Analyzing Exotic Instructions for a Retargetable Code Generator!

Thomas M. Horgan and Lawrence A Rowe

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California
Berkeley, California 94720

Abstract

Exotic instructions are complex instructions, such
as block move, string search, and string edit, which are
found on most conventional computers. Recent retar-
getable code generator and instruction set analysis sys-
tems have not dealt with exotic instructions. A method
to analyze exotic instructions is presented which pro-
vides the information needed by a retargetable code
generator. The analysis uses source-to-source transfor-
mations to prove the equivalence of high-level language
operators to exotic instructions. Examples are
presented which illustrate the analysis process.

1. Introduction

Exotic instructions are characterized by complex
semantics, usually involving looping behavior. These
instructions can be thought of as performing a sequence
of primitive actions. Exotic instructions are useful
because they can often perform operations in less time
and space than an equivalent sequence of primitive
actions. Examples of exotic instructions are block move
instructions, linked list instructions and string edit
instructions. Exotic instructions occur on such diverse
machines as the VAX-11 [DEC76], the Burroughs B4800
{Burroug‘bs76], the Intel 8086 [Intel79}, and the IBM 370
1BMB1].

Recent work in producing retargetable code genera-
tors [Glanville78, Cattell80] has focused on generating
code for expression evaluation and simple control struc-
tures. The code generators which have been produced
have used the arithmetic, logical, and branching instruc-
tions of the host machine, but have not used the exotic
instructions of a machine's repertoire. Similarly, [Oak-
ley79] has formulated a method to analyze a general
purpose machine description and provide input to a
retargetable code generator. Oakley is able to produce
assertions describing the effects of instructions by sym-
bolically executing a procedural description of the tar-
get machine. However, his method is unable to deal with
exotic instructions due to their greater complexity. This
paper describes an approach to analyzing exotic instruc-
tions and the features required of a retargetable code
generator to generate them.

1This work was supported in part by the National Science Founda-
tion under Grant MCS 80-08329,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-074-5/82/006/0197 $00.75

The analysis of exotic instructions is based on the
fact that high-level languages often have operators or
runtime routines whose semantics closely match those
of exotic instructions. For instance, assignment between
strings in Pascal is essentially the same operation as
that performed by the block move instruction (move3)
on the VAX-11. Thus, the Berkeley Pascal Compiler for
the VAX-11 generates move3 to implement string assign-
ment.

The semantics of an exotic instruction are often
close to those of a language operator but do not match
exactly. For example, the Burroughs B4800 has an
instruction to search through a linked list of records for
a record with a specified field. However, the instruction
assumes that the link field of the list is the first field in
the record. Thus, the B4800 instruction can only be used
to implement a general list search operation if a specific
constraint is satisfied, namely, that the link field is the
first field of the record.

The analysis of exotic instructions must identify
which instructions can be used to implement which
high-level operators. Moreover, the special conditions
under which the use of the instruction is valid must also
be identified. This information can then be passed to a
retargetable code generator enabling it to generate
exotic instructions.

The Exotic Instruction Transformational Analysis
System (EXTRA) has been designed and implemented to
explore the analysis of exotic instructions. EXTRA uses
source-to-source transformations [Loveman?76] to prove
the equivalence of high-level language operators to
exotic instructions. EXTRA takes a description of a
high-level language operator and a description of an
exolic instruction. The descriptions are transformed
until they are equivalent. Transformations are provided
to transform descriptions into semantically equivalent
descriptions, to uncover constraints on the equivalence,
and to augment exotic instructions with other code when
needed. In the current implementation of EXTRA the
user must guide the system by choosing the transforma-
tions to be performed and by choosing the code to aug-
ment the exotic instruction description. EXTRA verifies
that the transformations can be correctly applied and
applies them. The ultimate goal is to provide a system
that operates with little or no user intervention.

The rest of the paper presents details and examples
of the analysis system. Section 2 describes the impor-
tant characteristics of exotic instructions. The details of
the analysis method are presented in section 3. Section
4 presents examples of instructions analyzed by EXTRA,
as well as an instruction that could not be analyzed.
Section 5 presents our experience with the system
including a summary of all the instructions which have
been analyzed to date. Compiler support for exotic
instructions is discussed in section 6. Finally, section 7
presents our conclusions and ideas for future research.

2. Exotic Instructions

Exotic instructions occur on a wide variety of
current computers. In a sample of 6 machines,
representing 8 diflerent manufacturers, 67 string and
list processing exotic instructions were identified® These
instructions perform string operations such as string
move, search, compare, and edit, and list operations
such as list search, link, and unlink. Statistics on the
number of such instructions for each machine are given
in table 1.

Machine Number of Exotic
Instructions
Intel BDOB6 [
DG Eclipse 5
Univac 1100 21
IBM 370 7
Burroughs B4800 16
VAX-11 12
Total 87

Table 1: Exotic Instruction Statistics

The exotic instructions on the various machines all
have certain features in common. First, the instructions
are characterized by complex semantics. This complex-
ity includes:

» The presence of loops in procedural descriptions of
the instructions.

+ The setting of multiple registers and memory loca-
tions by the instructions.

e Special addressing requirements, such as operating
on fixed registers.

The complexity of exotic instructions makes them
difficult to analyze. The presence of loops in particular
means the exotic instructions cannot be symbolically
executed. Thus, the analysis methods in [Oakley79] can-
not be applied.

Although exotic instructions are complex, their
semantics are far from arbitrary. Exotic instructions
have a close relationship to operators and data types in
high-level languages. There. are exotic instructions
which manipulate character strings, vectors, and lists,
all of which are data types in high-level languages. While
exotic instructions exist to manipulate those data types,
the operations which the instructions perform rarely
match exactly the operations defined in the high-level
languages. However, the instructions can be made to
match the language operators by:

e (Constraining the operands of the language opera-
tor.

s Simplifying an instruction that is too complex by
fixing the values of some of its operands.

* Augmenting the instruction by adding extra code to
the prologue or epilogue of the instruction.

Constraints are important because the language
operator may match the exotic instruction in only a con-
ditional way. A common type of constraint deals with
storing operands to the instruction in fields of limited
size. The size of the field limits the range of values which
the instruction can operate on. An example of this type
of size constraint is the IBM 370 mve instruction which
has a string length operand in a byte fleld and thus can
only move at most 258 characters at a time. Other con-
straints deal with the addressing of operands. For
instance, operands to an exotic instruction may have to

PThese machines also contain other exotic instructions such as de-
cimal and array indexing instructions which are not covered in this pa-
per.

198

be in fixed memory locations or registers. Other restric-
tions that would be handled by a storage allocator are
also possible, as in the case of the B4800 list search
instruction described earlier.

When exotic instructions are too complex to match
a language operator, it is sometimes possible to simplify
the instruction. For example, an exotic instruction may
be more general than a language operator. In which
case, the instruction can be simplified by fixing the
values of some of its operands. For example, the Intel
8086 string instructions can process sirings from low
addresses to high or vice versa depending on the setting
of the df flag. Those instructions can be simplified by
forcing df to have a fixed value (e.g., setting df to 0 so
that strings are always processed low addresses to high).
Then the instructions can thought of as simpler instruc-
tions with one less operand.

While some exotic instructions match a language
operator directly, many instructions only match if some
extra code is added to the instruction. The code may
need to be added to either the prologue or the epilogue
of the instruction. With extra code the augmented
instruction is able to compute the same results as the
language operator. For example, the VAX-11 loce
instruction searchs a string for a character and returns
the address of character if found. However, the PL/1
index operator (if used to search for a single character)
returns the index of the character in the string, and not
the address in memory. Thus, code must be added to
loce to compute the index from the address if loce is to
match index.

In summary exotic instructions occur on a wide
variety of machines. Exotic instructions are complex
which has prevented them from being analyzed by previ-
ous methods. Because exotic instructions are closely
related to operators in high-level languages they can be

used to implement the language operators under certain
constraints or when simplifications or augments are
made to the instructions. The next section shows how
exotic instructions with the above characteristics can be
analyzed.

8. Apalysis of Exotic Instructions

The goal of the analysis is to establish that an exotic
instruction can be used to implement a high-level
language operator. In addition, the analysis must dis-
cover any conditions that control when the implementa-
tion is valid.

Both exotic instructions and language operators are
represented by descriptions written in a notation simnilar
to ISPS [Barbacci?7]. An instruction can be used to
implement a language operator if their descriptions are
equivalent. The descriptions are equivalent if they can
be transformed into a common form through a sequence
of source-to-source transformations. The descriptions
are in a common form if they are identical except for
variable and register names. The application of source-
to-source transformations changes the procedural
descriptions, but not the results that are computed. For
example, the sample transformation in figure 1 reverses
the clauses of a conditional, but has no effect on the
semantics of the conditional as a whole.

if exp if not exp
then then
stmt list1 => stmt.list2
else
stmt_list2 stmt list1
i end_ if

Fig. 1: Reverse Conditional Transformation

A transformation can be applied whenever the syn-
tactic and data flow conditions that control it are
satisfied. Also, some transformations can be applied
only when certain conditions on the values of variables in
the description are satisfied. These conditions become
constraints on the values of the high-level language
operator’s operands and must be satisfied at compile-
time in order for the instruction to be generated.

In some instances, the instruction and the language
operator are not equivalent, but the instruction can still
be used by the code generator. When they are not
equivalent it is sometimes possible that a simplified
instruction can be constructed by restricting the values
of some of the instruction’s operands. Alternatively, a
variant of the instruction can be constructed. The vari-
ant, or augmented instruction, is constructed by adding
additional code to the prologue or epilogue of the exotic
instruction. The simplified or augmented instruction can
then be proven equivalent to the language operator and,
consequently, the instruction can be used to implement
the language operator.

During the matching process, variables in the
language operator description are bound to real regis-
ters in the instruction description. This binding may
result in further constraints on the values of the
operands of the language operator. The operands will be
constrained to have values in the range determined by
the size of the register.

The results of the analysis are passed to a retarget-
able code generator as part of the instruction repertoire
of the machine. The code generator can then generate
the augmented instruction when it can satisfy the con-
straints or verify that they are already satisfied in the
original source program.

As was mentioned earlier, both the exotic instruc-
tion and the language operator are represented by
descriptions written in a notation similar to ISPS. Each
description can be broken up into various sections. Each
section may contain register and function declarations.
Main memory is represented as the array Mb. State-
ments in the language include loop statements (repeat),
conditionals (if), loop exits (exit_when), and explicit i/o
statments (input and output). In order to facilitate data
flow computations the language has been restricted to
eliminate aliasing among registers. For example, only
call-by-value parameters are allowed. Also, the address-
ing calculations associated with operands to the instruc-
tion are not represented. The prototype system
assumes that addressing calculations can be manipu-
lated by other methods since inclusion of addressing
modes would make the descriptions more difficult to
deal with.

The next section shows how the source-to-source
transformations, constraints, simplifications, and aug-
ments have been used to analyze real instructions.

4. Examples

The analysis of exotic instructions can best be illus-
trated by examples of instructions analyzed by EXTRA.
The first example presents a detailed account of how the
Intel 8086 scasb instruction can be analyzed with respect
to the Rigel index operator. The second example, shows
how an idiosyncrasy on the IBM 370 is handled. Finally,
some of the limits of EXTRA are presented by way of an
instruction and a language operator that are equivalent,
but could not be successfully analyzed.

4.1. Intel 8088 scasb/Rigel index
The Rigel® [RoweB1] index operator searches a

»

SRigel is an experimental language designed for research into the
development of interactive date base applications.

159

string for a specified character and, if the character is
found, the index of the character is returned. However,
if the character is not found then the index operator
returns zero. A description of the Rigel index operator is
given in figure 2.

index.operation := begin
** SOURCE.ACCESS **

Src.Base : integer, ! string base address
Src.Index : integer, ! string index
Src.Length : integer, ! string length

read() : integer := begin
read + Mb[Src.Base + Src.Index];
Src.Index + Src.Index + 1;
*¢ STATE **
ch : character ! character sought
*¢ STRING.PROCESS **
index.execute := begin

input (Src.Base, Src.Length, ch);

Src.Index « 0;

repeat
! exit when string ezhausted
exit_when (Src.Length = 0);
!ezit if char is found

exit_when (ch = read());
Src.Length « Sre.Length — 1;
end_repeat;
if Src.Length =0
then

output(0); ! char not found
else
output(Sre.Index); ! char found
end.if;
end

end

Fig. 2 Rigel Index Operator

The scasb instruction on the Intel 8086 also
searches a string for a specified character. Scasb takes
as operands: 1) the address of the string which must be
preloaded into register di, 2) the length of the string
which must be preloaded into register cz, and 3) the
character sought which must be in register al. If the
character is found, the zf condition code is set and di
contains the address of the character which follows the
character that was found.

There are also several flag operands that control
how scasb is executed. In order for an entire string to
be searched the repeat flag rf must be set. The string
can be searched from low addresses to high addresses or
vice versa, depending on the setting of the direction flag
df. Besides searching for a character, the scasb instruc-
tion can be used to scan over all occurrences of a char-
acter by setting the rfz flag. A description of the scasb
instruction is given in figure 3. .

There are several key steps in the analysis of gcasb
that are now presented. As was noted above the scasb
instruction has several flag operands that control the
execution of the instruction. The instruction can be
simplified by setting these flags to fixed values and then
propagating this information to the places were the flags
are used. The information can then be used to simplify
the expressions and statements that involve those
operands. For instance, by setting the df flag to zero the
string access is simplified to always search from low to
high addresses. The other simplifications on scasb

scasb.instruction := begin o
1 segment addressing ignored in this description

** SOURCE.ACCESS **
di<15:0>, ! source string address
cx<15:0>, ! source string length

! fetch source character

fetch()<7:0> := begin
fetch « Mb[di };

if df ! control direction of fetch
then
diedi—1; ! high-to-low addresses
else
die-di+ 1 ! low-to-high addresses
end _if
end
** STATE **
ri<>, ! repeat flag
daf<>, ! direction flag
rfz<>, ! ezit condition flag
zf<>, ! last corpare zero flag
al<7:0> ! character sought

** STRING.PROCESS **

scasb.execute := begin
input (rf, rfz, 4f, zf, di, cx, al);
if (not rf)
then ! no repetilion
if (al — fetch()) =0
then
zf « 1;

ex+cx —1;
if (el — fetch()) 0
then
zf « 1;
else
zf « O;
end_if;
! ezit on condition
exit_when (rfz and (not zf))
or {(not rfz) and zf);
end_repeat;
end.if;
output (zf, di, cx);
end
end

Fig. 3: Intel 8086 Scasb Instruction

involve setting the 7f flag to 1 and setting the rfz flag to
0. Setting rf means that scasb always loops, and setting
rfz means that the instruction terminates when the
character is found.

The information that the flags have been set to fixed
values can be propagated in the description of scasb.
The description can then be simplified by applying con-
stant folding transformations. For example, the con-
stant folding transformations simplify the exit condition
at the end of the loop from:

exit when (rfz and (not zf)) or ((not rfz) and zf);
to:
exit_when zf;
The above simplification of the description is possible
because the value of the operand 7fz has been fixed at 0.

The description of scasb after all of the simplifications is
given in figure 4.

200

scasb.instruction := begin
¢+ SOURCE.ACCESS **

di<15:0>,
cx<15:0>,

fetch()<7:0> := begin
fetch « Mb[di];

! source string address
! source string length

! fetch source character

die-di+1; ! louwrto-high addresses
end if
end
o+ STATE **
zf<>, ! last compare zero flag
al<7:0> ! character sought

** STRING.PROCESS **

scasb.execute := begin
input (zf, di, cx, al);
repeat
exit when {cx = 0);
ex+ex—1;
if (al — fetch()) =
then
zf « 1;
else
zf « O;
end if;
! ezit on condition
exit when (zf);
end _repeat;
output (zf, di, cx);

end

Fig. 4: Simplified Intel 8086 Scasb Instruction

After the simplifications, the zf flag can almost be
used to identify what caused the exit from the loop (this
is important when augmenting the epilogue to compute
the character index from its address). If zf is set, the
exit was caused by the character being found, otherwise
the string is exhausted. However, there is a problem. In
the case where the input length of the string is zero, zf
would never be set and its value at loop exit would be
unusable. Therefore, code must be added to the begin-
ning of scasb which initially sets zf to zero.

An additional prologue augment is needed to save
the initial string pointer value. Since index requires the
index of the sought character to be returned, the gen-
erated code must compute it. This computation can be
done by subtracting the initial string address from the
final address that is produced by scasb. Hence, a tem-
porary must be allocated and code must be added to
store the initial pointer value.

Code can now be added to the epilogue of scasb that
checks the condition that caused the loop to exit and
then compute the index of the character that was found
or return 0 if the character was not found. The code
that must be added is:

if zf
then
output(di - temp);

else
output(0);
end if;

where temp is the temporary allocated by the previous
prologue augment to hold the initial address of the
string. The augmented description of scasb is given in
figure 5.

scasb.instruction := begin
** SOURCE.ACCESS **

di<15:0>,
cx<15:0>,

! source string address
! source string length

fetch()}<7:0> := begin

! fetch source character
fetch « Mb[di J;

di«di+1; ! low-to-high addresses
end if
end
** STATE **
zf<>, ! result of last comparison
al<7:0>, ! character sought
temp<15:0> ! new temporary

*¢ STRING.PROCESS **
scasb.execute := begin

zf « O;
input (di, cx, al);
temp « dj;
repeat
exit_ when (cx = 0);
cxecx—1;
if (al — fetch()) =0
then
zf « 1;
else
zf «.0;
end_if;
! ezit on condition
exit _when (zf);
end repeat;
if zf
then
output(di — temp);

! augmented code

! augmented code

! qugmented code

output(0);
end_if;
end
end

Fig. 5: Augmented Intel 8086 Scasb Instruction

Although the descriptions of index in figure 2 and
scasb in figure 5 are now equivalent, further transforma-
tions are required to verify the equivalence. These
transformations do not change the semantics of either
description, but rather just change the descriptions to
an equivalent form. For instance, it must be shown that
the method of comparison used in scasb is equivalent to
that used in index Also, the transformations must show
that the use of the flag zf in scasb is equivalent to the
method in index that does not use the flag. EXTRA has in
its repertoire sufficient transformations to allow it to
express these equivalent implementations.

After the analysis is complete, there is a final step
that must be performed to allow the scasb instruction to
be generated. The code that was added to the prologue
and epilogue of scasb must now have real Intel 8086 code
generated for it. This requires the use of the code gen-
erator of the target compiler. This process was done by

hand for scasb and resulted in the following Intel 8086
code being produced to represent the augmented
instruction:

201

; operands already loaded:
; di...string address

s cz..string length

; al...character sought

mov bx,di ; save initial address
mov si,0 ; clear st lo use in resetting zf
cmpsi,1 ; reset zero flag zf
cld ; reset direction flag df
rep ; set rf and reset rfz
scasb ; search string
jz 11 ; jump if not found
sub di,bx ; compute indez of char if found
jmp12
11: movdi,0 ;refurn zero if not found

12: ; final result stored in di

This augmented instruction is then bound to an inter-
mediate language operator representing index. The aug-
mented instruction is passed to a retargetable code gen-
erator.

Constraints due to location sizes are also passed to
the code generator. In the example, since the
Src. Length variable of the index description is bound to
the cz register of scasb, a constraint is developed that
the string length must fit into 16 bits. This constraint is
a trivial one to satisfy on the Intel 8086 since the word
size of the machine is 18 bits. On the VAX-11, however,
string lengths are also limited to 16 bits which produces
a non-trivial constraint since the word size is 32 bits.

The analysis of scasb with respect to index requires
73 total transformation steps. The scasb instruction had
to be both simplified and augmented in order to match
the index operator. The result of the analysis is an aug-
mented instruction for the Intel 8088 which is custom-
ized to implement the index operator.

4.2. IBM 370 mvc/Pascal string assignment

The mve instruction on the IBM 370 can be analyzed
with respect to the string assignment operator (sassign)
of Pascal®. The analysis requires 105 transformation
steps which is the greatest number of any instruction
analyzed to date. This section shows how a quirk in mve
is handled by the analysis system.

The mve instruction moves a sequence of bytes
from a source to a destination+fleld. The number of
bytes is specified by an 8 bit length field in the instruc-
tion format. The number of characters moved by mve is
the value of the length field plus one. Hence, a length

value of zero means that one character is to be moved
and a length of one means that two characters are to be
moved and so forth®. On the other hand, the
specification of sassign contains a length operand that
contains the actual number of characters to be moved.
Thus, EXTRA must show how the two encodings of the
string length can be made equivalent.

The equivalence can be shown through the use of a
transformation that creates a coding constraint on the
length of the Pascal string. The coding constraint is
actually a directive to the compiler to decrement the
length of the sassign operand before using it as an
operand to mve. Furthermore, the decrement becomes
part of the description of mve.

Once the coding constraint is introduced into the
description of mve the decrement is integrated with the
rest of the description. The description is then
transformed into a form that moves exactly the number
of characters as is specified in the length field. Finally,
other transformations are used to show that mve and
sassign match.

4The string assignment operator sassign is actuelly present only in
the compiler internal form and not in the Pascal language.

5This type of encoding is not unique to the IBM 370, but also occurs
on at least one other machine (the Burroughs B4800).

The mve example demonstrates the idiosyncratic
nature of exotic instructions and how EXTRA is able to
deal with it. Mve and sassign are semantically very close
but are not equivalent unless a specific condition is
identified and satisfied through the coding constraint.
The example also shows how constraints can represent
various types of directives to the compiler besides sim-
ple conditions on the values of operands.

4.3. VAX-11 movec3/Pascal string assignment

An example of an analysis that cannot be performed
by EXTRA is the analysis of the VAX-11 move3 instruction
with respect to the Pascal string assignment operator.
Move3 moves a source string to a destination and guards
against overlap in the strings. If the source address is
less than the destination address then the sfring is
moved from high addressed bytes to low, otherwise the
low addressed bytes are moved first. For example, if the
source address were 10 and the destination address were
12 the string "abc' would be moved by moving the "c"
then the "b" and finally "a", since moving in the opposite
way would resuilt in the destination string being "aba'* not
"abc". Because the description of move3 reflects the
overlap protection the description is more complex than
one might at first think.

In the Pascal language it is impossible to have
strings that overlap. Hence, the string assignment
operator sassign can have a simple description that
always moves the string from low addresses to high

addresses. Because Pascal strings cannot overlap,
move3 and sassign are equivalent. The problem is that
the descriptions are equivalent only under this condition
and EXTRA has ho way to represent it.

One way to represent no overlap would be as the
complicated constraint below:

(Src.Base + Src.Length < Dst.Base)
or (Dst.Base + Dst.Length =< Src.Base)

This condition would guarantee that the strings would
not overlap, since it says that either the source string
ends before the destination string begins or that the des-
tination string ends before the source string begins.
However, the current version of EXTRA has no ability to
deal with complicated constraints that involve more than
one operand.

EXTRA can only deal with constraints that are of the
form: 1) an operand is constrained to have a certain
value, 2) an operand is constrained to be in a certain
range, or 3) an operand is to be offset by a value {as was
done with mve above). EXTRA can only deal with simple
constraints since we originally thought that only simple
constraints would occur in real instructions. However,
what this example points out is that there is a need to
deal with more complicated constraints that are due to
the characteristics of the source language. The no-
overlap condition is a property of Pascal and can never

be violated by any Pascal program® Thus, the analysis
system is the appropriate place to deal with it.

6. Current Status of EXTRA

The EXTRA system is written in Franz Lisp
[Foderaro80] and runs under the UNIX” operating system
on a VAX-11/780. The system monitor allows the user to
move through the language operator and machine
instruction descriptions in much the same way as a
Lisp-oriented structure editor. Transformations are
applied in the same way that the the descriptions would
be edited, by positioning the cursor at the point of
interest and then specifying the transformation to be
applied.

SHowever, some Pascal extensions do allow overlap and use
different semantics for copy, and thus would require a differant treat-
ment.

YUNIX is & Trademark of Bell Laboratories.

202

The current implementation of EXTRA includes 75
transformations in the transformation library. The
transformations themselves utilize various types of data
flow information that is used to determine whether a
transformation is valid at a particular point. The
transformations can be categorized based on the func-
tions they perform and the type of information they
require. The seven categories are:

o Local (lransformations which manipulate the
descriptions based on local properties. These
transformations include arithmetic and logical iden-
tities.

o (ode motion transformations which move state-
ments with respect to one another, such as revers-
ing the order of two statements or moving one
statement into the body of another when possible.

¢ Loop transformations which manipulate the loops in
the descriptions. These are especially necessary to
manipulate the counting loops for string oriented
instructions.

o QRobal transformations which must look at poten-
tially the entire description. For instance, copy pro-
pagation and dead variable elimination both use
information that may be a long distance textually
from where it is used.

s FRoutine structuring transformations which change
how a description is structured into different rou-
tines. For instance, a routine with several calls may
be changed into several routines each with a single
call.

o (Constraint and assertion transformations which
manipulate constraints and assertions in the
descriptions. These transformations allow con-
straints and auxiliary assertions to be created and
manipulated by transformations like any other part
of the description text.

o Augment producing transformalions that produce
prologue and epilogue augments to the descriptions.
The user specifies the augment, and the system
guarantees the interface of the augment code to
the exotic instruction.

Although the transformation library is in no sense
exhaustive {(other transformation libraries can be found
in [Standish76, Barstow77]), the set used seems to form
a kernel of necessary transformations to deal with exotic
instructions. A complete list and descriptions of the
transformations can be found in {Morgan82].

In order to test our theories, experiments have been
performed to see how well EXTRA can analyze real
instructions. To date, the system has been used to
analyze 8 different exotic instructions on the IBM 370,
VAX-11, and Intel 8086. The instructions have been
analyzed with respect to operators or runtime routines
in Pascal, PL/1, Rigel, and CLU. Table 2 shows the
instructions and the language operators that have been
successfully analyzed. Each analysis required from 21 to
105 transformation steps.

The descriptions that have been analyzed have come
from a variety of sources to eliminate bias caused by a
single style in writing the descriptions. The descriptions
for the machine instructions were derived from flow
charts in machine reference manuals and on-line ISPS
descriptions available from Carnegie-Mellon University.
Descriptions for the language operators were derived
from the code for run-time routines and descriptions in
the language manuals. The descriptions were translated
in a straightforward manner into the description
language used by EXTRA. Thus, we feel that the ability of
EXTRA to analyze exotic instructions is not dependent on
a certain style of writing the descriptions.

Machine Instruction _Language Operation Steps
Intel 8086 movsb Pascal string move 52
Intel B0B6 movsb PL/1 string move 68
Intel 8086 scasb Rigel string search 73
Intel 8086 scasb CLU string search 86
Intel 8086 cmpsb Pascal string compare 79
VAX-11 move3 pC28 block copy 21
VAX-11 movcH PC2 block clear 268
VAX-11 loce Rigel string search 33
VAX-11 locc CLU string search 32
VAX-11 cmped Pascal string compare 47
1BM 370 mvc Pascal string move 105

Table 2: Exotic Instruction Analysis Summary

There have been some failures of the analysis sys-
tem. The problem with the VAX-11 move3 instruction
and the Pascal sassign operator has already been men-
tioned. Another problem was with the Data General
Eclipse [DG75). String instructions on the Eclipse can
move strings from low addresses to high or vice versa
like the instructions on the Intel 8088. However, instead
of encoding the direction in a specific flag the direction
is encoded in the length operand for each string. If the
length is greater than zero then the string is processed
from low addresses to high. Otherwise, the string is pro-
cessed in the reverse order. The problem is that the
length operand 1s now used for two unrelated purposes
and it is difficult: to formulate transformations to
separate the two functions. This points out a general
problem. Instructions that use a clever coding trick
make analysis difficult or impossible.

Experience with EXTRA has also indicated some
problems with the mechanics of the analysis process.
Many of the transformations are at too low a level and
thus the user gets involved in a mass of detail. For
example, the simplifications mentioned earlier can
require many steps. Also, there is no way to structure
the matching process. The user cannot match parts of
the descriptions independently. The entire descriptions
rmust be matched as a whole.

Finally, the results of EXTRA have been compared to
an analysis done by hand to generate exotic instructions
in Pascal and Rigel compilers at Berkeley. The com-
parison revealed obscure bugs in the use of VAX-11
instructions in each compiler. Thus, while exotic
instructions can be used without a formalized analysis
process, there is a chance of bugs due to their complex-
ity.

6. Compiler Support

EXTRA produces a binding between exotic instruc-
tions and high-level language operators, as well as con-
straints on when the binding is valid. In order to use this
binding information the compiler must have an internal
form that allows high-level language operators to be

represented explicitly. The code generator can then
generate an exotic instruction when a high-level opera-
tor is encountered in the internal form and any con-
straints can be satisfled. If there is no exotic instruction
to implement a high-level operator, or if the constraints
can not be satisfied, then the compiler must include
decomposition rules to transform the high-level operator
into a sequence of low-level operations for which code
can be generated.

8PC2 is the Berkeley Pascal runtime system (written in C).

203

Data flow information can often be used by the com-
piler to show that constraints on the values of operand
are already satisfied in the source program. Constraints
can also be satisfied by constraint satisfaction rewriting
rules. These rules rewrite the language operator to put
it in a context where the constraints are satisfied. For
example, a string move operator that is constrained to
move strings of at most 85K bytes can be rewritten to
moKve consecutive substrings of size less than or equal to
B5K.

Once it has been ascertained that an exotic instruc-
tion can be used and that the constraints can be
satisfied, then it is often possible to perform optimiza-
tions to improve the quality of the code. Three optimiza-
tions that have been identified are:

o [Inlegration of rewriting rules with augment code.
Integration is necessary since augments and rewrit-
ing rules are developed independently "of one
another. Thus, when the two types of added code
are put together there is often unnecessary or
inefficient computations present.

o (Constant value optimizations such as constant pro-
pagation and constant folding can be used to sim-
plify the code after the rewriting rules are applied.

e Intelligent register allocation to make use of the
special addressing modes sometimes present in
exotic instructions. This optimization is especially
important when registers are used for dedicated
purposes such as on the VAX-11. Since the VAX-11
string instructions leave string addresses in fixed
registers those same registers should be used to
hold the initial string addresses. Then, if exotic
instructions are cascaded or put in loops, additional
loads of the registers are not necessary.

Thus, a retargetable code generator can generate
exotic instructions if it 1) has a high-level internal form
to allow the use of the binding information produced by
EXTRA, and 2) has methods to satisfy constraints. Once
the constraints have been satisfied, there are optimiza-
tions that can be applied to improve the quality of the
code. We are currently working on interfacing EXTRA
directly to the current version of the Graham-Glanville
retargetable code generator as described in
[Henry81, Graham82].

7. Conclusions

Initial experience with EXTRA indicates that exotic
instructions can be successfully analyzed. EXTRA
enables the compiler writer to verify that an exotic
instruction can be used to implement a language opera-
tor and under what conditions the implementation is
valid. The general compiler features necessary to sup-
port the generation of exotic instructions have also been
identified.

There are several directions for future research.
First, EXTRA should be extended to understand source
language characteristics such as overlap that result in
complex constraints. These language characteristics
seem easy for people to understand, but difficult to for-
malize and use. Second, the compiler interface needs to
be completed. This includes the exact form of the infor-
mation given to a retargetable code generation system
as well as support in the analysis system for the com-
piler optimizations that were mentioned earlier. Finally,
methods should be developed to structure the analysis
and to help the user in deciding how the analysis should
proceed.

Acknowledgements

We would like to thank Kurt Shoens and Robert
Henry for their comments on an earlier version of this
paper.

B. References

[Barbacci77] M. R. Barbacci, G.E. Barnes, R.G. Cattell,
and D.P. Siewiorek, “'The ISPS Computer Description
Language,,” Technical Report, Computer Science
Department, CMU, Pittsburgh, PA (August, 1977).

[Barstow77] D. R. Barstow, “‘Automatic Construction of
Algorithms and Data Structures Using a Knowledge
Base of Programming Rules,”” PhD Dissertation, AIM-
308, Stanford, CA (November, 1977).

[Burroughs76] Burroughs, B<4800/B3800/B2800 Sys-
tems Reference Manual, Burroughs Corporation
(October, 1976). '

[Cattell80] R. G. Cattell, ‘*Automatic Derivation of Code
Generators from Machine Descriptions,” Transac-
tions on Programming Languages and Systems
2(2) pp. 173-190 (April, 1980).

[DEC78] DEC, VAX-11/780 Architecture Handbook, Digi-
tal Equipment Corporation {1978).

[DG?5] DG, *'Programmer’s Reference Manual: Eclipse
Line Computers,’ 015-000024-04, Data General Cor-
poration &arch, 1975).

[Foderaro80] J. K. Foderaro, The Franz Lisp Manual,
Computer Science Division, University of California,
Berkeley (1980).

[Glanville78] R. S. Glanville and S. L. Graham, ‘A New
Method for Compiler Code Generation,” Proc. 5th
ACM Symp. Principles of Programming Languages,
(January, 1978).

[Graham82] S. L. Graham and R. R. Henry, **‘An Experi-
ment in Table Driven Code Generation,"” Proc. SIG-
PLAN Symposium on Compiler Construction (this
issue), (June, 1982).

[Henry81] - R. R Henry, “The Code Generator
Generator's Work Station: Experiments with the Gra-
ham Glanville Machine Independent Code Algorithms
for Code Generation,’ Master's Project Report, Elec-
tronics Research Laboratory, University of CA,
Berkeley (1981).

[1BM81] IBM, “IBM System/370 Principles of Opera-
tion,” (GA22-7000-8), IBM Corporation Manual
(October 1981).

[Intel79] Intel, The 8086 Family User's Manual, Intel
Corporation (October 1979).

[Loveman78] D. B. Loveman, “Program Improvement
by Source to Source Transformation,” Proc. 3rd ACM
Symp. on Principles of Programming Languages,
pp. 140-152 (January, 1976).

204

[Morgan82] T. M. Morgan, “Instruction Set Analysis and
Retargetable Code Generation in the Presence of
Exotic Instructions,” PhD Dissertation, Computer
Science Division, University of California, Berkeley,
CA (June, 1982).

[Oakley79] J. D. Oakley, ‘‘Symbolic Execution of Formal
Machine Descriptions,” PhD Dissertation, Computer
Scier)xce Department, CMU, Pittsburgh, PA (April,
1979).

[RoweB1] L. A. Rowe, J. R. Cortopassi, D. P. Doucette,
and K. A. Shoens, Rigel Language Specification, Com-
puter Science Division, University of California,
Berkeley (June, 1981).

[Standish76] T. A. Standish, D. C. Harriman, D. F.
Kibler, and J. M. Neighbors, ““The Irvine Program
Transformation Catalogue,” Technical Report,
Department of Information and Computer Science,
University of California, Irvine, CA (1978).

