodes. The evaluation of this graph then

proceeds in accordance with a topological ordering

on its nodes.

The distinguishing characteristic of a gate attribute

is that it has two evaluation functions. The first

evaluation function has as inputs only attributes

outside the gate attribute’s SCC and is used to

provide an initial value to the gate. The second

evaluation function depends on attributes in the

SCC, and is used to obtain the succession of

subsequent gate values. A boolean valued pseudo-

attribute named start is associated with a gate

attribute to determine which of the gate’s

evaluation functions should be invoked when it

needs to be evaluated. Evaluation of the SCC is

complete when (and if) it reaches a fixed point;

that is, when every attribute in the SCC contains a

value that is the same as the result produced by its

evaluation function when it is applied to the values

of the attribute’s predecessors.

As with [J0586], incremental evaluation at the

outermost level can be accomplished using results

from [RTD83] and subsequent refinements. A

major difference, however, arises when an input to

a strongly connected component “node” changes

value. We do not merely want to schedule the

attribute that is the successor of the changed

attribute for re-evaluation, since that node might

be in the middle of the SCC. Rather, we also

schedule the gate of the SCC for re-evaluation,

210

since that is the attribute at which evaluation of the

XC is supposed to start. At evaluator time we

employ nonlocal productions ([JoF85], [HOOFS],

[RMT86]) to attach inputs of an SCC to the start

attribute of the SCC. The purpose of these con-

nections is to assert that the start attribute of the

SCC is an evaluation-time successor of each input to

the SCC. The writer of an attribute grammar

designates certain attributes as gates and gives

them two evaluation functions. The whole tech-

nique results, we believe, in an extended attribute

grammar notation applicable to a large and

important class of problems that are most naturally

expressed using circular attribute grammars, and

from which efficient programming environments

can be automatically created.

In the following sections we define the class of

gated attribute grammars and the notion of gated

strongly connected components; this latter concept

is critical to the approach presented herein. We

describe the initial and incremental evaluation

algorithms for gated attribute grammars; the

approach is, we believe, quite general, and would

be readily implementable in any of a variety of

attribute grammar based editor and compiler

generating tools.

2. Circular Attribute Grammars.

An attribute grammar is a context-free grammar in

which each symbol may have associated attributes

and each production may have associated functions

which define certain attributes of symbols in the

production in terms of others. An attributed parse

tree is a parse tree of the CFG in which each

instance of a grammar symbol has instances of the

attributes associated with that symbol, and the

attribute instances are connected into a graph by

the functional dependency relations imposed by

the qroduction instances.

Traditionally, work on attribute grammars has

focused on those grammars for which every pos-

sible attribute dependency graph is acyclic. Under

this condition, a single traversal, in topological

order, of the dependency graph can consistently

attribute the entire tree. Each attribute’s defining

function will be evaluated exactly once in this

traversal, guaranteeing that the attribution process

will terminate, as long as each defining function

itself terminates.

Global topological information for ordering attri-

bute evaluation can be delivered to each instance

of a grammar symbol by superior and inferior

characteristic graphs. An inferior characteristic

graph shows the projection of transitive depen-

dencies from the portion of the parse tree below

the symbol; a superior characteristic graph shows

the projection of transitive dependencies from the

remainder of the tree. These characteristic graphs,

combined with the local dependencies imposed by

production instances, allow local evaluation to

proceed in accordance with global topological

order.

Such characteristic graphs also allow optimal

incremental updating after some portion of the

parse tree has been changed. When superior

characteristic graphs are kept for symbol instances

between the cursor position, which is the point of

change, and the root of the parse tree, and inferior

characteristic graphs are kept for all other

instances, [RTD83] show how updating after a

subtree replacement can be accomplished in

O(IAFFECTEDI), where AFFECTED is defined as the

set of attributes whose values after updating

quiesces differ from their values before the editing

change. If an attribute grammar is partitionable

(the class of ordered attribute grammars being a

polynomially-recognizable subset of the partition-

able attribute grammars [KasSO]), then the above

optimality results are obtainable without the

211

expense of maintaining characteristic graphs at

evaluation time.

More recently, several people have done work

relaxing the total ban on cycles in the attribute

dependency graph. [Ske78] was one of the first

researchers to explore this area. [Jo5861 al low

arbitrary dependency graphs, but restrict the

defining functions for attributes that may appear in

strongly connected components of a dependency

graph. These functions are required to be

monotonic and to take values from a lattice of

finite height. By treating each maximal strongly

connected component as an attribute in a

collapsed graph for SCC scheduling, they maintain a

similar worst-case incremental update time,

O(hklAFFECTEDSCCI), where h is the height of the

highest lattice and k is the largest number of nodes

in an affected SCC. They also show that the local

portion of the collapsed dependency graph can be

constructed from the locally available characteristic

graphs and production dependencies.

[Far861 also allows arbitrary dependency graphs

and restricts the defining functions in strongly

connected components to be monotonic, but

instead of requiring these functions to operate on

finite-height lattices, he requires them to satisfy an

ascending chain condition. This condition, that for

every ascending chain SO < s1 < . . . < sk some

f(sk) = f(sk + I), also guarantees that evaluation of

each individual KC will terminate, and thus that

the entire evaluation process will terminate.

While there are application areas whose natural

semantic functions satisfy one of these conditions,

there are also some natural functions that are not

so well-behaved. An example of such functions

arises when we try to use attribute evaluation to

model execution of a while loop. Adding an

indefinitely looping construct to model while exe-

cution will give the attribute evaluation mechanism

full partial recursive power to apply to other, less

easily visualized problems. We consider the small

grammar found in Figure 2.1 to be a natural way to

express interpretation via attribute evaluation. (A

value of not-reached for a state means that the

corresponding statement would not be executed if

the program were run.)

start:: = S
Sinitst = Aname.
Startfmalst = Sfinalst

- . . > . . = id t exp
expstate = S.initst
S.finalst = if S.initst = not-reached then

not-reached
else

S.initst[id.name+exp.val]
exp:: = id

exp.val = lookup(id.name,exp.state)

exp:: = int
exp.val = int.val

exp1 :: = ev2 OP ew3
expastate = expr.state
expgstate = expl.state
expl.val = exps.val op expg.val

51 :: = S2;S3
&.initst = Sr.initst
Sg.initst = S2.finalst
Sl.finalst = Ss.finalst

5, ::= while exp do S2
while.gate = if while.start then

(l,Sl.initst) (initial value)
else

(O,S2,finalst) (subsequently)
exp.state = second(while.gate)
Sa.initst = if first(while.gate) = 1 and

exp.val = 0 then
not-reached

else if exp.val t 0 then
second(while.gate)

else
Sa.initst

Sl.finalst = if exp.val= 0 then
S2Analst

else
not-reached

Figure 2.1. A gated attribute grammar.

212

If the while production is ignored, this attribute

grammar is acyclic. With the while production, a

cycle is formed by the while.gate, B.state, B.val,

&.initst, and Sn.finalst attributes, as shown in

Figure 2.2, where dashed links indicate indirect

dependencies (The while.start attribute will be

discussed later.)

Sl.initst Sl.finalst

whi1e.g B.st B.val Sa.initst Sz.finalst

‘d ‘d
Figure 2.2. while dependencies.

For the class of problems and algorithms considered

here, it is appropriate to use the standard total

ordering on the integers, rather than creating a flat

cpo out of the integers. (Circular attribute gram-

mars give rise to sets of simultaneous equations

over the integers, and, as expanded upon in the

next section, solutions of such systems with respect

to the flat cpo woutd give the value I to many of

the variables.) Since there is no reason, under this

ordering, to expect that the body of the while loop

represents a monotonic function from initial states

to final states, the previous work on circular

attribute grammars can not define the desired final

state of this loop. Execution of this loop, however,

would result in a well-defined final state, provided

that the loop terminates. In the next section, we

extend the usual attribute evaluation algorithm in

such a way that the attribution final state coincides

with the execution final state.

This extended attribution algorithm does not

require an attribute grammar to be noncircular, but

it still requires some order in the attribute

grammar. Every nontrivial dependency-graph cycle

that can be generated by such an attribute

grammar must contain at least one attribute

designated as a gate. (Cycles such as the one for

&.initst in Figure 2.1 with only one node in the

cycle, corresponding to an attribute depending on

its prior value, are considered trivial.) A gate

attribute represents the point at which attribution

of a strongly-connected component in the depen-

dency graph should begin. Each gate attribute has

an automatically associated start attribute which

will indicate when the gate attribute should take its

value from outside its SCC rather than inside. In the

example, while.gate is the only designated gate and

while.start is its start attribute.

A gate attribute provides the means of controlling

the evaluation of attributes within a strongly

connected component. If all functions in the SCC

are monotonic and all attributes are initially I,

starting propagation from any attribute in the SCC

will yield the least fixed point of the SCC; if some

functions are nonmonotonic, starting propagation

from different attributes can yield different fixed

points, so we have defined the desired fixed point

to be the one where propagation starts at the gate

attribute. By guaranteeing that each SCC has a

gate attribute, we guarantee that each SCC has a

well-defined fixed point.

Given an attribute grammar with designated gate

attributes, the algorithms previously used to detect

circularities can now be used with only minor modi-

fications to detect circularities that do not pass

through gate attributes. If no such circularities can

be found, the attribute grammar is called a gated

213

attribute grammar and can be evaluated with our

techniques.

Each gate in a dependency graph defines a gated

KC, which can be considered as the region of the

graph under the control of the gate. Those attri-

butes used to calculate the gate value when its start

is true are outside the gate’s control, so edges from

them to the gate are not used in determining the

extent of the GSCC. Any node that remains strongly

connected to the gate without these edges in the

graph is in the gate’s GSCC.

As a consequence of this definition, every nontrivial

maximal SCC in a dependency graph of a gated

attribute grammar is a GSCC and, for any gate

which is not nested inside another’s GSCC, the GSCC

is the maximal SCC containing that gate. w

The sub-GSCC for an interior gate node consists of

those nodes in the SCC that are strongly connected

to the interior gate after removing arcs to this gate

from its start node and whichever other nodes

contribute to the gate value when its start is true.

This sub-GSCC is the same as the maximal SCC for

the interior gate node would be if there were not

an outer gate. The portion of a GSCC which is not

in any sub-GSCC is called its core.

3. Initial Evaluation.

Initial evaluation starts with an attributed parse

tree where no attributes are guaranteed to have

consistent values. Therefore, every attribute needs

to be evaluated, those in nontrivial SCCs possibly

more than once, for the tree to become consistently

attributed.

A parse tree is attributed by repeatedly selecting a

strongly connected component (potentially a single

attribute) of its dependency graph and evaluating

the attributes in that SCC until they reach final

consistent values. SCCs can be selected in any way

consistent with a topological ordering of the

collapsed dependency graph, where each maximal

SCC has been reduced to a single node. Thus, if

there are no nontrivial SCCs in the graph, our

evaluation process proceeds in the same way as the

usual optimal evaluation process.

Before evaluation of the attributes mentioned by

the grammar writer begins, certain additional links

are added to the dependency graph by nonlocal

productions. These additional links, indicated by

dotted lines in Figure 3.1, make each attribute

(outside a GSCC) that is a predecessor of a node in

the GSCC also a predecessor of the start attribute of

that GSCC. These links allow the evaluator to

always begin evaluation of a GSCC at its gate

attribute. The evaluation function for a start

attribute returns true, indicating that the gate

attribute should take its value from outside the

GSCC to begin GSCC evaluation, iff any of its

predecessors from these additional links were

newly set or changed value since the gate attribute

last took a value from outside. Since the only

successor of a start attribute is its gate attribute,

adding these additional links does not change the

SCC composition of the dependency graph.

start

Figure 3.1. Adding non-local links.

These links are useful primarily for incremental re-

evaluation of a GSCC, but even during initial evalu-

ation sub-GSCCs may require multiple evaluations,

214

and any GSCC may require multiple passes to reach

a fixed point. In practice, subsequent passes and

evaluations of a GSCC would be handled by the

more efficient incremental evaluation of the next

section, but for the moment we consider a simpli-

fied algorithm where all the attributes of a GSCC

are evaluated on each pass.

Since there may be nonmonotonic functions inside

a GSCC, attribute evaluation order influences

correctness as well as efficiency. An example where

differing evaluation order results in different fixed

points for the GSCC is shown in Figure 3.2. The

attributes are shown with consistent values that

could be left over from an earlier evaluation of the

GSCC. Now assume that the GSCC must be evalu-

ated again, and that the gate g gets the new initial

value 20. If the GSCC is evaluated in the order

acbgabcg, the fixed point (a:S, b:-5, c: 10, g:lS) is

reached. If it is evaluated in the order abcg, the

fixed point (a: 10, b:-10, c:20, g:20) is reached.

This example also justifies our choice of ordering

for the integers. Using a flat cpo, we would find

that the least fixed point of this GSCC is

(a:I,b:I,c:l,g:I). While this is a solution to the

set of simultaneous equations representing the

GSCC, we believe the writer of the attribute qram-

a:0

a=g-10 c=a-b
b= 10-g g = (c + 20) /2

Figure 3.2. A nonmonotonic GSCC.

mar would prefer the integer solution (a:lO,

b:-lO,c:20,g:20). Similarly, if the cpo for states is

constructed from the flat cpo for the integers in

order to guarantee monotonicity of functions, the

least fixed point of a while loop would have each

attribute in the SCC at its bottom value, meaning

that the final state of every while loop would have

no identifiers defined.

We define the correct evaluation order within a

GSCC by a topological ordering on the GSCC graph

with edges leading to the gate removed (and any

sub-GSCCs collapsed to single nodes). In other

words, an attribute in the interior of a GSCC cannot

be evaluated unless all attributes on paths from the

gate to it are consistent with the present gate

value. There are cases, such as Figure 3.3, where

such an ordering cannot be obtained due to a cycle

interior to a GSCC, but such cycles are ruled out in

gated attribute grammars by the requirement that

each nontrivial cycle contain a gate attribute.

gate

non-gate

pJ
non-gate

I

Figure 3.3. lnevaluable GSCC.

A nontrivial GSCC is evaluated by alternating

between evaluating the gate and evaluating the

other nodes of the GSCC in internal topological

order, with possible recursive evaluations of sub-

GSCCs, until one pass is made over the GSCC with no

changes in attribute values.

Even with monotonic functions, [Jo%361 for

efficiency restrict evaluation order to agree with a

depth-first ordering starting at a defined set of SCC

215

attributes. For the first pass over the SCC, the set

consists of those SCC attributes whose predecessors

outside the SCC have changed. On succeeding

passes, the set consists of the successors of leaves of

the depth-first spanning tree from the previous

pass Since all their functions are monotonic, the

evaluation ordering from these spanning trees

could be replaced by one derived from a

topological ordering on the SCC with incoming arcs

to the defined set temporarily deleted. With such a

replacement, the defined set for each pass would

be a subset of that for the previous pass, with nodes

being dropped from the set if their predecessors did

not change on the previous pass. Our algorithm

starts with only the gate attribute in the defined

set, and SCC evaluation terminates when the gate’s

predecessors in the SCC do not change on a pass.

4. Incremental Evaluation.

At the beginning of incremental evaluation, a parse

tree is consistently attributed except for a small

number of attributes corresponding to changes

that have just been made in the parse tree. The

strongly connected components containing these

attributes are placed in the set NeedSCCEval, which

throughout incremental evaluation contains those

SCCs known to need evaluation. Another set,

NeedEval(S), which contains those attributes of the

GSCC S that are known to need evaluation, is kept

for each GSCC (i.e. nontrivial SCC) in NeedSCCEval.

While NeedSCCEval is not empty, an SCC is removed

and evaluated. SCCs are selected for evaluation in

accordance with the topological order imposed by

the collapsed dependency graph.

A trivial SCC is evaluated by evaluating its node

(repeatedly if the SCC is a trivial cycle) and adding

its SCC-successors to NeedSCCEval if the value of the

node changed. A nontrivial SCC is evaluated in the

same spirit, as shown in Figure 4.1. Starting from

the gate, changes are propagated around the GSCC

for each node n in S with a successor outside 5,
save the present value of n

evaluate gate(S), setting start(S) false

if gate(S) changed, add successors of gate(S) in S
to NeedEval(S)

tihile NeedEval(S) n core(S) is not empty
select n from NeedEval(S) rl core(S) in

accordance with internal topological order
if n is a start node,

evaluate n
if n is true, recursively evaluate the associated

su b-GSCC, T
add successors of T in S-T to NeedEval(S) ’

else
evaluate n
if n changed,

add successors of n in S to NeedEval(S)

for each node n in S with a successor outside 5,
if its present value differs from its saved value,

add its SCC-successors to NeedSCCEval
add its successors to NeedEval sets

Figure 4.1. Evaluating the non-trivial SCC 5.

in internal topological order until attributes settle

to consistent values. Then SCC-successors are added

to NeedSCCEval if their predecessor attributes have

values different from before SCC evaluation.

Evaluating a sub-GSCC is identical to evaluating a

GSCC, except that old attribute values are not saved

and checked to add SCC-successors, since a sub-

GSCC cannot know if its attribute values are final

when they settle to consistent values. The sub-

GSCC may be re-evaluated, changing its attribute

values further, in the process of evaluating the

GSCC as a whole.

Whether evaluating a GSCC or a sub-GSCC, it

suffices to evaluate attributes that are in the core

and are known to need evaluation. If an attribute

in a further nested GSCC needs evaluation, so does

the start attribute of that nested GSCC, which is in

the core of the next outer GSCC. Evaluating that

start attribute will trigger evaluation of the nested

GSCC, including the needy attribute.

216

Also note that the NeedEval set of the maximal

GSCC can be used by the sub-GSCC evaluation,

which will look only for attributes in the core of the

sub-GSCC. Thus it is not necessary to worry about

multiple NeedEval sets for different parts of the

same maximal SCC.

5. Avoiding Re-evaluation of Loops.

Often when an input to a loop changes, it is

necessary to entirely re-evaluate the loop. Where

possible, however, we would like to avoid this

expense. The basic idea, that of identifying por-

tions of a loop that do not affect the computation

of the loop in such a way as to require an entire re-

evaluation, is reminiscent of code hoisting in

optimization.

This discussion is necessarily specific to our example

of an attribute grammar based interpreter in which

attributes containing states are passed around the

, tree.

.Just as in standard incremental evaluation, we hope

that at some point short of re-evaluating all the

attributes in the tree either attributes stop

changing value or they change value in such a way

as not to require further re-evaluation. To make

this determination it is useful to define input and

output variables of a loop. An input variable is one

whose value is queried somewhere inside the loop,

and an output variable is one whose value is

modified somewhere inside the loop. Variables

may of course be both input and output variables

for a given loop. For the example language of this

paper, the input variables are those that appear on

the right-hand side of an instance of the production

exp :: = id and the output variables are those that

appear as left-hand sides of assignment statements.

We extend the concept of the state value not-

reached to include an extra pair of integers in each

state attribute. These integers will record the

number of the loop iteration at which the state is

first evaluated and the’number of the loop

iteration at which it is last evaluated.

During change propagation, say we find that a

predecessor of a state-valued attribute in a GSCC

corresponding to a loop has changed. We evaluate

the state inside the GSCC and note which variables

inside it change value. We consider each changed

variable in turn. The first iteration in the loop

during which the state was evaluated represents

the first time that the variable being considered

would actually receive the new value. If that is

after the last use (if any) of the variable in the loop,

then we do not need to re-evaluate the loop; we

need only update those states evaluated after the

given one to reflect the new “final value” of the

variable. (Variables that are independent of the

loop are handled similarly.)

Changing the “clean-up” code in a loop such as that

in Figure 5.1 intuitively should not require re-

evaluation of the entire loop, and the above

relatively inexpensive technique formalizes and

captures such situations.
i
while not done do

{main loop body}
if condition then

{ clean-up code} ;
done : = true

else
(continue iterating }

fi
od

Figure 5.1. Typical loop.

6. Nonlocal Predecessors of Start Attributes.

It is necessary to create links from predecessors of a

GSCC to the start attribute of that GSCC. These

links are used to make the start attribute true and

schedule the GSCC for re-evaluation whenever an

input to the GSCC changes value in such a way as to

require a full re-evaluation of the GSCC. We use

superior and inferior characteristic graphs as

necessary to find attributes that are in a GSCC and

217

identify predecessors that are not in the GSCC. The

first step in creating the needed links is to associate

a pointer to the appropriate gate attribute with

each member of a GSCC. In the case of nested

GSCCs, each member gets a pointer to the gate of

the smallest containing GSCC. In this way, all

exterior gates can be found by following the chain

of gate pointers.

Start::= S
S.isgp = nil

5, ::= while exp do Sl
while.gategp = Sl.isgp
Sl.fsgp = Sl.isgp
Sz.isgp = @while.gate
exp.sgp = if exp.infchar = (state+val) then

@while.gate
else nil

5 = idcexp
S.fsgp = S.isgp
exp.sgp = if exp.infchar = (state+val) then

S.isg-p
else nil

51 ::= s2;s3
Sl.fsgp = Sl.isgp
Sa.isgp = S1.isg-p
S3.isg-p = Sl.isgp

exp :: = id
exp.valgp = exp.sgp

exp::= int
exp.valgp = exp.sgp

expl :: = exp2 OP ev3

exp2.w = if expa.infchar = (state+-val) then

em .sgP
else nil

w349 = if expg.infchar = (state+val) then

ewl .sgP
else nil

expl.valgp = expl.sgp

Figure 6.1. Added flow rules.

For our example grammar, we calculate gate

pointers by adding the evaluation functions in

Figure 6.1. (The notation @X.a indicates that a

pointer to attribute X.a is produced.) Statement

nonterminals have initial state and final state

attributes, and the associated gate pointer attri-

butes are abbreviated isgp and fsgp respectively. A

similar naming convention is used for gate pointers

associated with state and value attributes of

expression nonterminals and gate attributes for

while symbols.

Once we have the gate pointers, we can add the

necessary links. An attribute is a predecessor of a

GSCC if the gate pointer of a successor does not

appear in the chain of gate pointers from the

attribute (i.e., the successor is not in a containing

GSCC). Since the successor may be in several nested

GSCCs, a link is added from the predecessor

attribute to the start pseudo-attribute associated

with each gate pointer in the trace-back chain from

the successor until this trace-back chain joins the

one from the predecessor. Figure 6.2 shows a parse

tree with the links added after execution of this

first phase of attribute evaluation.

7. Conclusions.

Like [JoS86], we guarantee,that each maximal SCC

evaluated will be in AFFECTEDSCC and that no SCC

will be evaluated more than once in a single

incremental evaluation. However, due to the lack

of restriction on the functions within an SCC, we

cannot bound the number of attribute evaluations

required to evaluate a single SCC. To gain the

power to model execution of a while loop in

attributes, we are forced to accept that evaluation

of an SCC may not terminate if its corresponding

while loop diverges. (Evaluation of an SCC

representing a divergent while loop will in fact

terminate if the states in the while loop stop

changing, as in the loop while 1 do i t 2. In such a

case, any subsequent states in the program are

given the not-reached value.)

The recursive synth-function evaluator described in

[Far861 addresses evaluation process termination

problems in recursive attribute grammars by pulling

the evaluation of an SCC into a single function and

218

0

Start.finalst

l t

Sl.initst Sl.finalst

// 1 \

&.initst S2 .finalst S3.initst S3.finalst

idl.name expl.state expl.val whilestart whi1e.g B.st B.val &.initst Winalst \

expg.st expa.val exp3.st exps.val idg.name expd.state exp4.val

.
.

ida.name . . int2.val
+.

eXp&St eXpg.Val eXpg.St eXpg.Val

l .
l .

0.

t

id4.name int3.val

Figure 6.2. Dependency Graph for i cl0 ; while i > 0 do ici-1.

then pointing out that only a finite number of

function evaluations will be attempted. For his

finitely recursive attribute grammars, this trans-

formation does not generate partial evaluation

functions unless some of the SCC functions were

partial. (Most functions in traditional attribute

grammars are simple total functions, but there is no

way in general for an evaluator generator to

guarantee these functions will always terminate.)

However, for general circular attribute grammars

this transformation would not affect the actual

termination of the evaluation process, but would

merely move potential nontermination from the

attribute selection phase to the attribute evalu-

ation phase.

We have thus allowed partial functions to be

explicitly spread over the computation of the

attributes of a GSCC instead of restricted to the

computation of a single attribute. This choice

allows computation to be expressed via attribute

219

evaluation functions in whichever way seems most

convenient.

By forcing attribute evaluation to occur in

accordance with a topological ordering of the

dependency graph, we guarantee that attribute

evaluation will terminate if interpretation of the

corresponding program would terminate. In addi-

tion to allowing a GSCC to converge to the wrong

fixed point, evaluation out of topological order can

result in undesired nontermination. If a GSCC were

to be evaluated when some of its predecessors had

yet to reach their final values, the invalid combi-

nation of inputs might be such that the GSCC has no

reachable fixed point. Yet GSCC evaluation cannot

stop before it reaches a fixed point, for on valid

input the evaluation must continue until it

determines that the corresponding loop converges.

However, topological ordering for the sake of

efficiency will also guarantee that all GSCC inputs

are valid when the GSCC is evaluated.

To gain the ability to evaluate arbitrary functions in

dependency graph cycles, we have been forced to

accept one localized timing constraint on attribute

evaluation. A start attribute is required to know if

any of its predecessors have changed since the last

time its gate attribute took a value from outside

the GSCC. This constraint is met by setting the start

attribute false immediately after, but conceptually

at the same time as, taking a gate value from

outside the GSCC. Without some way of telling

whether GSCC evaluation is just beginning, a gate

cannot know which of its evaluation functions to

use. Using the internal evaluation function at the

beginning of GSCC evaluation may abruptly end

that evaluation if the gate is the only GSCC attri-

bute with modified predecessors; using the

external function in the midst of GSCC evaluation

again brings up the problem of possible divergence

due to invalid combinations of values. [JoS86] face

a somewhat similar problem in incrementally

evaluating SCCs with monotonic functions. They

must keep track of whether an attribute has been

evaluated in the current round of SCC traversal to

ensure that a left-over value does not cause SCC

evaluation to miss its new least fixed point.

With the use of an efficient representation, such as

may be found in [Hoo87], for aggregate attributes

like states that differ only slightly from one

another, the performance penalty for propagating

state information around a dependency graph may

be substantially reduced from that of a naive

implementation. It is our belief that any remaining

penalty is more than offset by the advantage of

being able to automatically start re-execution at

the point of change in a program.

References.

[BaS86]

[BMS87]

[Far861

[FJM83]

[Ho0861

Bahlke, R. and G. Snelting, “The PSG
System: From Formal Language Defini-
tions to Interactive Programming
Environments,” ACM Transactions on
Programming Languages and Systems
8(4), pp. 547-576 (October 1986).

Bahlke, Rolf, Bernhard Moritz, and
Gregor Snelting, “A Generator for
Language-Specific Debugging Systems,”
Proc. of the ACM SIGPLAN 87 Symposium
on Interpreters and Interpretive Tech-
niques, SIGPLAN Notices 22(7), pp. 92- 10 1
(June 1987).

Farrow, Rodney, “Automatic Generation
of Fixed-Point-Finding Evaluators for
Circular, but Well-Defined, Attribute
Grammars,” Proc. of the ACM SIGPLAN 86
Symposium on Compiler Construction,
SIGPLAN Notices 21(7), pp. 85-98 (July
1986).

Fischer, C.N., G.F. Johnson, J. Mauney, A.
Pal, D.L. Stock, “An Introduction to Editor
Allan POE,” Proc. of Softfair, A Con-
ference on Software Development Tools,
Techniques, and Alternatives (July 1983).

Hoover, Roger, “Dynamically Bypassing
Copy Rule Chains in Attribute Gram-
mars,” Proc. of the Thirteenth ACM
Symposium on Principles of Program-

220

[Ho0871

[JoF851

[JoS861

[KaW871

[Kas80]

[Knu681

[ReT841

[RMT861

[RTD83]

[Ske78]

ming Languages, pp. 14-25 (January
1986).

Hoover, Roger, incremental Graph Eva/u-
ation, Ph.D. thesis, TR 87-836, Cornell
University (May 1987).

Johnson, Gregory F. and C. N. Fischer, “A
Meta-Language and System for Nonlocal
Incremental Attribute Evaluation in
Language-Based Editors,” Proc. of the
Twelfth ACM Symposium on Principles of
Programming Languages, pp. 141- 15 1
(January 1985).

Jones, Larry G. and Janos Simon,
“Hierarchical VLSI Design Systems Based
on Attribute Grammars,” Proc. of the
Thirteenth ACM Symposium on Principles
of Programming Languages, pp. 58-69
(January 1986).

Karinthi, Raghu R. and Mark Weiser,
“Incremental Re-Execution of Programs,”
Proc. of the ACM SIGPLAN 87 Symposium
on Interpreters and Interpretive Tech-
niques, SIGPLAN Notices 22(7), pp. 38-44
(June 1987).

Kastens, Uwe, “Ordered Attribute
Grammars,“Acta lnformatica 13, pp- 229-
256.

Knuth, Donald E., “Semantics of Context-
free Languages,” Mathematical Systems
Theory 2(2), pp. 127-145 (June 1968).
Correction 5(l), pp. 95-96 (March 1971).

Reps, Thomas and Tim Teitelbaum, “The
Synthesizer Generator,” Proc. of the ACM
Software Engineering Symposium on
Practical Software Development Envi-
ronments, pp. 42-48 (April 1984).

Reps, Thomas, Carla Marceau, and Tim
Teitelbaum, “Remote Attribute Updating
for Language-Based Editors,” Proc. of the
Thirteenth ACM Symposium on Principles
of Programming Languages, pp. 1-13
(January 1986).

Reps, Thomas, Tim Teitelbaum, and Alan
Demers, “Incremental Context-
Dependent Analysis for Language-Based
Editors,” ACM Transactions on
Programming Languages and Systems
5(3), pp- 449-477 (July 1983).

Skedzeleski, Stephen K., Definition and
Use of Attribute Reevaluation in

Attributed Grammars, Ph.D. thesis,
University of Wisconsin (December
1978).

221

