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Abstract

Array data dependence analysis methods cur-

rentlyin use generate false dependence that can
prevent useful program transformations. These
false dependence arise because the questions
asked are conservative approximations to the
questions we really should be asking. Unfortu-

nately, the questions we really should be asking
go beyond integer programming and require deci-
sion procedures for a subclass of Presburger for-
mulas. In this paper, we describe how to extend
the Omega test so that it can answer these queries

and allow us to eliminate these false data depen-

dences. Wehaveimplemented thetechniques de-
scribed here and believe they are suitable for use
in production compilers.

1 Introduction

Recent studies [HKK+91, CP91] suggest that array
data dependence analysis methods currently in use gen-
erate false dependence that can prevent useful pro-

gram transformations. For the most part, these false
dependence are not generated by the conservative
nature of algorithms such as Banerjee’s inequalities

[SLY89, KPK90]. These false dependences arise be-
cause the questions we ask of dependence analysis al-
gorithms are ccmservative approximations to the ques-
tions we really should be asking (methods currently in
use are unable to address the more complicated ques-
tions we should be asking).

*This work is supported by NSF grant cC!R-9157384 and a
Packard Fellowship.
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Mschinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM SIGPLAN ’92 PLD1-6/92/CA

01992 ACM 0-89791-476-7/92/0006/01 40...$1.50

For example, there is a flow dependence from an ar-
ray access A(i) to an array access l?(j) iff

A is executed with iteration vector i,

B is executed with iteration vector j,

A(i) writes to the same location as is read by B(j),

A(i) is executed before B(j), and

there is no write to the location read by l?(j) be-
tween the execution of A(i) and B(j).

However, most array data dependence algorithms ig-

nore the last criterion (either explicitly or implicitly).

While ignoring this criterion does not change the to-
tal order imposed by the dependence, it does cause
flow dependence to become contaminated with out-
put dependence (storage dependence). There are
techniques (such as privatization, renaming, and array
expansion) that can eliminate storage-related depen-
dence. However, these methods cannot be applied if

they appear to affect the flow dependence of a prcr-
gram. Also, flow dependence represent more than or-
dering constraints: they also represent the flow of in-
formation. In order to make effective use of caches or
distributed memories, a compiler must have accurate
information about the flow of information in a pro-
gram.

Similarly, many dependence testing algorithms do
not handle assertions about relationships among non-
induction variables or array references that appear in
subscripts or loop bounds. To be useful, a system must
not only be able to incorporate assertions about these
relationships, but also be able to generate a useful di-
alog with the user about which relationships hold.

Unfortunatelyj the questions we really should be ask-
ing go beyond integer programming and require deci-
sion procedures for a subclass of Presburger formulas.

Presburger formulss are those that can be built up
from integer constants, integer variables, addition, >,
=,1, A, V, +, V and 3. We can use these primitives
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to allow us to also handle subtraction, multiplication

by integer constants, and the other arithmetic relations
(~, <, ~). Presburger formulas are decidable, but the

only known decision procedures that handle the full

class take at least doubly-exponential worst-cast time.

Our original work on the Omega test [Pug91] de-
scribed efficient ways to answer the usual questions
asked for dependence analysis. In this paper, we show
how the Omega test can be extended so that it can be
used to answer questions in a subclass of Presburger
arithmetic. We then show how to phrase within that
subclass the questions we need to ask. We also describe
experiences with an implementation of the methods de-
scribed here that convince us that these techniques are
suit able for use in production compilers,

2 Notation

The notation in Table 1 is adapted from [ZC91]. Below,
we briefly discuss dependence distance, direction and
restraint vectors.

2.1 Dependence Distance

A data dependence has a dependence distance in each
loop, which is is the difference between the values of
the loop variables for some pair of iterations involved in
the dependence. 1 The dependence distance vector for
a dependence is a vector of the dependence distances
for the loops common to both statements involved in
the dependence,

Often, a dependence distance is not constant, and
the dependence distance in one loop can be coupled
to the dependence distance in another loop. For ex-
ample a dependence might have dependence distances
{(Ai, Aj) I O s Ai ~ 5A 1< Ai+ Aj ~ 10}. Since
dependence represent a constraint from one statement
execution to a later statement execution, dependence

1Thereis some disagreementwithinthe researchcomrn~tY

as to whether dependence distance reflects the difference in the
values of the loop variables ([ZC91]), or the difference in the loop
trip counts ([W0189]). This disagreement is usually submerged
by the fact that many researchers only discuss normalized loops
with an increment of 1. One problem with using the difference
in loop trip counts is that it is not always well defined. For
example, in the following code segment, the dependence dist ante
is (1, -2) if the difference in the loop variables is used; however,
the dependence distance doesn’t seem to be defined if loop trip
counts are used and the loop is not normalized:

for i := O to 10

for j :=ito10by3
A[i, j3 := A[i-1, j+2]

The problem with using the difference in the values of loop
variables as dependence distance is that negative steps compli-
cate our discussion of forward dependence distances (usually de-
scribed as lexicographically positive distances) and the descrip-
tion of the conditions under which loop interchange and circula-
tion are allowed. In this paper, we use the difference in the loop
variables as the dependence distance, and ignore the side issue
of complicating the definition of forward dependence dktances.

distances must be lexicographically positive2, with a
zero dependence distance in all loops possible only if
the dependence is syntactically forward.

2.1.1 Direction vectors

A direction vector summarizes, for each loop, the pos-
sible signs of the dependence distance in that loop.
For example a dependence with dependence distances
(Ai, Aj) such that O ~ Ai < 5A0 < Aj <10 would be
represented by the direction vectors {(O+, O+)}. We
also can give a specific distance or range of distances
in a direction vector (e.g., {(O+, 1)} or {(O :1, l)}).

It is not always possible to summarize accurately the
possible signs of the dependence distance with a single
direction vector. The signs of the dependence distances
{(Ai, Aj) I Ai = Aj} can be accurately represented by

the direction vectors {(+, +), (O, O), (–, –)}. After fil-
tering for lexicographically forward directions, this de-
pendence is represented by {(+, +), (O, O)}. If these two
are compressed into a single direction vector (O+, O+),
it falsely suggests the signs (O, +) and (+, O) are possi-
ble.

Given a set of constraints that describe the possi-
ble forward and backward dependence distances, we

analyze the constraints to produce a set of partially
compressed direction vectors (as described in [Pug91]).
These direction vectors are filtered to produce a set of
forward direction vectors.

2.1.2 Restraint vectors

While checking for dependence killing, covering and re-
finement (Section 4), we deal with dependence as in-

teger programming problems. We need to force the

dependence directions to be Iexicographically positive
(e.g., force Ai >0 VA? = O A Aj ~ O). Unfortu-

nately, this is not a conjunction of linear constraints.
However, we can often find a conjunction of linear con-
straints that will force the dependence distance to be
lexicographically forward. For example, we can force
the dependence distances Ai = Aj to be lexicographi-
cally positive by adding the constraint Ai ~ O.

We represent constraints that force the dependence
directions to be lexicographically positive in the same
form as direction vectors (specifying the possible signs
for each dependence distance). However, these “re-
straint” vectors only have to filter out lexicographically
negative directions which are legal solutions to the in-
teger programming problem that describes all forward
and backward dependence distances. We can use the
set of direction vectors as a set of restraint vectors,
but using restraint vectors usually requires that fewer
constraints be added to the problem.

Our algorithms in Sections 4 and 5 are unable to deal
directly with dependence that cannot be represented

2 &5~ng loop in~e~ents ae pOSitiVe, see footnote 1 ‘or

details.
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A, B,... Refers to a specific array reference in a program
. .
1,~, k,... An iteration vector that represents a specific set of values of the loop variables for a loop nest.

[A] The set of iteration vectors for which A is executed

A(i) Theinstance ofarray reference Awhenthe loop variables have the values specified byi

A(i) ‘&bA’(i’) The references A and A’ refer to the same array and the subscripts of A(i) and A’(i’) are equal.

A(i) < A’(i’) Execution of A(i) occurs previous to A’(i’)
A(i) <<~ A’(i’) The dependence dist ante from A(i) to A’ (i’) is described by the direction/dist ante

s yzr The set of symbolic constants (e.g., loop-invariant scalar variables)

Figure 1: Notation used in this paper

by a single restraint vector. Therefore, such depen-
dence are split into several dependence, one for each
restraint vector.

3 Extending the Omega test

The Omega test [Pug91] is an integer programming al-
gorithm based on Fourier-Motzkin variable elimination.
The basic operation supported by the Omega test is
projection. Intuitively, the projection of a set of con-
straints is the shadow of a set of constraints. More

formally, given a set of linear equalities and inequali-
ties on a set of var~bles V, p~ojecting the constraints
onto the variables V (where V C V) produces a set of

constraints on variables v that has the same integer
solutions for P as the original problem. For exam-

ple, projecting {O ~ a ~ 5; b < a < 5b} onto a gives

{2 < a s 5}, We use the notation rzl,...,Cn(S) to rep-
resent the projection of the problem S onto the set of
variables xl, ... , Zm and the notation TYZ(S) to repre-
sent the projection of the problem S onto all variables
other than x.

The Omega test determines if a set of constraints
has integer solutions by using projection to eliminate
variables until the constraints involve a single variable,

at which point is it easy to check for integer solutions.

There are many other applications of projection. For
example, if we define a set of constraints for an array
pair that includes variables for the possible dependence
distances, we can project that set of constraints onto
the variables for the dependence distance. The pro-
jected system can be efficiently used to determine the
dependence directions and distances.

Because the Omega test checks for integer solutions,
not real solutions, it is sometimes unable to produce
a single set of constraints when computing mc(S). In-
stead, the Omega test is forced to produce a set of
problems So, S1, . . . . SP and a problem T such that

mc(s) = ~=o Si s T. This is called splintering, and
we call So the Dark Shadow of mz(S) and call T the

Real Shadow of ~C(S) (the Real Shadow may include
solutions for z that only have real but not integer so-
lutions for the variables that have been eliminated).

In practice, projection rarely splinters and when it
does, So contains almost all of the points of ~Z(S), T

vector D

doesn’t contain many more points than r.(S), and p is
small. If we are checking to see if S’ has solutions, we
first check if So # @or T = (?I.only if both tests fail
are we required to examine S1, S2, , . . . SP. Also, when
checking for integer solutions, we choose which variable
to eliminate to avoid splintering when possible.

Although integer programming is an NP-Complete
problem, the Omega test is efficient in practice [Pug91].

3.1 How the Omega test works

Fourier- Motzkin variable elimination [DE73] eliminates
a variable from a linear programming problem. Intu-
itively, Fourier-Motzkin variable elimination finds the
n – 1 dimensional shadow cast by an n dimensional
object.

Consider two constraints on z: a lower bound ~ ~ bz
and an upper bound az ~ a (where a and b are posi-

tive integers). We can combine these constraints to get
a~ ~ ab.z ~ ba. The shadow of this pair of constraints
is a,tl ~ ba. Fourier-Motzkin variable elimination cal-
culates the shadow of a set of constraints by combining
all constraints that do not involve the variable being
eliminated with the result from each combination of
a lower and upper bound on the variable being elimi-
nated. The real shadow is a conservative approxima-

tion to the integer shadow of the set of constraints.

In [Pug91], we extended Fourier-Motzkin variable
elimination to be an integer programming method.
Even if a~ ~ ba, there may be no integer solu-
tion to z such that a~ ~ abz ~ ba. However, if
a~ + (a – l)(b – 1) < ba, we know that an integer

solution to z must exist. This is the dark shadow of
this pair of constraints (described in [Pug91]). The
dark shadow is a pessimistic approximation to the in-
teger shadow of the set of constraints. Note that if
a = 1 or b = 1, the dark shadow and the real shadow
are identical, and therefore also identical to the integer
shadow.

There are cases when the real shadow contains in-
teger points but the dark shadow does not. In this
case, determining the existence of integer solutions to
the original set of constraints requires the use of special
case techniques, described in [Pug91], that are almost

never needed in practice.
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3.2 Determining the validity of Presburger
formulas

Assume that p and q are propositions that can each
be represented as a conjunction of linear equalities and

inequalities. We can determine the truthfulness of the
following predicates:

Is p a tautology? Trivial to check when p is a corl-

junction.

Is p satisfiable? We can check this using techniques
described in Section 3.1 and in [Pug91].

Is p a q a tautology? This could not be efficiently

answered using the techniques described in
[Pug91], but can be efficiently answered in practice
using techniques described in Section 3.3.

The projection transformation offered by the Omega
test allows us to handle embeded existential qualifiers:
r?$ (p) = (3z s.t. p). We can combine these abilities,
as well as any standard transformation of predicate cal-
culus, to determine the validity of certain Presburger
formulas. We have not attempted to formally capture
the subclass of Presburger formulas we can answer eilh-
ciently. The following are examples of some Presburger
formulas we can answer efficiently:

Vz, ~y s.t. p: True iff r-v(p) is a tautology.

Vz, (3v s.t. p) ~ @z s.t. q): True iff T=v(p) ~ m~z(g)is a
tautology. We can easily determine this if T_Z(g) does
not splinter.

Vx, ~p V q V 7T: True iff p A T +- q is a tautology.

where p, q and ~ are conjunctions of linear equalities
inequalities

3.3 Computing Gists and Checking when

p + q is a tautology

and

Intuitively, we define (gist p given q) as the new infor-
mation contained in p, given that we already know

!l. More formally, (gist p given q) is a conjunction
containing a minimal subset of the constraints of p
such that ((gist p given g) A q) = (p A q)). Note that
(gist p given q) = True s q = (pA q) E (q ~p).

When computing (gist p given q), we first convert
any equalities in p into a matched pair of inequalities
(e.g., convert z = 1 into 1< z < 1). The following
is a naive method for computing gists. The algorithm
treats a conjunction as a list of individual constraints:

gist []q=[]
gist (e :p) q = e : (gistp (e : q)),

if (=e) A p A g k satisfiable
gist (e : p) q = gist p q, otherwise

This algorithm requires many satisfiability tests,
each of which takes a non-trivial amount of time. We
handle this problem by checking for a number of special
cases (listed in order of increasing difficulty to check):

●

●

●

●

For each equation e in p, we check to see if e is
implied by any single constraint in p or q. If so, e

is redundant and not in the gist.

We check to see if there is any variable that has

an upper bound in p but not in ~, If so, we know
that at least one of the upper bounds from p must
be in the gist. A similar check is made for lower

bounds,

If there does not exist some constraint e’ in p or
q such that the inner product of the normals of e
and e! is positive, then e must be in the gist.

For each equation e in p, we check to see if e is
implied by any two constraints in p and/or q (other
than e).

These fast checks often completely determine a gist.
When they do not, they usually greatly simplify the
problem before we utilize the naive algorithm.

3.3.1 Checking implications

As noted earlier, we determine if q ~ p is a tautology

by checking if (gist p given q) = True. When perform-
ing subset tests using the above algorithms, we short-
circuit the computation of the gist as soon as we are
sure that the gist is not “True)’.

3.3.2 Combining Projection and Gist
computation

If is often the case that we need to compute problems
of the form gist r-y(p) given maz (q). We could perform

this computation by performing the projections inde-
pendently, and then computing the gists. However, if
z is free in p and y is free in q, there is a more efficient

solution. We can combine p and q into a single set of
constraints, tagging the equations from p red and the
equations from q black. We then project away the vari-
ables v and z and eliminate any obviously redundant
red equations as we go. Once we have projected away
y and z, we then compute the gist of the red equations

with respect to the black equations,

3.4 Related Work

Several authors have explored methods for using inte-
ger programming methods to decide subclasses of Pres-
burger formulas [Ble75, Sho77, JM87]. Previous ap-
proaches have not had any way to compute projections
(and thereby handle embeded existential quantifiers)
nor have they had special efficient methods for check-
ing when an implication is a tautology. We have not
yet looked at wider applications of our work or done
any direct comparison of our implementation against
implementations of other approaches. We believe our
approach and implementation will compare favorably
with previous ones.
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a(n) := . . .
for L1 := n to n+iO do

a(Ll) := . . .

for LI := n to n+20 do

. . . := a(Ll)

Examplel: Killed flowdep

for L1 := 1 to n do

for L2 := n+2-Ll to m do

a(L2) := a(L2-1)

Unrefined flow dependence: (0+,1)

Refined flow dependence: (0,1)

Example4: Trapezoidal Refinement

4 Handling array kills

a(m) := . . .
for L1 := 1 to 100

a(Ll) := . . .

for L2 := 1 to n do

a(L2) := . . .

a(L2-1) := . . .
for L2 := 2 to n-1 do

. . . := a(L2)

Example2: Covering and Killeddep

for Li :=ltondo

for L2 := L1 to m do

a(L2) := a(L2-1)

Unrefined flow dependence: (0+,1)

Refined flow dependence: (0:1,1)

Example 5: Partial Refinement

In this section, we discuss the elimination of false
dependence in which an intervening write eliminates
an apparent dependency. These techniques are most

useful when applied to flow dependence. However, we
can also apply thereto output and anti-dependences.

There are four kinds of analysis we perform:

Killing A dependence from a read or write A to a

read or write Ciskilled by the dependence froma
write B to C’ iff all array elements accessed by A
are overwritten by B before C can access them.

Covering A write A covers a read or write B iff it
writes to all the elements of the array that will be

accessed by B. In this case, any dependence to
B from an access that precedes A is killed by the

dependence from A.

Terminating A dependence from a read or write A
to a write B terminates A if B overwrites allele-
ments that were accessed in A. In this case, any
dependence from A to a read or write after B is
killed by the dependence from A to B.

Refinement It may be possible to refine the depen-

dence distances for a dependence from a write A
to a read or write B to a subset D of these de-
pendence distances. This is possible iff any de-
pendence with a distance not in D is killed by a
dependence in D.

We first compute all output dependence (output de-
pendence give us fast checks for when to test for killing
and refinement ). Then, for each array read reference
B, we start computing flow/anti dependence to/from
B. For each apparent flow dependence from a write

for L1 :=1 tondo

for L2 :=2 tomdo

a(L2) := a(L2-1)

Unrefined flow dependence: (0+,1)

Refined flow dependence: (0,1)

Example 3: Refinement

for L1 := 1 to n do
for L2 :=2 tomdo

a(L1–L2) := a(L1-L2)

Unrefined flow dependence: (a, a), a >1

Refined flow dependence: (1,1)

Example 6: Coupled Refinement

A, we attempt to refine the dependence distance, and
then check if it is covering. If it is covering, we can rule
out a flow dependence from any write that occurs com-

pletely before A. If there appear to be multiple flow
dependence to B, we check them pairwise for killing.

4.1 Killing dependence

A dependence from a read or write A to a read or write

C’ is killed by the dependence from a write B to C iff
all elements accessed by A are overwritten by B before
C can access them. This is the case if

Vi, k, Sym, i~[A]Ake [C]

AA(i) < C(k) A A(i) ‘~b C(k) +
~j s.t. j E [B] A A(i) ~ B(j) < C(k)

AB(j) ‘~b C(k)

In Example 1, the write to a(Ll ) kills the flow from
the write of a(n) to the read of a(Ll):

i ~ [A]A k c [C] A A(i) < C(k) A A(i) ‘~bC(k)
~kl=n

3j s.t. j c [1?] A A(i) R B(j) ~ C(k) A B(i) ‘~bC(k)
=n<kl<n+10

kl=n~n<kl<n+10

If the first write were to a(m), we would not be able

to verify the kill:

i G [A] A k G [C] A A(i) < C(k) A A(i) ‘~bC(k)
-n<kl<n+20Akl=m

3j s.t. j G [B] A A(i) < B(j)< C’(k) A B(i) ‘~b c(k)
~n<kl<n+10

n<kl<n+20Akl=m #n< kl<n+10
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If n ~ m ~ n + 10 had been asserted by the user, we
would be able to verify the kill.

4.2 Covering dependence

A dependence from a write A to a read or write B is

a covering dependence iff every location accessed by B
is previously written to by A. If the dependence from

A to B is a covering dependence, we need not examine
any dependence to B from any accesses that would
precede the writes of A (since the dependence from A
would kill such a dependence).

A dependence from a write A covers B iff

Vj, Sym, j G [B]

* 3i s.t. i ~ [A] A A(i) < B(j) A A(i) ‘&bB(j)

In Example 2, the read of a(L2 ) is covered by the write
to a(L2-1):

j c [B]
sl<j1<100A2<jQ<n–1

3i s.t. i c [A]A A(i) < B(j) AA(i) ‘~b B(j)
El~jl<100AO~j2~n-1

l~jl~100A2~jz<n–1
*l<jl<100A0~jz<n–1

Since we have determined that this dependence is
a covering dependence, there is no need to check for
dependencies with writes that must precede a(L2-1 )

(such as the write to a(m)). However, for writes that

may be executed after some executions of the cover
(such as the write toa(L2)), we must check separately
for a kill. In general, we may have to determine which
loop carries the cover to know which write accesses
must precede it. The cover in this example is loop in-
dependent, so we know that all executions of the write
a(Ll ) must precede the cover. Note that we only find

out that the cover is Ioop independent when we refine
its dependence vector from (O+) to (0). For this reason,

we perform refinement before coverage analysis.

4.3 Terminating dependence

A dependencefrom a read or write A to a write B is a
terminating dependence iff every location accessed by
A is subsequently overwritten by 13. If the dependence
from A to B is a terminating dependence, we need not
examine any dependence from A to any accesses that
would follow the writes of l?.

A dependence from A to a write B terminates A ifi

V i, sym, i G [A]+

3j s.t. j E [n] AA(i) < B(j) A A(i) ‘~b B(j)

4.4 Refining dependence distances/directions

If all iterations of a read or write B that receive a
dependence from a write A also receive a dependence
from a more recent iteration of A within distance D,
the dependence distances can be refined to D:

Vi, k, Sym, iC[A]Ake [B]

AA(i) < B(k) A A(i) ‘~b B(k)
* A(i) <D B(k)

Wj s.t. j G [A]
AA(i) < A(j) <ZJ B(k)

AA(j) ‘~b B(k)

When we attempt to refine dependence vectors, we do
so in a way that ensures that the refined dependence
cent ains the most recent executions of A, or in other
words:

A(i) < l?(k) AA(i) <D B(k) AA(.j) <D B(k)
+ A(i) < A(j)

In this case, we can simplify the condition under which
we can perform refinement to:

Vi, k, Sym, iE[A]Ak E[B]

AA(i) < B(k) A A(i) ‘&bB(k)
+ 3.j s.t. j c [A] A A(j) <~ B(k)

AA(j) ‘~b B(k)

which can be further transformed to

V k, sym,

(~i s.t. i c [A] Ak e [B] AA(i) < B(k) AA(i) ‘~b~(k))

~ (~j s.t. j c [A] A A(j) <D B(k) A A~) ‘~bB(k))

Example 3 shows a loop with a flow dependence that
can be refined from (0+,1) to (0,1):

~i s.t. k G [B] A i 6 [A]A A(i) < B(k) A A(i) ‘~b B(k)
=l~kl<nA3<kz<rn

3j s.t. j G [A]A A(j) <D W) A W ‘~b B(k)
cl~kl~nA3~kz~m

l~kl~nA3~kz~m
til~kl~nA35kQSm

Example 4 is similar to Example 3, but includes a
triangular loop. Example 5 is similar to Example 4,
but here the distance can only be refined to (0:1,1)
because iterations such that 1< LI = L2 receive a flow
from iteration (LI – 1, L2 – 1). Example 6 shows a case
where the dependence distances are coupled. Neither

of the two approaches similar to ours ([Bra88, Ros90])
would handle Examples 4, 5 or 6.

The above methods allow us to check to see if
any specific D is a correct refinement of a direc-
tionldistance vector. We generate the D’s by attempt-
ing to fix the dependenc~ distance, starting with the
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outermost loop. For each loop, we attempt to set the
dependence distance to be the minimum possible dis-
tance in that loop (which is easily extracted from the

set of constraints describing the possible (unrefined)
dependence distances). If we succeed, we move on to
the next loop. If we fail, we stop refining that de-
pendence (attempts to further refine the dependence
distance for inner loops would not satisfy A(i) <

B(k) AA(i) <D B(k) AA(j) <D B(k) =$- A(i)< A(j)).

This method for generating D’s to test will not au-
tomatically find the partial refinement in Example 5.

4.5 Quick tests for when to check for the
above

We can often avoid performing the general tests de-
scribed above by doing some quick tests for special

cases. For example, for the dependence from B to C to

kill the dependence between A and C’, there must be
an output dependence between A and B, and it must
be possible for the dependence distance from A to C
to equal the total distance from A to B and B to C.

Similarly, for there to be any possibility of refining the
dependence distance in that loop from A to C, A must
have a self-output dependence with a non-zero distance
in a loop in order.

If a dependence from A to B does not include the

distance O in some loop 1, it can not cover the execution
of B the first time through 1, so we do not test it for

coverage. Note that A may actually cover B if B is
not executed the first time through 1- we would fail
to detect this cover, and be forced to kill the covered
dependencies with the A to B dependence later.

Finally, if we are trying to kill a dependence from
A to C with a covering dependence from B to C’j and
the dependence from B is always closer than the de-

pendence from A, then we know the dependence from

A to C’ is killed without having to perform the general
test.

4.6 Related Work

In analyzing false array flow data dependence (caused
by output dependence), there are two basic ap-
proaches:

e Extend scalar dataflow methods by recording
which array sections are killed and/or defined

[GS90, Ros90].

e Extend the pair-wise methods typically used for
array data dependence to recognize array kills
[Bra88, Rib90].

Both approaches have merits. Our work is an exam-
ple of the second approach, and we believe it corrects
several limitations and flaws in previous work on that
approach.

Brandes [Bra88] describes methods factoring out
transitive dependence to determine “direct” depen-
dence, and his work is similar to our computations for
refinement, killing and covering. However, his methods

do not apply if the dependence distances are coupled
or the loop is non-rectangular.

Ribas describes [Rib90] techniques to refine depen-
dence distances. However, Ribas only discusses per-
fectly nested loops, and there are some problems with
his Theorem 1:

Given two references Mv x + m and U.,? y + u,

the refined dependence distance from x to y

is constant iff ibfV = Uv,r.

In our Example 5, we have M. = U.,, (using Ribas’s
terminology), but the dependence distance is not con-
stant. The error is that (6) in [Rib90] should include

(Y – ~~,,(Y)) E ~nt(A, b) and (7) in [Rib90] should in-
clude (z+ d; ,T(z)) e In.t(A, b). Ribas’s Theorem holds
only for iterations not near the beginning or end of any

loop.

Ribas uses a slightly different definition of “constant
dependence distance” than we do. His definition states
that a dependence from A to B has constant distance

d iff for all iteration vectors i c [A] and j c [B], there
is a flow dependence from A(i) to B(j) iff j – i = d.
The definition we use is that a dependence from A to

1? has constant distance d iff for all iteration vectors
i c [A] and j c [B], a flow dependence from A(i) to B(j)
implies j — i = d. While Ribas’s definition is useful in
the context of deriving VLSI designs, our definition is

more appropriate for standard compiler optimizations.

Rosene [Ros90] extended standard scalar data flow
analysis techniques by using Data Access Descriptors
[BK89] to keep track of an approximation of the set of
array elements that are defined, modified and/or killed
by each statement. Rosene only determines which lev-
els carry a dependence, and doesn’t calculate the de-
pendence distance or direction. Thus, his approach
would be unable to handle our Example 6. His use

of Data Access Descriptors means that his techniques

are approximate in situations in which our methods
are exact. It should be possible to modify his tests
to use integer programming constraints to define sets
of array elements, but that would involve significant
work beyond that described in [Ros90] (the Omega
test could be used to represent array regions, but the

Omega test cannot directly form the union of two sets
of constraints). Rosene’s techniques have not been fully
implemented.

Thomas Gross and Peter Steenkiste describe [GS90]
methods similar to that of Rosene. Gross and
Steenkiste’s work is not as thorough as that of Rosene’s.
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SUBROUTINE cHOLSKY (IDA, NMAT, M, N, A, NRHS, lDB, B)

CHOLESKY DECOMPOSITION/SUBSTITUTION SUBROUTINE.

~1/mJad D H BAILEY MODIFIED FOR NAs KERNEL TEST
1/28/92 W W PUGH PERFORMED FORWARD SUB. AND

NORMALIZED LOOP THAT HAD STEP OF .1

REAL A(o:lDA, -M:o, o:N), B(o:NRHS, o:IDB, o:N), EPSS(O:2S6)
DATA EPS/l E-13/

CHOLESKY DECOMPOSITION

DO IJ=O, N

OFF DIAGONAL ELEMENTS

DO 21 = MAX(-M,.J), -1
DO 3 JJ = MAX(-M, -J) -1, -1
DO 3 L = 0, NMAT
A(L,l,J) = A(L,I,J) - A(L,JJ,I+J) * A(L,I+JJ,J)

DO 2 L = 0, NMAT
A(L,l,J) = A(L,l,J) * A(L,O,I+J)

STORE INVERSE OF DIAGONAL ELEMENTS

DO 4 L = O, NMAT
EPss(L) = EPS ● A(L,O,J)

DO 5 JJ = MAX(-M,-J), -1
DO 5 L = O, NMAT
A(L,o,J) = A(L,o,J) - A(L, JJ,J) ● * 2

DO 1 L = O, NMAT
A(L,0,7) = I. / 5QRT ( ABs (EPss(L) + A(L,o,J)) )

SOLUTION

DO 61 = 0, NRHS
D07K=0, N
DO 6 L = 0, NMAT
B(l,L,K) = B(I,L,K) ● A(L,O,K)

DO 7 J] = 1, MIN (M, N-K)
DO 7 L = 0, NMAT
B(I,L,K+JJ) = B(I,L,K+JJ) . A(L,.JJ,K+JJ) * B(l,L,K)

D06K=0, N
DO 9 L = O, NMAT
B(I,L,N-K) = B(I,L,N-K) ● A(L,o,N.K)

DO 6 JJ = 1, MIN (M, N-K)
DO 6 L = O, NMAT
B(I,L,N-K-JJ) = B(I,L,N-K-JJ) . A(L,-JJ,N-K) ● B(I,L,N-K)

RETURN
END

Figure 2: Source code for CHOLSKY, one of the orig-
inal NASA NAS benchmark kernals

However, they have implemented their approach, and
obtained some experience with it.

4.7 Experimental Results

We have implemented the extensions to the Omega test
described in Section 3, and have added tests from sec-
tion 4 to an augmented version of Wolfe’s tiny tool
[W0191]. Our efforts to date have focused on testing
flow dependence, so our changes have no effect on the
output or anti dependence computed, and we do not
test for terminating or covering output dependence.

We have performed an analysis of the time taken by
the Omega test to analyze dependencies. These timing
figures were measured on on Sun Spare IPX, and are in-
clusive: they include the time required to scan the loop
bounds and subscriptions, the time required to build
and analyze the array pair, and the cost of overhead
routines such as malloc and free. We ran our tests on
the program CHOLSKY from the original NASA NAS
benchmark kernals, the source files that were originally
distributed all the tiny source files distributed with
tiny, (which include Cholesky decomposition, LU de-
composition, several versions of wavefront algorithms,
and several more contrived examples), as well as several
of our own test programs. Unfortunately, FORTRAN

FROH
3: A(L,I,J)
3: A(L,I,J)
2: A(L,I,J)
2: A(L>I,J)
2: A(L,I,J)
2: A(L,I,J)
2: A(L,I,J)
4: EPSS(L)
5: A(L,O,J)
5: A(L,O,J)
1: A(L,O,J)
1: A(L,O,J)
1: A(L,O,J)
8: B(I,L,K)
8: B(I,L,K)
S: B(I,L,K)
7: B(I,L,K+JJ)
7: B(I,L,K+JJ)
9: B(I,L,M-K)
6: B(I,L,E-K-JJ)
6: B(I,L,M-K-JJ)

TO
3: A(L,I,J)
2: A(L,I,J)
3: A(L,I+JJ,J)
3: A(L,JJ,I+J)
5: A(L,JJ,J)
7: A(L,-JJ,K+JJ)
6: A(L,-JJ,?J-K)
1: EPSS(L)
5: A(L,O,J)
1: A(L,O,J)
2: A(L,O,I+J)
8: A(L,O,K)
9: A(L,O,B-K)
7: B(I, L,K)
9: B(I, L,B-K)
6: B(l,L, E-K-JJ)
8: B(I, L,K)
7: B(I, L, K+JJ)
6: B(I, L,~-K)
9: B(l,L, ~-K)
6: B(I,L, Ii-K-JJ)

dirlclist status
(0,0,1,0) [ r]
(0,0)
(o,+)
(+,*)
(o) [c]

[cl
[cl

(o) [Cr]
(0,1,0) [ r]
(o)
(+)

[cl
[cl

(0,0) [cl
(o) [cl
(o) [cl
(0,1) [ r]
(0,1,-1,0) [ r]
(0,0) [cl
(0,1) [ r]
(0,1,-1,0) [ r]

Figure 3: Live flow dependencies for CHOLSKY

FROH TO
3: A(L,I,J) 3: A(L,I+JJ,J)
3: A(L,I,J) 3: A(L,JJ,I+J)
3: A(L,I,J) 5: A(L,JJ,J)
3: A(L,I,J) 7: A(L,-JJ,K+JJ)
3: A(L,I,J) 6: A(L,-JJ,lJ-K)
5: A(L,O,J) 2: A(L,O,I+J)
5: A(L,O,J) 8: A(L,O,K)
5: A(L,O,J) 9: A(L,O,E-K)
8: B(I,L,K) 6: B(I,L,Ii-K)
7: B(I,L,K+JJ) 7: B(I,L,IC)
7: B(I,L,K+JJ) 9: B(I,L,E-K)
7: B(I,L,K+3J) 6: B(I,L,B-K)
7: B(I,L,K+JJ) 6: B(I,L,M-K-JJ)
6: B(I,L,E-K-JJ) 6: B(I,L,kK)

dirldist

(0,+,*,0)
(+,*,*,0)
(o)

(+)

(0)
(0,1,*,0)
(o)
(o)
(o)
(0,1,*,0)

status
[ id
[ k]
[ k]
[ k]
[ k]
[ k]
[ k]
[ k]
[ cl
[ kr]

[ k]

[ c1
[ Kl
[ kr]

Figure 4: Dead flow dependencies for CHOLSKY
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programs must be translated by hand to restricted lan-
guage before tiny can analyze them, and so we have
been unable to to try our analysis methods on large
benchmarks. However, we feel the data presented here
gives a good feel for the range of analysis times, even
if it cannot be used to predicate an average analysis
time.

4.7.1 Effects on flow dependence

We have found that, in many cases, the techniques de-
scribed here significantly simplify the set of flow de-
pendence, Figure 2 shows our version of the NAS
kernel test that performs the Cholesky decomposition
of a set of banded matrices. We have modified the
original test by forward-substituting the expression
ikfAX(-A4, –J), which was originally computed at the
top of the J loop, and by normalizing the second K
loop (which had a negative step).

Figure 3 lists all of the flow dependencies that are
the Omega test has determined are live (i.e., not dead).

The dependence in Figure 3 that have been refined are
marked with the suffix [r]. Those that cover their read
have been marked with [C] (note that this tag does not
affect the dependence itself, but shows that it can be

used to eliminate other dependence).

The flow dependence in Figure 4 are dead: because
of an intermediate write, no actual data flows from the
source to the destination. These dependencies have

been eliminated by being either covered (marked with
[c]) or killed ([k]). Almost all other dependence analysis
algorithms would report these as true flow dependen-
cies.

4.7.2 Efficiency

Figure 6 shows timing results for 417 write/read ac-
cess pairs in CHOLSKY and a variety of other test
programs. The graph on the left compares the time
needed to perform an extended analysis of an array
pair that includes checking for refinement and cover-
age against the cost of standard analysis (no checks for
refinement or covering). Both times were obtained us-
ing the Omega test to perform the analysis. The solid
lines show y = x, y = 2x, and y = 4x. In 264 cases,
the extended capabilities of the Omega test were not

needed (i ,e,, we could determine that refinement and
coverage were not possible without needing to consult
the Omega test). The 81 #s show the cases in which
we performed the general test for either covering or
refinement on one flow dependence vector. These gen-
erally took 2 or 3 times the amount of time needed to
generate the dependence. The 72 O’s show the cases
in which we performed the general test for covering or
refinement and in which we were forced to split the
dependence into several dependence vectors.

The graph on the right of Figure 6 contains one point
for each pair of dependence to the same read access

(that is, one point for each possible kill). It compares
the time needed to test for a kill (horizontal axis) to

the time needed to generate and perform coverage and
refinement testing of the dependence being killed (ver-
tical axis). The solid line shows y = z. Note that one
point on the left graph may correspond to zero, one,
or many points on the right. The 284 points with kill

time below 0.3 msecs correspond to cases in which we
did not have to consult the Omega test to perform a

kill test; there were 54 cases in which the Omega test
was consulted, leading to kill test times of longer than

0.3 msecs.
In Figure 7, we show the time required to perform

standard and extended analysis of each array pair (ex-

tended analysis includes checks for refinement, covering
and killing). The timing results were sorted according
to the times required for extended analysis.

s Symbolic dependence analysis

A data dependence may only exist if certain variables
take on particular values. In Example 7, there is a flow

dependence iff2x~n Al~y~m A (x> OVX=

O A y < m). We can determme the set of constraints
under which a dependence exists by setting up the in-

teger programming problem describing when there is a
dependence, and projecting the problem onto the set
of loop-invariant scalar variables. If we are interested
in the set of constraints under which a flow dependence
exists, we first determine a set of restraint vectors (Sec-
tion 2.1 .2) for the flow dependence, assuming noth-
ing about the symbolic variables. We then add the
restraint vectors to the integer programming problem
before projecting onto the symbolic variables.

Alternatively, we can add any user assertions about
the relations between variables to any integer program-
ming problem involving those variables.

What if we have some information about relations
between variables, but not enough to rule out a de-
pendence? We use our ability to compute gists (Sec-
tion 3.3) to determine the appropriate concise queries
to make of the user, given what we already know. We
consider the analysis of Example 7, in the circumst ante
that that the user has asserted that all array references
are in bounds, 50 ~ n ~ 100 and no additional infor-
mation is available about n. There are two apparent
restraint vectors for this dependence: (+, x) and (O, +).

For the first restraint vector (which corresponds to
a dependence carried by the outer loop), we define p
as the things that are known plus the fact that there
the outer loop has multiple iterations (which must be
true in order for a dependence carried by that loop to
be interesting). We define q to be the additional things
we known when there actually is a dependence. The
constraints that define p and q for this example are
shown in Figure 5. The conditions on variables (other
than n) under which this dependence actually exists,
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real A[l:n,l:m], C[l:n,l:m]
. . . int q[l:n]
for LI := x to n do . . .

for L2 := 1 to mdo for L1 :=1 tondo
AIL1 ,L2] := AIL1-x,y] + CIL1, L21; AIQILI]] := AIQIL1+l]-1] + CIL1];

Example 7 Example8

for i :=ltondo

for b := 1 to maxB k := i*(i-1)/2+i

for i := B[b] to B[b+l]-1 for i :=ltondo for j := i to n do

for j := B[b] to B[b+l]-1 for j :=ltondo a [k]

A[i,j] := . . .

:= a[k] +bb[i,j]

A[i*j] := . . . k := k+j

Examp1e9 Example10 Examplell

{1
x~il<jl~n
l~iz,jz~m )

loop bounds and restraintvector

P = l~il,jl–x~n
l~iz,y<m )

array references in bounds

50~n<100 user assertion 1

{(

il =
q=

jl–x

)
dependence exists

iz=y }

Figure 5: Set-up of equations for symbolic analysis of outer loop carried dependence Example 7

given that we know p, are given by (gist mx,y,m(p A

q) given mx,y,m(~)) = {1 < x < 50}. For the restraint
vector (O, +), we similarly compute that it exists only

if {x = OA y < m}. We can then ask the user whether
or not this condition must always hold.

What about expressions other than scalar loop-
invariant variables (such as ixj or P [i]) that appear in
a subscript or loop bound? In this case, we add a dif-

ferent symbolic variable for each appearance of the ex-
pression. If the expression is parameterized by a set of
other symbolic variables, we also introduce additional
symbolic variables for those parameters. We can now
use the methods described above to ask the user queries
about the relations between these symbolic variables.

In Example 8, we first check for an output depen-

dence, assuming nothing about Q. This leads to an
output dependence with direction/restraint vector (-l-).

We next take the set of constraints for determining if
there is a dependence and, constraints that enforce the
restraint vector (+), and add variables for the index
array subscripts (sl and S2) and the index array values

(Q,, and Q,,). Given that all array references are in
bounds and the dependence haa a restraint vector (+),
we set-up p and q as:

{

l~il<jl<n
p= l~Q$, Q,l, s,s’~n

s =il As’=jl 1
q={ Qs=Qs~}

We then determine that:

(gist n,,,,, ~,,Q,,,n(ZJ A q) given fi,,,~,~,,~,,,n(p))
~ Q, c Q,,

This would prompt us to ask the user the following:

Is it the case that for all a & b such that
1 <= a < b c= n, the following never happens?

Q[al = Q[b]

If the user answers yes, we rule out an output depen-
dence and add Va&b s.t. 1 s a < b ~ n, Q[a] # Q[b] as
an assertion.

Checking for a flow dependence would produce the
query:

Is it the case that for all a k b such that
1 <= a < b-1 <= n-1, the following never happens?

Q[a] = Q[b]-1

Instead of answering such a question directly, the
user may choose to tell us more specifically what prop-
erties the array has. For example, the user might tell us
that the array is strictly increasing, or is a permutation
array. This has the advantage of being more natural
to the user, and possibly supplying more information
than a yeslno answer would.

By applying these techniques, we can handle a wide
range of situations. These techniques apply directly
to situations where array values appear in loop bounds
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(such as Example 9). We handle non-linear terms (such
as i*j in Example 10) as an array indexed by all the
non-constant variables. In other words, a term i*j
would be treated as an array Q[i, j], with the actual
term substituted whenever conducting a dialogue with

the user. By adding additional algorithms that perform
non-linear induction variable recognition and recognize

summations and by knowning appropriate linear con-
straints on summations, these techniques allow us to

handle Example 11 (from program S141 of [LCD91]),
which could not be handled by any compiler tested by
[LCD91].

5.1 Related Work

Methods for incorporating assertions about invariant
scalar variables into dependence analysis algorithms
and producing queries to ask the user have been part
of the compiler folklore for some time (see [HP9 I] for

a recent discussion). However, previous work has not
addressed how to ask concise questions given that some
information is already known.

Kathryn McKinley [McK90] describes how to handle
index arrays in dependence analysis. Her work enumer-

ates many typical cases and discusses how each can be
handled. It is not a general purpose method and can-
not handle cases such as array values in loop bounds or
complicated subscripts of index arrays. Special purpose
methods may prove useful from an efficiency viewpoint
for dealing with typical, common cases. Our goal here
is to describe as general a method as possible to fall
back on.

6 Availability

An implementation of the Omega test is freely avail-
able for anonymous ftp from f tp. cs. umd. edu in the
directory pub/omega. The directory contains a stand-
alone implement ation of the Omega test, papers de-
scribing the Omega test, and an implementation of

Michael Wolfe’s tiny tool [WO191] augmented to use
the Omega test as described in this paper.

7 Conclusions

We have shown how the Omega test can be extended
and utilized to answer a wide range of questions that
previous analysis methods could not address. The pri-
mary questions we considered are

array kills,

handling assertions and generating a dialog about
the values of scalar variables, and

handling assertions and generating a dialog about
array values and non-linear expressions.

While previous methods could handle special cases of
the problems considered here, our work describes much
more general methods.

Previous approaches to these problems have not been
widely implemented. By taking advantage of the power
of the Omega test, we have been able to add these ad-
vanced data dependence analysis capabilities with rel-

atively modest implementation investment. We hope

that our approach will lead to a more widespread in-
corporation of these capabilities in compilers and in-

teractive analysis tools.
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