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1. Introduction. 

The strengths of attribute grammars as a basis for 

programming environments are well known. 

Several environment research projects rely on 

attribute grammars to support incremental seman- 

tic analysis ([ReT84], [FJM83], [BaS86]). Attribute 

grammars provide a high-level, declarative style for 

describing the static semantics of programming 

languages. Further, such descriptions are amenable 

to automated analysis and the production of 

programming environments that incrementally 

perform various semantic analyses of programs. 

Such automatically generated environments have 

several desirable properties; even though the 

writer of an attribute grammar need not be 

concerned with editor-time, dynamic issues such as 

order of attribute evaluation, an editor generator 

can produce environments that incrementally re- 

evaluate attribute values in an optimal fashion 

after user changes to the program ([RTD83]). 

Attribute grammars have traditionally been 

required to be noncircular; that is, no parse tree 

derivable from the associated context-free gram- 

mar is allowed to give rise to cyclical or circular 

functional dependencies among attributes. In fact., 
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the main result of the seminal paper on attribute 

grammars, [Knu68], is an algorithm for testing 

attribute grammars for noncircutarity. However, 

several researchers have discovered applications in 

which relaxation of the requirement of non.- 

circularity has given rise to natural, elegant 

solutions. Among these applications are instruction 

selection for code generation ([Ske78]), control and 

data flow analyses ([Far86)), and VLSI design 

problems ([JoS86]). Attention has recently been 

given to incremental attribute evaluation in the 

presence of circular functional dependencies in 

order to make it possible for programming 

environments to be based on such circular attribute 

grammars. Results obtained previously have 

imposed various restrictions such as monotonicity 

of evaluation functions and domains that are 

lattices of finite height ([JoS86]) in order to assure 

termination of the evaluation process. However, 

there are some important classes of functions for 

which termination is not assured, such as inter- 

preters. The work described herein is motivated by 

a desire to obtain optimal or near optimal 

incremental re-evaluation behavior for this 

important category of problems. 

If a user is manipulating a fairly large or 

computationally expensive program and asks for it 

to be executed by an interpreter in the 

environment, then subsequently modifies it and 

asks for an interpretation of the slightly modified 

program, the program should be re-interpreted in a 

minimal way, preserving as much information as 

possible from the previous execution, rather than 
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being re-interpreted from the beginning. This 

approach contrasts, for instance, with the tech- 

nique of using a noncircular attribute grammar to 

produce code that is then interpreted or directly 

~ executed; in that technique, code is incrementally 

kept in agreement with the user’s program, but 

interpretation or execution always starts from the 

beginning rather than making use of the results of 

previous interpretations. In another related 

approach [BMS87], interpreters and debuggers are 

automatically generated from denotational des- 

criptions of programming language semantics, but 

subsequent re-interpretations of a possibly slightly 

modified programs again result in re-execution 

from the beginning. The new approach described 

here requires use of stores as attributes; since there 

may be several distinct store-valued attributes in a 

parse tree, a form of version management aids 

efficiency. 

Our approach provides a general, rigorous, 

generator-based framework which addresses many 

of the same issues as the hand-coded system of 

[KaW87]. This approach gives rise to a very 

appealing VisiCalc-like style of programming, in 

which every program modification causes fast 

update of the contents of input/output windows 

that show the result of program execution on 

sample inputs. Our implementation was built on 

the POE system [FJM83], an attribute grammar 

based programming environment. The addition of 

run-time semantics via circular attribute grammars 

permits automatically generated environments to 

be fairly complete, in that incremental static 

semantic checking and fast incremental execution 

are now available within a single framework. 

The approach we employ is based on a new 

category of attribute grammars called gated 

attribute grammars. In a gated attribute grammar, 

every cycle in an attribute dependency graph must 

have a gate attribute that specifies the location in 

the cycle at which evaluation is to start. To evaluate 

the attributes in a tree, one temporarily views 

strongly connected components as single nodes and 

evaluates the nodes of the collapsed graph in 

topological order. Evaluation of a strongly con- 

nected component involves an inductive appli- 

cation of this scheme: one removes incoming arcs 

to the gate attribute of the outer XC to obtain an 

acyclic graph, identifies nested strongly connected 

components, and considers these SCCs to be 

individual nodes. The evaluation of this graph then 

proceeds in accordance with a topological ordering 

on its nodes. 

The distinguishing characteristic of a gate attribute 

is that it has two evaluation functions. The first 

evaluation function has as inputs only attributes 

outside the gate attribute’s SCC and is used to 

provide an initial value to the gate. The second 

evaluation function depends on attributes in the 

SCC, and is used to obtain the succession of 

subsequent gate values. A boolean valued pseudo- 

attribute named start is associated with a gate 

attribute to determine which of the gate’s 

evaluation functions should be invoked when it 

needs to be evaluated. Evaluation of the SCC is 

complete when (and if) it reaches a fixed point; 

that is, when every attribute in the SCC contains a 

value that is the same as the result produced by its 

evaluation function when it is applied to the values 

of the attribute’s predecessors. 

As with [J0586], incremental evaluation at the 

outermost level can be accomplished using results 

from [RTD83] and subsequent refinements. A 

major difference, however, arises when an input to 

a strongly connected component “node” changes 

value. We do not merely want to schedule the 

attribute that is the successor of the changed 

attribute for re-evaluation, since that node might 

be in the middle of the SCC. Rather, we also 

schedule the gate of the SCC for re-evaluation, 
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since that is the attribute at which evaluation of the 

XC is supposed to start. At evaluator time we 

employ nonlocal productions ([JoF85], [HOOFS], 

[RMT86]) to attach inputs of an SCC to the start 

attribute of the SCC. The purpose of these con- 

nections is to assert that the start attribute of the 

SCC is an evaluation-time successor of each input to 

the SCC. The writer of an attribute grammar 

designates certain attributes as gates and gives 

them two evaluation functions. The whole tech- 

nique results, we believe, in an extended attribute 

grammar notation applicable to a large and 

important class of problems that are most naturally 

expressed using circular attribute grammars, and 

from which efficient programming environments 

can be automatically created. 

In the following sections we define the class of 

gated attribute grammars and the notion of gated 

strongly connected components; this latter concept 

is critical to the approach presented herein. We 

describe the initial and incremental evaluation 

algorithms for gated attribute grammars; the 

approach is, we believe, quite general, and would 

be readily implementable in any of a variety of 

attribute grammar based editor and compiler 

generating tools. 

2. Circular Attribute Grammars. 

An attribute grammar is a context-free grammar in 

which each symbol may have associated attributes 

and each production may have associated functions 

which define certain attributes of symbols in the 

production in terms of others. An attributed parse 

tree is a parse tree of the CFG in which each 

instance of a grammar symbol has instances of the 

attributes associated with that symbol, and the 

attribute instances are connected into a graph by 

the functional dependency relations imposed by 

the qroduction instances. 

Traditionally, work on attribute grammars has 

focused on those grammars for which every pos- 

sible attribute dependency graph is acyclic. Under 

this condition, a single traversal, in topological 

order, of the dependency graph can consistently 

attribute the entire tree. Each attribute’s defining 

function will be evaluated exactly once in this 

traversal, guaranteeing that the attribution process 

will terminate, as long as each defining function 

itself terminates. 

Global topological information for ordering attri- 

bute evaluation can be delivered to each instance 

of a grammar symbol by superior and inferior 

characteristic graphs. An inferior characteristic 

graph shows the projection of transitive depen- 

dencies from the portion of the parse tree below 

the symbol; a superior characteristic graph shows 

the projection of transitive dependencies from the 

remainder of the tree. These characteristic graphs, 

combined with the local dependencies imposed by 

production instances, allow local evaluation to 

proceed in accordance with global topological 

order. 

Such characteristic graphs also allow optimal 

incremental updating after some portion of the 

parse tree has been changed. When superior 

characteristic graphs are kept for symbol instances 

between the cursor position, which is the point of 

change, and the root of the parse tree, and inferior 

characteristic graphs are kept for all other 

instances, [RTD83] show how updating after a 

subtree replacement can be accomplished in 

O(IAFFECTEDI), where AFFECTED is defined as the 

set of attributes whose values after updating 

quiesces differ from their values before the editing 

change. If an attribute grammar is partitionable 

(the class of ordered attribute grammars being a 

polynomially-recognizable subset of the partition- 

able attribute grammars [KasSO]), then the above 

optimality results are obtainable without the 
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expense of maintaining characteristic graphs at 

evaluation time. 

More recently, several people have done work 

relaxing the total ban on cycles in the attribute 

dependency graph. [Ske78] was one of the first 

researchers to explore this area. [Jo5861 al low 

arbitrary dependency graphs, but restrict the 

defining functions for attributes that may appear in 

strongly connected components of a dependency 

graph. These functions are required to be 

monotonic and to take values from a lattice of 

finite height. By treating each maximal strongly 

connected component as an attribute in a 

collapsed graph for SCC scheduling, they maintain a 

similar worst-case incremental update time, 

O(hklAFFECTEDSCCI), where h is the height of the 

highest lattice and k is the largest number of nodes 

in an affected SCC. They also show that the local 

portion of the collapsed dependency graph can be 

constructed from the locally available characteristic 

graphs and production dependencies. 

[Far861 also allows arbitrary dependency graphs 

and restricts the defining functions in strongly 

connected components to be monotonic, but 

instead of requiring these functions to operate on 

finite-height lattices, he requires them to satisfy an 

ascending chain condition. This condition, that for 

every ascending chain SO < s1 < . . . < sk some 

f(sk) = f(sk + I), also guarantees that evaluation of 

each individual KC will terminate, and thus that 

the entire evaluation process will terminate. 

While there are application areas whose natural 

semantic functions satisfy one of these conditions, 

there are also some natural functions that are not 

so well-behaved. An example of such functions 

arises when we try to use attribute evaluation to 

model execution of a while loop. Adding an 

indefinitely looping construct to model while exe- 

cution will give the attribute evaluation mechanism 

full partial recursive power to apply to other, less 

easily visualized problems. We consider the small 

grammar found in Figure 2.1 to be a natural way to 

express interpretation via attribute evaluation. (A 

value of not-reached for a state means that the 

corresponding statement would not be executed if 

the program were run.) 

start:: = S 
Sinitst = Aname. 
Startfmalst = Sfinalst 

- . . > . . = id t exp 
expstate = S.initst 
S.finalst = if S.initst = not-reached then 

not-reached 
else 

S.initst[id.name+exp.val] 
exp:: = id 

exp.val = lookup(id.name,exp.state) 

exp:: = int 
exp.val = int.val 

exp1 :: = ev2 OP ew3 
expastate = expr.state 
expgstate = expl.state 
expl.val = exps.val op expg.val 

51 :: = S2;S3 
&.initst = Sr.initst 
Sg.initst = S2.finalst 
Sl.finalst = Ss.finalst 

5, ::= while exp do S2 
while.gate = if while.start then 

(l,Sl.initst) (initial value) 
else 

(O,S2,finalst) (subsequently ) 
exp.state = second(while.gate) 
Sa.initst = if first(while.gate) = 1 and 

exp.val = 0 then 
not-reached 

else if exp.val t 0 then 
second(while.gate) 

else 
Sa.initst 

Sl.finalst = if exp.val= 0 then 
S2Analst 

else 
not-reached 

Figure 2.1. A gated attribute grammar. 
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If the while production is ignored, this attribute 

grammar is acyclic. With the while production, a 

cycle is formed by the while.gate, B.state, B.val, 

&.initst, and Sn.finalst attributes, as shown in 

Figure 2.2, where dashed links indicate indirect 

dependencies (The while.start attribute will be 

discussed later.) 

Sl.initst Sl.finalst 

whi1e.g B.st B.val Sa.initst Sz.finalst 

‘d ‘d 
Figure 2.2. while dependencies. 

For the class of problems and algorithms considered 

here, it is appropriate to use the standard total 

ordering on the integers, rather than creating a flat 

cpo out of the integers. (Circular attribute gram- 

mars give rise to sets of simultaneous equations 

over the integers, and, as expanded upon in the 

next section, solutions of such systems with respect 

to the flat cpo woutd give the value I to many of 

the variables.) Since there is no reason, under this 

ordering, to expect that the body of the while loop 

represents a monotonic function from initial states 

to final states, the previous work on circular 

attribute grammars can not define the desired final 

state of this loop. Execution of this loop, however, 

would result in a well-defined final state, provided 

that the loop terminates. In the next section, we 

extend the usual attribute evaluation algorithm in 

such a way that the attribution final state coincides 

with the execution final state. 

This extended attribution algorithm does not 

require an attribute grammar to be noncircular, but 

it still requires some order in the attribute 

grammar. Every nontrivial dependency-graph cycle 

that can be generated by such an attribute 

grammar must contain at least one attribute 

designated as a gate. (Cycles such as the one for 

&.initst in Figure 2.1 with only one node in the 

cycle, corresponding to an attribute depending on 

its prior value, are considered trivial.) A gate 

attribute represents the point at which attribution 

of a strongly-connected component in the depen- 

dency graph should begin. Each gate attribute has 

an automatically associated start attribute which 

will indicate when the gate attribute should take its 

value from outside its SCC rather than inside. In the 

example, while.gate is the only designated gate and 

while.start is its start attribute. 

A gate attribute provides the means of controlling 

the evaluation of attributes within a strongly 

connected component. If all functions in the SCC 

are monotonic and all attributes are initially I, 

starting propagation from any attribute in the SCC 

will yield the least fixed point of the SCC; if some 

functions are nonmonotonic, starting propagation 

from different attributes can yield different fixed 

points, so we have defined the desired fixed point 

to be the one where propagation starts at the gate 

attribute. By guaranteeing that each SCC has a 

gate attribute, we guarantee that each SCC has a 

well-defined fixed point. 

Given an attribute grammar with designated gate 

attributes, the algorithms previously used to detect 

circularities can now be used with only minor modi- 

fications to detect circularities that do not pass 

through gate attributes. If no such circularities can 

be found, the attribute grammar is called a gated 
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attribute grammar and can be evaluated with our 

techniques. 

Each gate in a dependency graph defines a gated 

KC, which can be considered as the region of the 

graph under the control of the gate. Those attri- 

butes used to calculate the gate value when its start 

is true are outside the gate’s control, so edges from 

them to the gate are not used in determining the 

extent of the GSCC. Any node that remains strongly 

connected to the gate without these edges in the 

graph is in the gate’s GSCC. 

As a consequence of this definition, every nontrivial 

maximal SCC in a dependency graph of a gated 

attribute grammar is a GSCC and, for any gate 

which is not nested inside another’s GSCC, the GSCC 

is the maximal SCC containing that gate. w 

The sub-GSCC for an interior gate node consists of 

those nodes in the SCC that are strongly connected 

to the interior gate after removing arcs to this gate 

from its start node and whichever other nodes 

contribute to the gate value when its start is true. 

This sub-GSCC is the same as the maximal SCC for 

the interior gate node would be if there were not 

an outer gate. The portion of a GSCC which is not 

in any sub-GSCC is called its core. 

3. Initial Evaluation. 

Initial evaluation starts with an attributed parse 

tree where no attributes are guaranteed to have 

consistent values. Therefore, every attribute needs 

to be evaluated, those in nontrivial SCCs possibly 

more than once, for the tree to become consistently 

attributed. 

A parse tree is attributed by repeatedly selecting a 

strongly connected component (potentially a single 

attribute) of its dependency graph and evaluating 

the attributes in that SCC until they reach final 

consistent values. SCCs can be selected in any way 

consistent with a topological ordering of the 

collapsed dependency graph, where each maximal 

SCC has been reduced to a single node. Thus, if 

there are no nontrivial SCCs in the graph, our 

evaluation process proceeds in the same way as the 

usual optimal evaluation process. 

Before evaluation of the attributes mentioned by 

the grammar writer begins, certain additional links 

are added to the dependency graph by nonlocal 

productions. These additional links, indicated by 

dotted lines in Figure 3.1, make each attribute 

(outside a GSCC) that is a predecessor of a node in 

the GSCC also a predecessor of the start attribute of 

that GSCC. These links allow the evaluator to 

always begin evaluation of a GSCC at its gate 

attribute. The evaluation function for a start 

attribute returns true, indicating that the gate 

attribute should take its value from outside the 

GSCC to begin GSCC evaluation, iff any of its 

predecessors from these additional links were 

newly set or changed value since the gate attribute 

last took a value from outside. Since the only 

successor of a start attribute is its gate attribute, 

adding these additional links does not change the 

SCC composition of the dependency graph. 

start 

Figure 3.1. Adding non-local links. 

These links are useful primarily for incremental re- 

evaluation of a GSCC, but even during initial evalu- 

ation sub-GSCCs may require multiple evaluations, 
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and any GSCC may require multiple passes to reach 

a fixed point. In practice, subsequent passes and 

evaluations of a GSCC would be handled by the 

more efficient incremental evaluation of the next 

section, but for the moment we consider a simpli- 

fied algorithm where all the attributes of a GSCC 

are evaluated on each pass. 

Since there may be nonmonotonic functions inside 

a GSCC, attribute evaluation order influences 

correctness as well as efficiency. An example where 

differing evaluation order results in different fixed 

points for the GSCC is shown in Figure 3.2. The 

attributes are shown with consistent values that 

could be left over from an earlier evaluation of the 

GSCC. Now assume that the GSCC must be evalu- 

ated again, and that the gate g gets the new initial 

value 20. If the GSCC is evaluated in the order 

acbgabcg, the fixed point (a:S, b:-5, c: 10, g:lS) is 

reached. If it is evaluated in the order abcg, the 

fixed point (a: 10, b:-10, c:20, g:20) is reached. 

This example also justifies our choice of ordering 

for the integers. Using a flat cpo, we would find 

that the least fixed point of this GSCC is 

(a:I,b:I,c:l,g:I). While this is a solution to the 

set of simultaneous equations representing the 

GSCC, we believe the writer of the attribute qram- 

a:0 

a=g-10 c=a-b 
b= 10-g g = (c + 20) /2 

Figure 3.2. A nonmonotonic GSCC. 

mar would prefer the integer solution (a:lO, 

b:-lO,c:20,g:20). Similarly, if the cpo for states is 

constructed from the flat cpo for the integers in 

order to guarantee monotonicity of functions, the 

least fixed point of a while loop would have each 

attribute in the SCC at its bottom value, meaning 

that the final state of every while loop would have 

no identifiers defined. 

We define the correct evaluation order within a 

GSCC by a topological ordering on the GSCC graph 

with edges leading to the gate removed (and any 

sub-GSCCs collapsed to single nodes). In other 

words, an attribute in the interior of a GSCC cannot 

be evaluated unless all attributes on paths from the 

gate to it are consistent with the present gate 

value. There are cases, such as Figure 3.3, where 

such an ordering cannot be obtained due to a cycle 

interior to a GSCC, but such cycles are ruled out in 

gated attribute grammars by the requirement that 

each nontrivial cycle contain a gate attribute. 

gate 

non-gate 

pJ 
non-gate 

I 

Figure 3.3. lnevaluable GSCC. 

A nontrivial GSCC is evaluated by alternating 

between evaluating the gate and evaluating the 

other nodes of the GSCC in internal topological 

order, with possible recursive evaluations of sub- 

GSCCs, until one pass is made over the GSCC with no 

changes in attribute values. 

Even with monotonic functions, [Jo%361 for 

efficiency restrict evaluation order to agree with a 

depth-first ordering starting at a defined set of SCC 
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attributes. For the first pass over the SCC, the set 

consists of those SCC attributes whose predecessors 

outside the SCC have changed. On succeeding 

passes, the set consists of the successors of leaves of 

the depth-first spanning tree from the previous 

pass Since all their functions are monotonic, the 

evaluation ordering from these spanning trees 

could be replaced by one derived from a 

topological ordering on the SCC with incoming arcs 

to the defined set temporarily deleted. With such a 

replacement, the defined set for each pass would 

be a subset of that for the previous pass, with nodes 

being dropped from the set if their predecessors did 

not change on the previous pass. Our algorithm 

starts with only the gate attribute in the defined 

set, and SCC evaluation terminates when the gate’s 

predecessors in the SCC do not change on a pass. 

4. Incremental Evaluation. 

At the beginning of incremental evaluation, a parse 

tree is consistently attributed except for a small 

number of attributes corresponding to changes 

that have just been made in the parse tree. The 

strongly connected components containing these 

attributes are placed in the set NeedSCCEval, which 

throughout incremental evaluation contains those 

SCCs known to need evaluation. Another set, 

NeedEval(S), which contains those attributes of the 

GSCC S that are known to need evaluation, is kept 

for each GSCC (i.e. nontrivial SCC) in NeedSCCEval. 

While NeedSCCEval is not empty, an SCC is removed 

and evaluated. SCCs are selected for evaluation in 

accordance with the topological order imposed by 

the collapsed dependency graph. 

A trivial SCC is evaluated by evaluating its node 

(repeatedly if the SCC is a trivial cycle) and adding 

its SCC-successors to NeedSCCEval if the value of the 

node changed. A nontrivial SCC is evaluated in the 

same spirit, as shown in Figure 4.1. Starting from 

the gate, changes are propagated around the GSCC 

for each node n in S with a successor outside 5, 
save the present value of n 

evaluate gate(S), setting start(S) false 

if gate(S) changed, add successors of gate(S) in S 
to NeedEval(S) 

tihile NeedEval(S) n core(S) is not empty 
select n from NeedEval(S) rl core(S) in 

accordance with internal topological order 
if n is a start node, 

evaluate n 
if n is true, recursively evaluate the associated 

su b-GSCC, T 
add successors of T in S-T to NeedEval(S) ’ 

else 
evaluate n 
if n changed, 

add successors of n in S to NeedEval(S) 

for each node n in S with a successor outside 5, 
if its present value differs from its saved value, 

add its SCC-successors to NeedSCCEval 
add its successors to NeedEval sets 

Figure 4.1. Evaluating the non-trivial SCC 5. 

in internal topological order until attributes settle 

to consistent values. Then SCC-successors are added 

to NeedSCCEval if their predecessor attributes have 

values different from before SCC evaluation. 

Evaluating a sub-GSCC is identical to evaluating a 

GSCC, except that old attribute values are not saved 

and checked to add SCC-successors, since a sub- 

GSCC cannot know if its attribute values are final 

when they settle to consistent values. The sub- 

GSCC may be re-evaluated, changing its attribute 

values further, in the process of evaluating the 

GSCC as a whole. 

Whether evaluating a GSCC or a sub-GSCC, it 

suffices to evaluate attributes that are in the core 

and are known to need evaluation. If an attribute 

in a further nested GSCC needs evaluation, so does 

the start attribute of that nested GSCC, which is in 

the core of the next outer GSCC. Evaluating that 

start attribute will trigger evaluation of the nested 

GSCC, including the needy attribute. 
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Also note that the NeedEval set of the maximal 

GSCC can be used by the sub-GSCC evaluation, 

which will look only for attributes in the core of the 

sub-GSCC. Thus it is not necessary to worry about 

multiple NeedEval sets for different parts of the 

same maximal SCC. 

5. Avoiding Re-evaluation of Loops. 

Often when an input to a loop changes, it is 

necessary to entirely re-evaluate the loop. Where 

possible, however, we would like to avoid this 

expense. The basic idea, that of identifying por- 

tions of a loop that do not affect the computation 

of the loop in such a way as to require an entire re- 

evaluation, is reminiscent of code hoisting in 

optimization. 

This discussion is necessarily specific to our example 

of an attribute grammar based interpreter in which 

attributes containing states are passed around the 

, tree. 

.Just as in standard incremental evaluation, we hope 

that at some point short of re-evaluating all the 

attributes in the tree either attributes stop 

changing value or they change value in such a way 

as not to require further re-evaluation. To make 

this determination it is useful to define input and 

output variables of a loop. An input variable is one 

whose value is queried somewhere inside the loop, 

and an output variable is one whose value is 

modified somewhere inside the loop. Variables 

may of course be both input and output variables 

for a given loop. For the example language of this 

paper, the input variables are those that appear on 

the right-hand side of an instance of the production 

exp :: = id and the output variables are those that 

appear as left-hand sides of assignment statements. 

We extend the concept of the state value not- 

reached to include an extra pair of integers in each 

state attribute. These integers will record the 

number of the loop iteration at which the state is 

first evaluated and the’number of the loop 

iteration at which it is last evaluated. 

During change propagation, say we find that a 

predecessor of a state-valued attribute in a GSCC 

corresponding to a loop has changed. We evaluate 

the state inside the GSCC and note which variables 

inside it change value. We consider each changed 

variable in turn. The first iteration in the loop 

during which the state was evaluated represents 

the first time that the variable being considered 

would actually receive the new value. If that is 

after the last use (if any) of the variable in the loop, 

then we do not need to re-evaluate the loop; we 

need only update those states evaluated after the 

given one to reflect the new “final value” of the 

variable. (Variables that are independent of the 

loop are handled similarly.) 

Changing the “clean-up” code in a loop such as that 

in Figure 5.1 intuitively should not require re- 

evaluation of the entire loop, and the above 

relatively inexpensive technique formalizes and 

captures such situations. 
i 
while not done do 

{main loop body} 
if condition then 

{ clean-up code} ; 
done : = true 

else 
( continue iterating } 

fi 
od 

Figure 5.1. Typical loop. 

6. Nonlocal Predecessors of Start Attributes. 

It is necessary to create links from predecessors of a 

GSCC to the start attribute of that GSCC. These 

links are used to make the start attribute true and 

schedule the GSCC for re-evaluation whenever an 

input to the GSCC changes value in such a way as to 

require a full re-evaluation of the GSCC. We use 

superior and inferior characteristic graphs as 

necessary to find attributes that are in a GSCC and 
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identify predecessors that are not in the GSCC. The 

first step in creating the needed links is to associate 

a pointer to the appropriate gate attribute with 

each member of a GSCC. In the case of nested 

GSCCs, each member gets a pointer to the gate of 

the smallest containing GSCC. In this way, all 

exterior gates can be found by following the chain 

of gate pointers. 

Start::= S 
S.isgp = nil 

5, ::= while exp do Sl 
while.gategp = Sl.isgp 
Sl.fsgp = Sl.isgp 
Sz.isgp = @while.gate 
exp.sgp = if exp.infchar = (state+val) then 

@while.gate 
else nil 

5 . . . . = idcexp 
S.fsgp = S.isgp 
exp.sgp = if exp.infchar = (state+val) then 

S.isg-p 
else nil 

51 ::= s2;s3 
Sl.fsgp = Sl.isgp 
Sa.isgp = S1.isg-p 
S3.isg-p = Sl.isgp 

exp :: = id 
exp.valgp = exp.sgp 

exp::= int 
exp.valgp = exp.sgp 

expl :: = exp2 OP ev3 

exp2.w = if expa.infchar = (state+-val) then 

em .sgP 
else nil 

w349 = if expg.infchar = (state+val) then 

ewl .sgP 
else nil 

expl.valgp = expl.sgp 

Figure 6.1. Added flow rules. 

For our example grammar, we calculate gate 

pointers by adding the evaluation functions in 

Figure 6.1. (The notation @X.a indicates that a 

pointer to attribute X.a is produced.) Statement 

nonterminals have initial state and final state 

attributes, and the associated gate pointer attri- 

butes are abbreviated isgp and fsgp respectively. A 

similar naming convention is used for gate pointers 

associated with state and value attributes of 

expression nonterminals and gate attributes for 

while symbols. 

Once we have the gate pointers, we can add the 

necessary links. An attribute is a predecessor of a 

GSCC if the gate pointer of a successor does not 

appear in the chain of gate pointers from the 

attribute (i.e., the successor is not in a containing 

GSCC). Since the successor may be in several nested 

GSCCs, a link is added from the predecessor 

attribute to the start pseudo-attribute associated 

with each gate pointer in the trace-back chain from 

the successor until this trace-back chain joins the 

one from the predecessor. Figure 6.2 shows a parse 

tree with the links added after execution of this 

first phase of attribute evaluation. 

7. Conclusions. 

Like [JoS86], we guarantee,that each maximal SCC 

evaluated will be in AFFECTEDSCC and that no SCC 

will be evaluated more than once in a single 

incremental evaluation. However, due to the lack 

of restriction on the functions within an SCC, we 

cannot bound the number of attribute evaluations 

required to evaluate a single SCC. To gain the 

power to model execution of a while loop in 

attributes, we are forced to accept that evaluation 

of an SCC may not terminate if its corresponding 

while loop diverges. (Evaluation of an SCC 

representing a divergent while loop will in fact 

terminate if the states in the while loop stop 

changing, as in the loop while 1 do i t 2. In such a 

case, any subsequent states in the program are 

given the not-reached value.) 

The recursive synth-function evaluator described in 

[Far861 addresses evaluation process termination 

problems in recursive attribute grammars by pulling 

the evaluation of an SCC into a single function and 
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Figure 6.2. Dependency Graph for i cl0 ; while i > 0 do ici-1. 

then pointing out that only a finite number of 

function evaluations will be attempted. For his 

finitely recursive attribute grammars, this trans- 

formation does not generate partial evaluation 

functions unless some of the SCC functions were 

partial. (Most functions in traditional attribute 

grammars are simple total functions, but there is no 

way in general for an evaluator generator to 

guarantee these functions will always terminate.) 

However, for general circular attribute grammars 

this transformation would not affect the actual 

termination of the evaluation process, but would 

merely move potential nontermination from the 

attribute selection phase to the attribute evalu- 

ation phase. 

We have thus allowed partial functions to be 

explicitly spread over the computation of the 

attributes of a GSCC instead of restricted to the 

computation of a single attribute. This choice 

allows computation to be expressed via attribute 

219 



evaluation functions in whichever way seems most 

convenient. 

By forcing attribute evaluation to occur in 

accordance with a topological ordering of the 

dependency graph, we guarantee that attribute 

evaluation will terminate if interpretation of the 

corresponding program would terminate. In addi- 

tion to allowing a GSCC to converge to the wrong 

fixed point, evaluation out of topological order can 

result in undesired nontermination. If a GSCC were 

to be evaluated when some of its predecessors had 

yet to reach their final values, the invalid combi- 

nation of inputs might be such that the GSCC has no 

reachable fixed point. Yet GSCC evaluation cannot 

stop before it reaches a fixed point, for on valid 

input the evaluation must continue until it 

determines that the corresponding loop converges. 

However, topological ordering for the sake of 

efficiency will also guarantee that all GSCC inputs 

are valid when the GSCC is evaluated. 

To gain the ability to evaluate arbitrary functions in 

dependency graph cycles, we have been forced to 

accept one localized timing constraint on attribute 

evaluation. A start attribute is required to know if 

any of its predecessors have changed since the last 

time its gate attribute took a value from outside 

the GSCC. This constraint is met by setting the start 

attribute false immediately after, but conceptually 

at the same time as, taking a gate value from 

outside the GSCC. Without some way of telling 

whether GSCC evaluation is just beginning, a gate 

cannot know which of its evaluation functions to 

use. Using the internal evaluation function at the 

beginning of GSCC evaluation may abruptly end 

that evaluation if the gate is the only GSCC attri- 

bute with modified predecessors; using the 

external function in the midst of GSCC evaluation 

again brings up the problem of possible divergence 

due to invalid combinations of values. [JoS86] face 

a somewhat similar problem in incrementally 

evaluating SCCs with monotonic functions. They 

must keep track of whether an attribute has been 

evaluated in the current round of SCC traversal to 

ensure that a left-over value does not cause SCC 

evaluation to miss its new least fixed point. 

With the use of an efficient representation, such as 

may be found in [Hoo87], for aggregate attributes 

like states that differ only slightly from one 

another, the performance penalty for propagating 

state information around a dependency graph may 

be substantially reduced from that of a naive 

implementation. It is our belief that any remaining 

penalty is more than offset by the advantage of 

being able to automatically start re-execution at 

the point of change in a program. 
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