
Accelerating Information Experts through Compiler Design

Aaron W. Hsu

Indiana University, USA
awhsu@indiana.edu

Abstract

Dyalog APL is a tool of thought for information experts, enabling 
rapid development of domain-centric software without the costly 
software  engineering feedback loop often required.  The Dyalog 
APL interpreter introduces performance constraints that hinder the 
analysis of large data sets, especially on highly-parallel computing 
architectures.  The  Co-dfns  compiler  project  aims  to  reduce the 
overheads involved in creating high-performance code in APL. It  
focuses on integrating with the APL environment and compiles a 
familiar subset of the language, delivering significant performance 
and  platform  independence  to  information  experts  without 
requiring code rewrites and conversion into other languages.

The design of the Co-dfns compiler, itself  an APL program, 
possesses  a  unique  architecture  that  permits  implementation 
without branching, recursion, or other complex forms of control 
flow.  By integrating  specific  optimizations,  the  generated  code 
competes  with  hand-written  C code in  the domain  of  financial 
simulations,  exceeding it when integrated into the environment. 
Preliminary  results   demonstrate  platform  independent 
performance across CPUs and GPUs without modification of the 
source.  Work  continues  to  improve  performance  both  of  the 
architecture and the generated code. Eventually, the project hopes 
to  convincingly  demonstrate  a  wider  range  of  techniques  that 
extend the suitable domain for effective array programming.

Categories  and  Subject  Descriptors D.3.4  [Programming 
Languages]:  Processors  – code  generation,  compilers,  memory 
management  (garbage  collection),  optimization,  run-time 
environments. 

General Terms Algorithms, Performance, Design, Languages

Keywords APL, array programming, compiler architecture

1. Introduction

Dyalog APL [Dyalog 2015] is a modern interpreted language that 
follows traditional APL systems in providing a “tool of thought” 
[Iverson  2007]  to  information  experts  who  develop  complex 
software  with  minimal  external  software  engineering  resources. 
APL's  concise,  mathematical  nature  encourages  array-oriented 
data  exploration.  APL  programs  often  exceed  performance 
expectations, outperforming more traditional systems by a large 

margin  [Grosvenor  2013].  Nonetheless,  the  Dyalog  interpreter 
imposes certain performance limitations.

The Co-dfns compiler project [Hsu 2014] provides a compiler 
integrated  into  the  Dyalog  environment  to  support  turnkey 
performance  for  information  experts  without  sacrificing  the 
advantages of APL. The compiler leverages the high-level nature 
of  APL  to  deliver  platform  independent  performance  of  data 
parallel, and in the future, task parallel applications, scaling APL 
programs to larger data sets and a wider selection of hardware.

The Co-dfns project hopes to push the boundaries of “suitable” 
array programming domains. The compiler itself represents such a 
domain, since its implementation is a pure, data-parallel program 
in  the  dfns  APL  dialect.  The  simplicity  and  directness  of 
implementation,  lacking  any  complex  encoding  scheme, 
demonstrates  the  approach's  effectiveness.  Important  benefits 
include  increased  parallelism and  analysis  opportunities  arising 
from the intentionally restricted and simplified  language  subset 
used to construct the compiler.

The  compiler  accepts  code in  the dfns  Dyalog  APL syntax, 
which is lexically scoped and spiritually functional, rather than the 
traditional dynamically scoped format. Generated code integrates 
directly  with  the  interpreter  through  the  DWA [Dyalog  2014] 
infrastructure.  Performance  exceeds  that  of  traditional  hand-
written  C integrated using the foreign  function  interface  alone, 
while also possessing platform independence, compiling to GPU 
and  CPU  targets  unmodified,  with  significant  performance 
improvements in both cases. 

We make the following contributions:

 A demonstration  of  the feasibility  of  writing  a  purely data-
parallel  compiler  without  recursion,  branching,  or  complex 
control flow

 Performance analysis of the costs of integrating foreign code 
into  the  Dyalog  APL  environment  by  comparing  the 
performance  of  hand-written  C  code  against  the  Co-dfns 
compiler,  which  integrates  more  completely  with  the  host 
environment

 A  compiler  that  delivers  device  independent  performance 
gains in the range of 50 - 10,000% over the base interpreter by 
compiling unmodified APL to the CPU and GPU. These gains 
are  possible  in  part  from the  high-level  nature  of  the  APL 
language

 An enumeration of the optimizations used to deliver increased 
performance on scalar heavy computational code when written 
in APL

2. Compiler Architecture

The  Co-dfns  compiler  has  a  unique  architecture.  In  line  with 
project goals, “eating our own dog food” motivates the design. In 
other  words,  demonstrate  the  practicality  of  a  data-parallel 
compiler written in a restricted subset of dfns APL. This motivates 

Permission to make digital or hard copies of all or part of this work for personal or  
classroom use is granted without fee provided that copies are not made or distributed 
for  profit  or  commercial  advantage  and  that  copies  bear  this  notice  and the  full 
citation on the first page. Copyrights for components of this work owned by others  
than the author(s)  must  be honored.  Abstracting with credit  is permitted.  To copy 
otherwise,  or republish,  to post  on servers  or to redistribute to lists,  requires prior 
specific permission and/or a fee. Request permissions from 
Permissions@acm.org.
ARRAY'15, June 13-14 2015, Portland, OR, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3584-3/15/06…$15.00
DOI: http://dx.doi.org/10.1145/2774959.2774968

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ARRAY’15, June 13, 2015, Portland, OR, USA
ACM. 978-1-4503-3584-3/15/06
http://dx.doi.org/10.1145/2774959.2774968

37

mailto:Permissions@acm.org


a different perspective on compiler construction. The core passes 
use  function  composition  over  a  set  of  general  purpose  array 
operators and vectorized array primitives.  There are no explicit  
branching statements, such as switches, if-statements, or visitor-
style  design  patterns.  The  compiler  uses  no  recursive  or  other 
means of complex control flow. Instead, all control flow is direct 
and simple function composition. All the basic operators are data-
parallel or vectorized and have parallel semantics. (Note that the 
Co-dfns  language  includes recursion,  branching,  and traditional 
control flow; the compiler simply refrains from their use.) Only 
the  parser  utilizes  more  complex  patterns.  The  parser  uses 
recursive parser combinators, but evidence suggests that a suitable 
data-parallel approach to parsing APL exists [Bunda 1984]. 

The compiler  does not yet  self-host,  so the interpreter hosts 
instead. The interpreter executes the primitives either sequentially 
or using vectorization on standard CPUs. The compiler generates 
more efficient vectorized and parallel code in C or CUDA for the 
same  primitives  as  an  alternative,  particularly  on  parallel 
architectures like the Xeon Phi and the NVIDIA GPUs. The back-
end relies  on an existing C or  CUDA compiler  to  generate  an 
executable.

The  resulting code  exhibits  a  high  degree  of  concision and 
uniformity.  The  core  compiler  passes  are  less  than  150  lines 
including whitespace and comments in pure dfns. The concision 
gained from this dense programming practice arguably improves 
the hackability since the entire  compiler  can be easily laid out 
with a few printed pages of paper.

The compiler represents the AST as a matrix where each row is 
a  node  in  the  AST  ordered  by  depth-first  pre-order  traversal. 
Columns  represent  attributes  for  each  node.  A depth  attribute 
indicates  the  depth  of  the  node  in  the  AST and  linearizes  the 
parent child information normally stored as pointers. In order to 
maximize  locality  when  processing  nodes,  a  second  attribute 
called a “node coordinate” or reference encodes the information 
stored in the depth attributes in such a way that given any two 
arbitrary nodes, the parent child relationship of the two is obvious 
without  requiring  any  traversal  of  the  matrix.  This  permits 
arbitrary computation over sub-trees selected by their parent-child 
relationships without requiring complex control flow.

The  memory  management  design  of  the  compiler  greatly 
affects  its  performance  in  real  applications.  In  line  with  the 
explicit  goal  to integrate  with Dyalog APL and,  particularly, to 
reduce  the  overheads  involved  for  the  information  expert,  the 
DWA (Direct Workspace Access) system of Dyalog APL links the 
memory  manager  of  the interpreter  to  the compiler's  generated 
code.  This  allows  generated  code to  operate  directly  on  native 
interpreter data, without an import/export phase. Initial versions of 
the compiler used a separate representation for arrays and handled 
memory management outside of the DWA infrastructure. Doing so 
liberated the compiler  but  imposed  a  performance  penalty. The 

performance of earlier versions derived primarily from this choice 
of memory management, as discussed below.

3. Optimizations

The current compiler optimizations improve the performance of 
financial  simulation  software,  epitomized  in  the  Black  Scholes 
benchmark.  This  code  contains  mostly  numerical  calculations 
over large arrays, and in particular, scalar computations, instead of 
heavy  manipulations  of  the  shapes  of  arrays.  Four  major 
optimizations  significantly  improve  the  performance  of  this 
benchmark.

3.1 Scalar Loop Fusion

In  APL,  primitive  scalar  operations,  such  as  addition  or 
subtraction,  operate  point-wise  over  every scalar  element  in  an 
array argument. In other words, they implicity map or fork over 
each element in an array (possibly nested) to compute a sum or 
difference between individual  scalar  elements.  When composed 
together, as in the following example, the interpreter must iterate 
over the entire array multiple times:

    (C+A×B)÷D

If the arrays are large, then these multiple iterations can eliminate 
the  benefits  of  cache.  This  results  in  poorer  than  expected 
performance,  despite  each individual  primitive  using optimized 
vector operations. 

The compiler recognizes these loops and fuses them together. 
This  is  a  well  studied  and  difficult  problem [Darte  2000]  for 
languages like Fortran, which use things like polyhedral models to 
fuse  arbitrary  loops.  The  compiler  uses  a  more  naive  fusion, 
simply by recognizing adjacent, data dependent scalar expressions 
such as above, and creating a single loop in the generated code 
rather  than  a  distinct  loop  for  each  scalar  expression  as  the 
interpreter must. 

This optimization improves cache behavior and allows better 
vectorization when using lower level C and CUDA compilers. The 
generated loops ensure that they are easily vectorized and, if the  
user desires, automatically parallelized. Generally, parallelization 
of  this  sorts  works  well  on  the  GPU,  but  tests  show  better 
performance  with  vectorization alone on normal  CPUs like  the 
Intel i7. 

3.2 Function Inlining and Allocation

The  compiler  inlines  all  functions  when  possible.  This  is 
especially true for the operators which take functions as operands. 
By  inlining  these  operations,  it  is  often  possible  to  reduce 
significant overheads involed in repeated iterations. Furthermore, 
because Dyalog APL does not permit functions to return functions 
as values,  though they can be passed as operands to operators, 
there is no need for closures, as in most functional programming 

r←0.02 ⋄ v←0.03 ⋄ coeff←0.31938153 ¯0.356563782 1.781477937 ¯1.821255978 1.33027442

CNDP2←{(1  ¯1)[B]×((0  ¯1)[B←⍵≥0])+R←(÷(○2)*0.5)×(*(L×L)÷¯2)×{coeff+.×⍵*1+⍳5}¨÷1+0.2316419×L←|
⍵}

Run←{S←0⌷⍵ ⋄ X←1⌷⍵ ⋄ T←2⌷⍵ ⋄ vsqrtT←v×T*0.5
  D1←((⍟S÷X)+(r+(v*2)÷2)×T)÷vsqrtT ⋄ D2←D1-vsqrtT
  CD1←CNDP2 D1 ⋄ CD2←CNDP2 D2 ⋄ e←*(-r)×T
  ((S×CD1)-X×e×CD2),[0.5](X×e×1-CD2)-S×1-CD1
}

Figure 1. Black Scholes Benchmark

38



languages. The current version still creates some environments to 
hold some free variables, but the next version of the compiler will  
mostly  eliminate  additional  environment  overheads  and  almost 
completely eliminate function call overheads. 

3.3 DWA as an Optimization

While  the  above  optimizations  are  fairly  classical,  the  most 
surprising  and  significant  optimization  for  the  current  targeted 
benchmark  turned  out  to  be  the  integration  of  DWA (Direct 
Workspace Access) [Dyalog 2014] into the compiler. In this case, 
the  compiler  operates  directly  over  structures  inside  of  the 
interpreter,  completely  eliminating  copying  and  conversion 
overheads associated with  calling foreign  code from within  the 
interpreter. The benchmark assumes that information experts will 
conduct most of their development through the interpereter, and 
use the compiler  as a later optimization stage or to deploy. By 
eliminating  the  overhead  for  calling  into  foreign  functions, 
performance  increased  dramatically  above  and  beyond  other 
optimizations.

4. Performance

The following  benchmark  results  come  from an  Intel  Core  i7-
3610QM @ 2.30GHz with 8 Hyperthreaded cores. The machine 
contains  16GB of  RAM and an NVIDIA GTX 675M graphics 
card.  Results  were  obtained  with  the  64-bit  Linux  version  of 
Dyalog APL.

4.1 Without Optimizations

The  previous  version  of  Co-dfns  [Hsu  2014a]  used  its  own 
internal representation for arrays that differed slightly in structure 
from that used by the Dyalog interpreter. It also did not include 
explicit  inlining of  primitives.  It  did use a  reasonably efficient 
representation  of  functions,  however.  A  subsequent  version 
included  the  ability  to  target  CUDA-capable  hardware  [Hsu 
2014b].

The CPU based code executed with speedups of roughly 20 - 
30% as  seen in  Figure  2.  On the  GPU,  without  some specific 
special  implementations  of  certain  parts  of  the  code,  the 
performance  actually  slightly  degraded  from  the  interpreter. 
However,  with  the  appropriate  primitives  in  place,  the 
performance was the same as that of the CPU, around 20 - 30%. 

In  fact,  through  exploration  of  various  implementation 
techniques and analyzing the code, the most an user could expect  
from the compiler on these sorts of ideal scalar computations with 
the then-current architecture was about a 30% improvement over 
the interpreter. Even if the computation happened almost instantly, 
the  cost  of  transferring  data  in  and  out  of  the  interpreter 
overwhelmed every other runtime cost. Data copy overhead was 
simply too great.

Unfortunately,  there  is  little  way  in  which  to  support 
generalized array operations in and out of the interpreter without 
incurring  these  overheads  except  for  a  drastic  change  in  array 
representation and management.

4.2 With Optimizations

In the next version of the compiler, a new design used Dyalog's  
DWA (Direct  Workspace  Access)  infrastructure,  which  allowed 
foreign code to operate over native interpreter structures. While 
somewhat  more  complicated  then  the  normal  foreign  function 
interface,  in  this  case,  it  provides  significant  benefits.  By 
designing  the  compiler  to  operate  over  native  Dyalog  arrays 
instead of requiring a translation/conversion phase, the compiler 
completely eliminates the overheads involved in transferring data 
in  and  out  of  the interpreter. When combined  with  the current 
optimizations that are in the compiler, including scalar function 
loop fusion and primitive inlining, performance improves in the 
range of 50-90% on the CPU. Figure 3 includes the alternative of 
using a handwritten C version of Black Scholes with the standard 
FFI  interface  in  the  Dyalog  interpreter  to  compare  the 
performance  of  hand-writing the code instead of  using the Co-
dfns compiler.

4.3 Preliminary GPU Results

While  no  complete  results  yet  exist  for  the  GPU,  initial  tests 
demonstrate  100 -  200× improvements  in  runtime  performance 
compared to the interpreter. This comes close to the expected ideal 
performance of the test graphics card with these problems; we are 
confident that ongoing work to include additional optimizations 
and  the  new  DWA-based  architecture  will  permit  information 
experts  operating  on  large  scalar  domains  to  maximize  their 
GPU's  capabilities  through  Dyalog  APL  and  Co-dfns  without 
requiring any changes in their program code.

Figure 2.  Performance of un-optimized Co-dfns compiler code in the Black Scholes benchmark on the CPU.

39



4.4 Comparing to C

In Figure 3 the performance of the interpreter and the compiler 
appear in  relation to hand written  C code.  The hand written  C 
code simulates  the  process  an  information  expert  might  use  to 
optimize a particular piece of code that is going too slowly. That 
is, they would call out to a specific C library call to handle the  
inner loops, or they might write their own version in C or CUDA 
and then call into that code from the rest of the interpreter. The 
graphs show the dangers of doing so.  While the handwritten C 
code by itself performs better than the interpreter, it is difficult to 
use such code inside of an inner loop or just in a single “hot spot” 
because the overheads of getting data in and out of the foreign  
functions  is  too  high.  Thus,  while  the  performance  of  the 
compiled code and the C code are not that far apart, the C code 
performs  much  worse  because  it  does  not  integrate  with  the 
interpreter's data structures. 

An  information  expert  could  manually  integrate  with  the 
interpreter using the same DWA API that Dyalog provides,  but 
this greatly increases the complexity of the code and the overall 
interfaces, and makes it more difficult to use “off the shelf” tuned 
libraries.  By using  the  compiler  instead,  this  difficult  work  of 
hand-writing  optimized  code  or  linking  into  existing  high-
performance tuned libraries disappears and the compiler can be 
relied upon to produce code of similar performance, even using 
these tuned libraries underneath without any user intervention. 

5. Ongoing Work

The Co-dfns compiler continues to evolve at a rapid pace, with  
significant  components  rewritten  often  as  new  techniques  and 
solutions present themselves. The following projects give an idea 
of the roadmap for Co-dfns moving forward and especially for the 
near term improvements planned for the compiler.

We are working closely with industry partners through Dyalog, 
Ltd.  to  develop  benchmarks  and  implementations  of  end-user 
code  directly  from  the  code  bases  of  current  Dyalog  APL 
customers. This will allow us to not only examine Co-dfns from 
the perspective of traditional micro-benchmarks, but also give us a 
host  of  ready-to-use  real  life  applications,  which  often  diverge 
from micro-benchmarks in interesting ways.

We  actively  examine  new  programming  methods  and 
approaches for constructing the compiler. Specifically, the design 
of  the  current  compiler  closely  aligns  with  a  model  of 
programming  espoused  by  Moseley  and  Marks  [2006]  called 

Functional Relational Programming, though it is not strictly the 
same. We are investigating the benefits of more directly following 
this  model  to  gain  some  “for  free”  optimizations  in  using  the 
approach.  Whether  these  benefits  outweigh  the  increased  and 
perhaps arbitrary abstraction we do not yet know.

Work  by  Lenore  Mullin  [1988]  provides  a  firm  base  from 
which to develop a hybrid verification/type system on top of APL. 
A number of type systems have been created in industry [Shack-
Nielsen 2014] and academia [Slepak 2014] to type APL code of 
various  forms.  Our  audience  for  such  a  type  system  is  the 
information experts themselves,  coupled with the tuning expert, 
which  presents  interesting  challenges  in  its  design.  We  have 
preliminary  models  of  such  a  type  system,  but  no  working 
implementation as yet.

The construction of programs in the branchless, recursion-less 
style of the compiler exposes a side-benefit that will be integrated 
into the compiler at a later date. Namely, with the simple control 
flow  and  well  understood  primitives,  it  is  possible  to 
automatically  derive  a  worst-case  performance  model  from the 
code without  complex analysis.  This allows us to obtain worst-
case  performance  metrics  about  the  runtime  complexity  of  the 
compiler  as  well  as  memory  usage  automatically.  We plan  to 
integrate  this  feature  into  the  compiler  itself,  so  that  the 
information  expert  can  receive  an  automatic  analysis  of  the 
runtime  complexity  of  any  program  run  through  the  compiler 
without requiring hand-working the solution. 

We are  in  the  process  of  integrating  constant  folding  and 
constant propagation together with an optimization that lifts and 
minimizes runtime type checks to the entry of a function. These 
optimizations combine to greatly reduce the code size and type 
dispatch tables in the generated code. They have positive benefits 
for the automatic vectorization of loops by reducing the number of 
memory references and free variables inside of a loop.

The  comparison  against  C  does  not  take  into  account  the 
performance of C against the performance of the compiled code 
without  the  transfer  and  management  overheads.  We intend  to 
conduct more thorough benchmarking and performance analysis 
that takes these differences into account and provides a more clear 
picture into the performance of the compiler generated code.

6. Related Work

The  APEX  compiler  [Bernecky  1997]  developed  vectorized 
approaches  to  handling  certain  analyses  to  compile  traditional 

Figure 3.  Performance of optimized Co-dfns code in the Black Scholes benchmark on the CPU.

40



APL, including a SIMD tokenizer [Bernecky 2003]. It uses a SSA 
representation, and converts the dynamic scope of traditional APL 
functions into a static form early on. It also uses a matrix format  
to  represent  the  AST.  Traditional  APL  did  not  have  nested 
function definitions, however, and thus the APEX compiler does 
not have any specific approaches to dealing with function lifting.  
Bernecky suggests  an approach for  introducing parallelism into 
the compiler itself. While APEX is not self-hosting, its efforts to  
introduce  parallel  compiler  passes  should  inform Co-dfns  pass 
design. APEX does suffer from strong restrictions, though some 
could  evaporate  given  enough  effort.  Both  APEX and Co-dfns 
share some restrictions, such as not allowing the dynamic fixing 
of new functions at runtime. However, Co-dfns strives to ensure 
greater  compatibility  with  dfns  programs  in  Dyalog  than 
analogous programs and APEX. Additionally, the design of APEX 
and its architecture differ from Co-dfns significantly.

Bernecky further identified methods of reducing or optimizing 
the computational complexity or cost of certain array operations, 
allowing  improved  performance  of  easy  to  understand  array 
expressions [1999]. 

Timothy Budd implemented a compiler [1984; 1988] for APL 
which targeted vector processors as well as one for C code. They 
used  a  method  of  lazy  evaluation  to  avoid  intermediate  data 
copying.  Budd  provided  thoughts  and  some  ideas  on  how the 
compiler  might  be  implemented  in  parallel  as  well.  Budd's 
compiler  delayed  computation  until  the  point  at  which  the 
program  requested  the  value.  As  in  most  traditional  APL 
compilers, the accepted language does not coincide with normal 
APL  programs  of  the  time.  Budd's  compiler  also  managed 
allocation without requiring a garbage collector. 

Walter Schwarz implemented an APL to C compiler  for  the 
ACORN  system  targeting  the  CM-2  machine,  demonstrating 
performance potential for  APL as a massively parallel language 
[1991]. 

W. Ching and D. Ju have spent significant work on the ELI 
language  and  other  APL-class  language  implementations, 
especially  on  parallelized  code  and  optimization.  [Ching  1990; 
2000;  Ching,  et  al.  1993;  Ching and Katz  1994;  Hendriks  and 
Ching 1990; Ju and Ching 1991; Ju, et al. 1991]

J. D. Bunda and J. A. Gerth presented a method for doing table 
driven parsing of APL which suggested a parallel optimization for  
parsing, but did not elucidate the algorithm [1984]. 

Single-assignment  C  [Grelck  and  Scholz  2006]  attempts  to 
deliver a high-level, C-like language that uses arrays as first-class 
data  types.  It  focuses  heavily  on  a  functional  paradigm  and 
automatically  parallelizes  code.  The  same  issues  of  memory 
copying and array management occur in SAC as in Co-dfns, but 
SAC is  a  purely  functional  language,  whereas  Co-dfns  admits 
array mutation and variable assignment within a single scope. 

Dyalog has provided a good deal of input into Co-dfns, and so 
it makes sense that the current release of their interpreter begins to 
implement some of the ideas in Co-dfns. This includes a facility 
for  doing  coarse-grained  parallelism with  futures,  but  does  not 
include any ability to do more refined concurrent operations since 
the interpreter lacks single assignment arrays for synchronization; 
the interpreter itself makes no guarantees when effects occur in 
parallel. [Kromberg and Foad 2013] 

The  McLAB  project  [Casey,  et  al.  2010]  implements  a 
compiler  and supporting systems for  MATLAB code.  Like Co-
dfns, it provides an explicit intermediate language for work, but 
goes to a lower level with its own JIT. It also produces Fortran 
and  C  code,  which  are  not  explicit  targets  of  Co-dfns.  The  
MATLAB language itself  differs  from Co-dfns,  which naturally 
results in differences of approach with McLAB and Co-dfns. Co-

dfns adapts the APL language with explicit parallelism constructs, 
rather than emphasizing automatic parallelization of the runtime 
primitives. 

Languages  like  X10  [Charles,  et  al.  2005],  Fortress  [Steele 
2006], and Chapel [Chamberlain, et al. 2007] also strive to scale  
programming to large distributed systems.  They inherit much of 
their linguistic history from Fortran, Java, and C++, rather than 
APL. They also emphasize a more object-oriented approach than 
the array-centric,  functional  approach  of  Co-dfns.  They  expose 
much more explicit syntactic constructs for controlling data layout 
and synchronization,  whereas Co-dfns tries to minimize explicit 
syntax as much as possible. 

A number of systems such as ZPL [Lin and Snyder 1994] and 
Accelerate  [Chakravarty,  et  al.  2011]  are  able  to  provide 
interesting implementation strategies for array programming, each 
emphasizing different elements. They all take the overall approach 
of altering the language design in favor of making certain features 
prevalent.  Accelerate,  for  instance,  lifts  rank  to  the  type  level,  
meaning that shapes are no longer first class entities. ZPL uses a 
more traditional language but enables predictable data layout for 
distributed computing. Accelerate takes advantage of the language 
and implementation to make heavy use of fusion. 

Eric  Holk's  Harlan  system  [Holk  2011]  takes  a  unique 
approach.  Targeting  the  GPU  explicitly,  it  tries  to  introduce 
traditional programming concepts as native concepts on the GPU, 
so that traditional programs can run reasonably on the GPU. This 
approach,  instead  of  lifting  array  programming  to  the  general-
purpose sphere, pulls general-purpose language constructs such as 
ADTs into the GPU and array world through the use of region 
inference and a number of other transformations. It also uses the 
nanopass style of compiler design and includes a macro system on 
top of it to reduce the number of core forms the compiler must 
consider.

7. Conclusion

The Co-dfns compiler enables information experts to convert their 
interpreted APL programs into efficient C and CUDA code that 
integrates into the Dyalog APL interpreter. This allows them to 
optimize  hotspots  in  their  code  and  to  realize  increased 
performance without rewriting key elements of their software. It  
also increases the range of  hardware  platforms  available  to the 
Dyalog APL programmer, as they are now able to execute their 
code on highly parallel processors like GPUs and the Xeon Phi.  
To  achieve  this  performance  on  scalar-centric  algorithms  like 
Black Scholes, integration into the interpreter makes the largest  
single  performance  difference,  eliminating interpreter overheads 
getting data in and out of the system. After this, scalar function 
loop fusion becomes critical to make effective use of the cache 
hierarchies on modern architectures. 

In addition to producing fast code, the compiler is written as a 
simple,  data-flow,  data-parallel  program  without  any  explicit 
recursion, branching, or other forms of complex control-flow. The 
directness  and  concision  afforded  by  this  method  demonstrates 
that  the  number  of  domains  for  which  array-oriented 
programming is suitable is larger than commonly granted.

References
Robert Bernecky. 1997. APEX: The APL parallel executor. (1997).

Robert  Bernecky. 1999. Reducing computational  complexity with  array 
predicates. ACM SIGAPL APL Quote Quad 29, no. 3 (1999): 39-43.

Robert Bernecky. 2003. An SPMD/SIMD parallel tokenizer for APL. In 
Proceedings of the 2003 conference on APL: stretching the mind, pp. 
21-32. ACM, 2003.

41



Timothy A. Budd. 1984. An APL Compiler for a Vector Processor. ACM 
Trans.  Program.  Lang.  Syst. 6,  3  (July  1984),  297-313. 
DOI=10.1145/579.357248 http://doi.acm.org/10.1145/579.357248

Timothy A. Budd. 1988. An APL compiler. NY: Springer-Verlag, 1988.

J. D. Bunda and J. A. Gerth. 1984. APL two by two-syntax analysis by 
pairwise reduction. SIGAPL APL Quote Quad 14, 4 (June 1984), 85-
94.  DOI=10.1145/384283.801081 
http://doi.acm.org/10.1145/384283.801081 

Andrew Casey, Jun Li, Jesse Doherty, Maxime Chevalier-Boisvert, Toheed 
Aslam,  Anton  Dubrau,  Nurudeen  Lameed,  Amina  Aslam,  Rahul 
Garg,  Soroush  Radpour, Olivier  Savary Belanger, Laurie Hendren, 
and Clark Verbrugge. 2010. McLab: An extensible compiler toolkit 
for MATLAB and related languages. In C 3 S 2 E-10. Montreal.

Manuel  M.T.  Chakravarty,  Gabriele  Keller,  Sean  Lee,  Trevor  L. 
McDonell, and Vinod Grover. 2011. Accelerating Haskell array codes 
with  multicore  GPUs.  In  Proceedings  of  the  sixth  workshop  on  
Declarative aspects of multicore programming (DAMP '11).  ACM, 
New  York,  NY,  USA,  3-14.  DOI: 
http://doi.acm.org/10.1145/1926354.1926358

B.L.  Chamberlain,  D.  Callahan,  and  H.P.  Zima.  2007.  Parallel 
Programmability and the Chapel Language. International Journal of  
High Performance Computing Applications vol.  21 no.  3.  (August 
2007). 291-312.

Philippe  Charles,  Christian  Grothoff,  Vijay  Saraswat,  Christopher 
Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and 
Vivek  Sarkar.  2005.  X10:  an  object-oriented  approach  to  non-
uniform cluster computing. In Proceedings of the 20th annual ACM  
SIGPLAN  conference  on  Object-oriented  programming,  systems,  
languages, and applications (OOPSLA '05). ACM, New York, NY, 
USA,  519-538.  DOI=10.1145/1094811.1094852 
http://doi.acm.org/10.1145/1094811.1094852

Wai-Mee Ching. 1990. Automatic parallelization of APL-style programs. 
In Conference Proceedings on APL 90: For the Future (Copenhagen, 
Denmark, August 13 - 17, 1990). P. Gjerløv, Ed. APL '90. ACM, New 
York, NY, 76-80. DOI= http://doi.acm.org/10.1145/97808.97826

Wai-Mee Ching. 2000. The design and implementation of an APL dialect, 
ELI. In  Proceedings of the international Conference on Apl-Berlin-
2000 Conference (Berlin,  Germany, July 24 - 27, 2000). APL '00. 
ACM,  New  York,  NY,  69-76.  DOI= 
http://doi.acm.org/10.1145/570475.570485

Wai-Mee Ching, Paul Carini, and Dz-Ching Ju. 1993. A primitive-based 
strategy for producing efficient code for very high level programs.  
Comput.  Lang.  19,  1  (Jan.  1993),  41-50.  DOI= 
http://dx.doi.org/10.1016/0096-0551(93)90038-3

Wai-Mee Ching and Alex Katz. 1994. An experimental APL compiler for a 
distributed  memory  parallel  machine.  In  Proceedings  of  the  1994 
ACM/IEEE  Conference  on  Supercomputing (Washington,  D.C., 
November  14  -  18,  1994).  IEEE  Computer  Society  Press,  Los 
Alamitos, CA, 59-68.

Alain Darte. 2000. On the complexity of loop fusion. Parallel Computing, 
26(9),  1175-1193.  DOI=10.1016/S0167-8191(00)00034-X 
http://dx.doi.org/10.1016/S0167-8191(00)00034-X

Dyalog, Ltd. 2014. SA4: Introduction to Direct Workspace Access (DWA). 
(September  2014).  In  Dyalog  '14.  (September  2014).  Retrieved 
March  23,  2015  from  http://www.dyalog.com/user-
meetings/dyalog14.htm

Dyalog,  Ltd.  2015.  Dyalog:  A Tool  of  Thought  for  Software  Solutions. 
(March  2015).  Retrieved  March  23,  2015  from 
http://www.dyalog.com

Clemens Grelck and Sven-Bodo Scholz. 2006. SAC — A Functional Array 
Language  for  Efficient  Multi-threaded Execution.  In  International  

Journal  of  Parallel  Programming,  Vol.  34, No.  4,  (August  2006). 
DOI: 0.1007/s10766-006-0018-x

Paul Grosvenor. 2013. COSMOS Performance Improvements. In  Dyalog 
'13.  (October  2013).  Retrieved  March  23,  2015  from 
http://video.dyalog.com/Dyalog13/?v=oK_XGobiFmM

Ferdinand Hendriks and Wai-Mee Ching. 1990. Sparse matrix technology 
tools in APL. In Conference Proceedings on APL 90: For the Future 
(Copenhagen, Denmark, August 13 - 17, 1990). P. Gjerløv, Ed. APL 
'90.  ACM,  New  York,  NY,  186-191.  DOI= 
http://doi.acm.org/10.1145/97808.97844 

Eric  Holk,  William  Byrd,  Nilesh  Mahajan,  Jeremiah  Willock,  Arun 
Chauhan,  Andrew Lumsdaine.  2011.  Declarative  Programming  for 
GPUs. In  International Conference on Parallel Computing (ParCo  
2011). (September 2011).

Aaron W. Hsu. 2014a. Co-dfns: Ancient Language, Modern Compiler. In 
Proceedings  of  ACM  SIGPLAN  International  Workshop  on  
Libraries,  Languages,  and  Compilers  for  Array  Programming  
(ARRAY'14).  ACM,  New  York,  NY, USA,  ,  Pages  62  ,  6  pages. 
DOI=10.1145/2627373.2627384 
http://doi.acm.org/10.1145/2627373.2627384

Aaron  W.  Hsu.  2014b.  Co-dfns  Report:  Performance  and  Reliability 
Prototyping. In Dyalog '14.  (September 2014). Retrieved March 23, 
2015 from http://video.dyalog.com/Dyalog14/?v=8VPQmaJquB0

Kenneth E. Iverson. 2007. Notation as a tool of thought. In  ACM Turing 
award  lectures. ACM,  New  York,  NY,  USA. 
DOI=10.1145/1283920.1283935 
http://dx.doi.org/10.1145/1283920.1283935

Dz-Ching  Ju.  and  Wai-Mee  Ching.  1991.  Exploitation  of  APL  data 
parallelism on a shared-memory MIMD machine. In Proceedings of  
the Third ACM SIGPLAN Symposium on Principles and Practice of  
Parallel Programming (Williamsburg, Virginia, USA, April 21 - 24, 
1991).  PPOPP  '91.  ACM,  New  York,  NY,  61-72.  DOI= 
http://doi.acm.org/10.1145/109625.109633

Dz-Ching Ju, Wai-Mee Ching, and Chuan-lin Wu. 1991. On performance 
and space usage improvements for parallelized compiled APL code. 
In  Proceedings  of  the  international  Conference  on APL '91 (Palo 
Alto, California, USA, August 04 - 08, 1991). APL '91. ACM, New 
York, NY, 234-243. DOI= http://doi.acm.org/10.1145/114054.114080

Morten  Kromberg  and  Jay  Foad.  2013.  Parallel  Language  Features  in 
Version  14.0.  Video.  In  Dyalog '13.  (October  2013). Retrieved on 
March  23,  2015  from  http://video.dyalog.com/Dyalog13/?
v=Bmx_yUKxVv0

Calvin  Lin  and  Lawrence  Snyder.  1994.  ZPL:  An  array  sub-language. 
Languages and Compilers for Parallel Computing Lecture Notes in  
Computer Science Volume 768. 96-114.

Ben Moseley and Peter Marks. 2006. Out of the tar pit. In  SOFTWARE 
PRACTICE ADVANCEMENT (SPA).

Lenore Mullin. 1988. A mathematics of arrays. Ph.D. Dissertation. School 
of Computer and Information Science, Syracuse University.

Walter Schwarz. 1991. Acorn Run-Time System for the CM-2. In Arrays,  
Functional  Languages,  and  Parallel  Systems,  pp.  35-57.  Springer 
US, 1991.

Anders Shack-Nielsen. 2014. Parsing APL for Static Analysis. (September 
2014).  Retrieved  March  23,  2015  from 
http://video.dyalog.com/Dyalog14/?v=7Z0wzY9Oip4

Justin  Slepak,  Olin  Shivers,  and  Panagiotis  Manolios.  2014.  An array-
oriented language with static rank polymorphism. In  Programming 
Languages  and  Systems (pp.  27-46).  Springer  Berlin  Heidelberg. 
DOI=10.1007/978-3-642-54833-8_3  http://dx.doi.org/10.1007/978-
3-642-54833-8_3

Guy L. Steele Jr. 2006. Parallel Programming and Parallel Abstractions in 
Fortress. In FLOPS.

42


	1.  Introduction
	2.  Compiler Architecture
	3.  Optimizations
	3.1  Scalar Loop Fusion
	3.2  Function Inlining and Allocation
	3.3  DWA as an Optimization

	4.  Performance
	4.1  Without Optimizations
	4.2  With Optimizations
	4.3  Preliminary GPU Results
	4.4  Comparing to C

	5.  Ongoing Work
	6.  Related Work
	7.  Conclusion

