Experience with an Automatic Code Generator Generator

Rudolf Landwehr, Hans-Stephan Jansohn, Gerhard Goos

Universitdt Karlsruhe,

Abstract :

He implemented an automatic code
generator generator based on the approach
of GlLanville and Graham. We describe our

experience with this system and compare
the generated code with that of a conven-
tional Pascal compiler.
1. Introduction

Recent research 1in code generation

focused on systems that automatically
generate code generators from machine
descriptions <([Catteli 78, Ganapathi 80,
Glanville 78, Kozlak 811, more references
in [Ganapathi/Fischer 811). The aim of
this research is to formalize and automate
the .construction of compiler back ends
similar to the use of parser generators,

attribute grammars and other tools 1in
front ends.

A code generator has to perform
several tasks that are more or Less

dependent on the target machine. The most

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-074-5/82/006/0056 $00.75

Institut fiir Informatik II

important tasks are type mapping, memory
atlocation and code selection. In this
concentrate on the 1issue
the final mapping of

paper, we will
of code selection,
the source program 1into a
target instructions.

sequence of

automatic code
setection to a
program to

Present generator
generators reduce code
pattern matching probiem. The
be compiled is given in some intermediate
representation IR. The effect of the
instructions is described by patterns in
terms of the 1IR. Instructions can be
selected 1if their
the program. The various code
generators use different algorithms to
implement this pattern matching.

pattern is matched in
generator

We have implemented an automatic code
generator generator CGSS [Jansohn/Landwehr
801 on the basis of the approach taken by
GlLanville and Graham [Glanville 781. HWith
generators for Pascal
processor
68000.

this system code
have been produced for the
types Siemens 7.000 and Motorola
In the following, we discuss the main
aspects of this system, with special
emphasis on the differences between our

system and that of Gianville as described
in his thesis. Chapter three reports our
experience with wusing CGSS 1in a Pascal
compiler.



As mentioned above, code selection can
pattern

pattern

be regarded as a special kind of
matching. In our system the

matching process 1s divided 1into two
steps: first, a syntactic parse of the
intermediate representation to recognize
a set of patterns and, second, the
patterns
and the

selection of one of these
according to a cost function
evaluation of attributes.

The -intermediate representation of the
program to be compited is a sequence of
operator trees, where each tree represents
an elementary statement of the input
program, e.g. an assignment. For the
syntactic parse, the trees are Linearized
in prefix order.

The syntactic done with a

modified LALR(1)-parser. For this purpose

parse 1is

a context-free production 1is associated
vith each dnstruction of the target
machine. The right hand side of this

production represents the subtree that is
matched by the instruction. The Left hand
side 1s
representing the result of
tion. As an example,
immediate instruction

the replacement for this subtree
the 1instruc-

consider an add
ADDI that adds a

constant to a register. The associated
production 1is

register pltus register constant
Several 1instructions can be associated
with the same production. An
instruction INCR that adds the constant
one to a register would have the same

production as the ADDI instruction.

increment

The context-free grammar constructed
from the collection of these productions
is usually ambiguous, & consequence of
the fact that there are normally several

57

possible code sequences
source statement.
tYI
associated with the same
syntactic parse
of 1instructions.

for the same
Because of this ambigui-

and since several instructions can be
production, the
can only determine a set

The selection of a
single 1instruction from this set has to
be controlled by other means.

The 1instructions in the set may differ
in their cost, for example
execution time, or 1in
impose on their operands.
instruction above, for example,
be used if
the value one.

code size or
restrictions they
The  INCR
can only
the constant to be added has

has determined a
subtree that can be matched by one or
more patterns, the code generator will
test the conditions of the corresponding
instructions, for instance whether a
constant belongs to a certain range. Only

After the parse

instructions with valid conditions are
applicabie. If there remains more than
one applicable instruction, a cost
function 1s applied to determine the
cheapest instruction. To check the
restrictions the code generator uses
attributes that are either given in the
intermediate representation or computed
during code selection.

After the code generator has selected

a single instruction, additional actions
specific for this instruction are perfor-
mec, for example, calls to the register

allocator or computation of attributes.

In order to generate the code genera-
tor, the CGSS needs informations about
the instruction set of the target machine,
especially about the productions, restric-
tions additionat
with instruction.
is given 1n a “target machine descrip-
tion". The following chapter gives a
summary of the form of a target
description used in the CGSS.

actions associated
This information

and
each

machine



S Ll LSRN lLRKE

The target machine description (TMD)
is the dinput to the CGSS. It consists of
a definition of the intermediate represen-

tation (IR) that serves as input to the

code generator and of a collection of

instruction descriptions called “rules".

Each rule must contain

-~ the context-free production for the
instruction

-~ the semantic conditions that must be
fulfilled if the 1instruction shall be
selected

~ the cost of the instruction, e.g. its

gsize or execution time

~ the actions that must be performed when
the instruction is selected, e.g.
emitting the 1instruction to the code

file or calling the register allocator.

We wvere faced with severe difficulties
when wve tried to formalize the conditions
and actions of a of the
diversity of the 1instruction sets of
different machines. The target machine
description Language used by GlLanville,
for example, does not allow the correct
description of. the IBM 340 integer
mul tiplication instructions M and MR.

rule because

We circumvent this problem by atlowing
in the TMD Pascal expressions and state—
ments. (Pasgcal is the -implementation
Language of the generated code generator
as well as that of the CGSS.) Access to
the attributes of a symbol 1in the context-
free production 1is allowed via identifiers
attached to these symbols.

As an example, the description of an
increment 1instruction INCR and an add
immediate 1nstruction ADDI as described
in section 2.1 will be as follows:

58

RULE register.rO
plus register.r1 constant.c

! plus constant.c register.r1;

COST 2; (x size 2 bytes x)
CONDITION c.value = 1;
ACTION

r0.number := r1.number;
writeln (symcode, 'INCR °, rO.number);

END_RULE;

RULE register.r0
::= plus register.r1 constant.c
{ plus constant.c register.r1;
COST 4, (x size 4 bytes x)
(x no condition,all constants allowed x)
ACTION
rO0.number := r1i.number;
vriteln (symcode, "ADDI ',rO.number
,C.value );
END_RULE;

As already mentioned, the input to the
code generator 1is a sequence of trees,
each tree representing a source statement.
We calt a node in such a tree an operator.
Each operator has a fixed number of
operands (plus has two, constant has zero
operands) and may have arbitrary attribu-
tes. AlL operators are defined 1in the
TMD, and each definition of an operator
op contains the following information :

- the name of the operator

-~ a code for this operator,
number for its identification

- the attributes of the operator

~ the number of operands and

a natural

- for each operand i the set FIRST(op, 1}
of operators which may occur as the
first operator of this operand 1in the

input to the code generator.

The Last requirement yields an implLicit
definition of the possible input to the
code generator and 1is used for uniformity
checking (see 2.3). The definitions of
the operators in the examplLe above are



register [CODE = 1; number : 0 .. 151;
constant [CODE = 2; value : integer];
plLus LCODE = 3]
(plus, register, constant)
(plus, register, constant);
gome 1instructions do not return a

result, e.g. branch or store instructions.
instructions normally correspond to
IR that also have no
result, such as an assign operator. We
call such an operator a §TMT-operator,
and as the left hand side of a production
describing an instruction with no result
ve use the symbol STMT, as 1in
8TMT ::= assign address.a register.r

for STORE r,a. The set of operators that
are S8TMT-operators is also defined in the
TMD.

These
operators 1in the

2.3_Rellability of the Geperated
Code_Generator

In view of

vhich have to be
generator 1t s

the many special cases

considered 1in a code

very difficult for the
compiter writer to check that every
combination 1s correctly handled, espe-
cially if the code generator is wused for
years and has been changed by
several people. The essential advantage
of using the pattern matching approach is
due to the splitting of the code selection
task into manageable pieces: pattern
matching, attribute evaluation, decision
within a small set of possible instruc-
tions for a pattern. The proper coopera—

some

tion of these pieces 1is guaranteed by the
generator.
If the description of each dinstruction

is correct (this is
since the Length of a
the average), one of
may occur during code

quite easily checked
rule is 10 Lines on
the following errors
generation :

59

¢(1) The code could be emitted in wrong
order.

(2) The parser may Lloop (due to the
ambiguity of the grammar).

(3> The parser may enter an error state
(syntactic blocking).

(4) ALL 1nstructions corresponding to a
given syntactic pattern have condi-
tions that evaluate to false (semantic
blocking).

AS is shown below, the €G6SS will
either avoid these errors or give an

error message at code generator generation
time, so the code generator will produce
correct code for every Legal input. For a

non-Legal 1input the parser will enter an
error state and the compilation is
aborted after issuing an error message.
Note that this can only occur 1if another
part of the compiler is erroneous.
(1) Correct code in correct order:

The code 1s generated by the code
generator 1in a single bottom up, Lleft to
right tree traversal, parallel to the

LR-parsing of the intermediate representa-

tion. Therefore the code is generated 1in
a correct order provided a postfix tree
traversal of the IR specifies a legal
execution order. If any reordering is
required for optimization purposes, 1t
must be performed before the code 1is
generated.

(2) Looping:

Loops
reduces

can only occur when the parser
according to a sequence of chain
productions such X-=>Y->2->X.
Each Loop can be broken up by changing
the resotution of a reduce/reduce-con-
flict. The CGSS does this automatically.
The algorithm 1is similar to that of
Glanville. However, 1t uses and modifies

as



the generated parser
the item set.

tables instead of

(3) Syntactic blocking:

The 1nput Llanguage for the code
generator 1s a sequence of IR-"state-
ments”, where each statement is a prefix
expression starting with a STMT-operator
and each operand 1 of an operator op
starts with an operator belonging to the
set FIRST(op,1) (see 2.2). The code
generator will not syntactically block if
the Llanguage accepted by the  parser
inctudes the 1input Language. We call the
parser "uniform” if this condition holds.
The special form of the input Laﬁguage
and the productions in the machine
description allow to check the uniformity
of the generated parser in the CGS8S. To
this end the system computes for each
state q in the parser the pairs <(op,i)
where 1 1s the operand of the operator op
expected when the parser is 1in state q.
The parser 1is uniform if for all op1 1in

FIRST(op,i)> the parser action for state g
~ and Lookahead op1 is admissable.

Non-uniform situations seem to be
if the full sets of real
machines are (but they do
occurt!). They more often the conse—
quence of an TMD, and the
uniformity test that something
is still missing.

rare
instruction
described
are
incomplete
exhibits

(4) Semantic blocking:

If the conditions for all instructions
associated with a given syntactic pattern
evaluate to false, the code generator
cannot select an 1instruction and will
blLock.

The will only occur 1if all
instructions associated with the pattern
have a condition attached. To avoid this
problem, the CGSS searches for patterns
with this property and then adds a new
“abstract instruction” to the set of

situation

attached instructions vhich
generated wunconditionally. Yery
this abstract instruction can be implemen-
ted as a sequence of reat instructions.
This sequence 1is called the “default
List" for the pattern. If no default List
ig found by the CGSS, an appropriate
message 1s given, and the compiler writer
has to check whether he forgot something
or whether the combination of all condi-
tions covers all
Legal 1input.

be
often

can

cases occurring 1in a

The
depend

quality of the generated code can
on the quality of the default
Lists. As shown 1in the next chapter, the
€GSS may not find the best possiblie
solution, and it 1s reasonable to check
the generated defaults after the
description 1s complete 1in all
aspects. Default instructions
defined explicitiy by adding
rute to the TMD.

machine
other
can be

an extra

2.Uglng _the €688 _for_ a_Pascal Compiler

For the performance of the
quality of the generated

our system, amongst other

judging
CGS8S and the
code, we used
projects,
Lers for

for implementing Pascal compi-
a Siemens 7.000 processor (same
instruction set as the I8M 3607370
series), and the Motorola Mé8000 processor
CArmingeon 811. A Pascal front end
provided by W.M.Waite was used in these
compilers. Chapter 3.1 contains informa-
tion about the TMD's and the performance
of the CGSS, while chapter 3.2 is concer-
ned with the quality of the generated
code and the performance of the code
generators.



To generate a code generator for some
target machine, a description of this
machine must be written and processed by
the CG6SS. This section is concerned with
the target machine descriptions that
used for our Pascal compiler and with

processing of these descriptions with

we
the
the

€6585. Table 3-1 gives some figures about
the TMD's and the performance of the
CG8S8. The TMD for the M48000 does not
include real arithmetic, whereas the

Siemens description does.

As mentioned 1in section
Pascal statements in the rules
the machine instructions. This fact
substantially contributes to the size of
the TMD's. Usually our descriptions for

2.2, we use
describing

real machines are about 2000 Lines Long.
The Pascal statements from the TMD,
supplemented with. the access pathes to
the attributes, are incorporated into the
code generator frame.

The generated tables comprise the
parser table and tables to control the

evaluation of the conditions and actions
associated with the pattern selected by
the parser. The parser tables are con-
structed and optimized using modules from
our parser generating system PGS [Dencker
77].

discuss all
descriptions.
important
them s

This 1s not the place to
aspects of the two machine
But twvo points are esperially
and should be mentioned. One of
the handling of the different address
modes available on real machines, the
other 1s the use of special instructions
by the automatically generated code
generator and the necessity of default
Lists (see section 2.3) as a consequente
of this.

61

187000t M68000

+
+ +

8i1ze of TMD ! 250012100 Lines
Number of rules !} 150! 130
Average size of rules ! 10! 10 Llines
Number of operators H 871 64
Number of parser states ! 1491 154
§1ze of generated tables! |
not optimized ! 301 36 KByte
optimized ! 51 7 KByte
S1ze of generated code | !
to be included in the! 2000i1100 Lines
code generator frame | ! Pascal
Total processing time ofi !
the CGSS on a §7.760 ! 148! 132 sec.
Table_J-1
An RX-address on the Siemens 7.000,

consisting of two registers and a constant
offset, can be represented by ten diffe-
rent patterns using the operators +, r
and c for address-addition, register and
constant resp. : c, r, +cr, +rc, +ctrr,
+r+cr, +r+rc, ++crr, ++rcr and +4rrc. It
is, in practice, 1impossible to describe
all these addressing modes together with
the 1instruction. For an operation wusing
an RX-address (almost all register-storage
operations on the §87.000), the machine
description would contain not one, but
ten patterns. The complete description of

a MOV 1d1nstruction on the Motorola would
require more than fifty different pat-
terns. On the other hand, it is necessary

to wuse the possibilities offered by the
hardware to produce good code. Fortunate-
Ly, the same addressing modes are used
for most instructions, and we decided to
use a speciat nonterminal "address" from
which atl the possible address expressions
can be derived, and the address computa-
tion 1is decribed by rules Like



RULE address.a ::= address_plus
constant.c register.r;

CcosT 0;
CONDITION (c.value 1IN [OD .. 40951) AND
(r.number IN [1..15] ),
ACTION a.offset := c.value;
a.base = r.number;
a.index := 0;
END_RULE;

It is characteristic for such rules
that they do not correspond to an instruc-
tion and do not cause any costs since no
code 1s emitted. In the description of an
instruction using an address, only this
nonterminal appears in the pattern, as in

register ::= 1int_plus register

int_cont address.
As the cost of an instruction can only be
given by a constant, this solLution allows
the exact description of an instruction
onty if the cost of the 1instruction does
not depend on the specific addressing
mode chosen. For machines such as the
M68000, where e.g. an instruction occupies
an extra vord if the address mode contains
an offset, the addressing modes can be
grouped 1into classes with equal cost, and
a different nonterminal can be uséd for
each class.

As an examplLe for the use of special
instructions and de?ault Lists Let wus
consider the ADD dnstruction on the
M48000 that adds the contents of a
register to a memory cell. The description
of this instruction 1is

RULE S8TMT ::= int_assign address.af
int_addition data_reg.dr
int_cont address.a?;
COS8T 2;
CONDITION is_same_address (al, a2);
ACTION (x emit ADD dr_,a1 »)
END_RULE;

This 1instruction can be used for
Pascal assignments of the form
"i := 1 + expr"” vhere the value of expr
is in the data register dr. The syntactic
pattern given above does not express that
the two addresses al and a2 must denote
the gsame memory cell. As a consequence,
this pattern will also be found for a
statement Like "1 := k + expr", and the
condition will then evaluate to false, so
that this dnstruction cannot be used.
There 1s no other instruction with the
same pattern, so the code generator could
not generate any code in this case wuniess
it can split the pattern 1into smaller
parts for which it can generate code.
This 1is exactly what the default List
construction is doing. The possible
patterns for our example and the corre-
sponding instructions are

P1: data_reg.dr ::= int_cont address.a
"MOY a,dr"
P2: data_reg.dr0 ::= int_addition
data_reg.dr1 data_reg.dr?2
"ADD dr2, drQ"
P3: data_reg.dr0 ::= int_addition
data_reg.dr1
int_cont address.a
"ADD a,dr0O"
P4: STMT ::= int_assign address.a
data_reg.dr
"MOY dr, a”

Obviously, we can split the pattern

8TMT ::= 1int_assign address.al
int_addition data_reg.dr
int_cont address.a?

in two different ways : using the patterns
P3 and P4 (resulting in the code sequence
ADD a2,dr; MOY dr,at1) or P11, P2 and P&
(resulting in the code MOY aZ,dri;
ADD dri1,dr; MOV dr,al). Both  possible
default Lists are correct, but the first
one 1is better because 1t results 1in
smaller and faster code.

The  CGSS automatically generates
default Lists at code generator generation

62



time 1f they are necessary. If a default
List can be found, the C€6SS§ will find
one., If, however, more than one default
List 1s possible, the CGSS will select
one at random even 1f another one might
be better. The problem to determine a
"good" default List at code generator

generation time has not yet been satisfac-
torily solved. As soon as the
generator 1s complete 1in that it
generate code for every legal input, 1t
is, therefore, worthwhile to have a lLook
at the generated default Lists. If one is
too bad, it is always possibte to insert
an extra rule in the TMD with the pattern
in question and provide the default List

code
can

explicitly 1in the body. This rule will
have no condition and a high cost so it
vill only be wused if no other rule with

the same pattern is applicable.

2.2.1he_Code_Generator_and
the_Generated_code

The generated code generator for the
Siemens 7.000 1is about 3800 Lines of
Pascal (1800 Lines for the frame and 2000

Lines generated by the CGSS). The equiva-
Lent program for the Mé8000 has 3500
Lines (2400 for the frame and 1100
generated Lines). These programs perform
the code selection and register allocation
phase for our compiler, type mapping and
variable allocation are done by a separate
module.

Because our purpose to test the
powver of the code selection algorithm,
all other parts of the compiler have been
implemented straightforward with as
Little effort as possible. This is also
true for register
done "on the fly". Calls to

was

which is
register

allocation,
the

allocator are 1imbedded in the actions of
the rules 1in the TMD's. The register
allocation algorithm assumes that a

€3

sufficient number of registers
means for register spilling are not
provided. If the register allocator runs
out of registers, the compilation is
aborted after issuing an appropriate
error message (this case did not occur
except for specially written test pro-
grams). Because no context 18 considered

exist,

vhen allocating a register, it can happen
that a value 1s Loaded 1into the wrong
kind  of register (e.g. 1nto an odd

instead of an even one) and must then be

moved into another register.

The generated code generator processes
about 200 source Lines per second,
including reading the intermediate
representation from a file and - writing

the generated instructions. For our front
end (see table 3-2), the code generator
needed 33 seconds. Experiments where the
io has been separated from the code
indicate that the performance

generator can at Lleast be

selection
of the code
tripled.

The code generated for the §7.760 was
compared with the code generated by the
standard compiler on this system, a
product developed on the basis of the
Pascal-P compiler. Table 3-2 gives the
code size for the modules of our compiler
vhen compiled with our and with the
standard compiler. Overall, the automati-
cally generated code 1is about 10 X
shorter than that of the standard compi-
ler. A more detailed analysis shows that
the automatically generated code made
better use of special dinstructions and
addressing modes, whereas the register
usage was better in the standard compiler.
Especialty, the standard compiler elimina-
tes simple common subexpressions inside
basic blocks and uses more register-regi-
ster operations.

We have also compared the run time of
generated by the two compilers.
CPU-time wused on a

the code
Table 3-3 shows the



87.760 processor by some sort programs
for sorting an array of 1000 real numbers
vith several methods : heap-sort (HEAP),

shetl-sort (SHELL), a hybrid bubble sort

(D0B0S) and quick-sort (QUICK). As can be
seen, the automatically generated code 1is
15 X slower, a figure that
was confirmed by other experiences. The
main reason for the advantage of the
standard compiler is the better register
usage and the fact that we did not put a
great effort into the run-time system for
our generated Pascal system.

approximately

Motorola
generated

the
code

The code
Mé8000 was compared
for this processor
HewtLett-Packard and from Motorola. Table
3-4 shows the code size for the sort
program already mentioned as generated by
our compiler and by the Motorola compiler.
A comparison with the HP compiier for the

generated for
with

by compilters  from

same programs was not possible. A first
analysis shows that the automatically
generated code 1s shorter than the one

generated by the other two compilers. The
main reason for this seems to be the
better usage of storage-storage operations
for simple statements.

4_gconglusiong

The €688 is now 1in use for more than a

year and our overall experience is
positive. With an effort of six man month
we have been able to produce a code
generator for Pascal whose quality is
comparabie vith an 1industrial product
into which, to our knowledge, at Least
six man years have been 1invested. In
addition, it was possible to retarget
this code generator from the Siemens
7.000 to the Mé&8000 Hn approximately

three man month.

64

|Pascal!

size of code!

modute lsource! compiler | change
iLtines ! our Istand.!
front end 1 6940 | 782401 836361 +7 X
type mfpp1ng,! ! ! !
IR generatori 6060 | 48682! 412601 +25 X
handLing } ! } H
of sets I 2400 t 21104} 236441 +12 X
constant H ! ! |
folding I 1500 | 11234} 107381 -4 X
code } ! ! !
generator | 3770 | 572721 56652% -1 %
code editing | 2430 | 263141 266644 +1 2
Ligsting | H ! !
generator ! 1400 } 12136) 11804 -2 2
sum 124500 1254%9821274398! 48 2

Table_3-2_: code sizes of compiler
modules on the 8§7.000 (in byte)

| our compiler

standard comp.

program | size | time size | time
SHELL 12424 219 1 2484 | 184
HEAP b 2762 |} 244 1 2736 |} 206
D0BOS I 2596 | 264 1 2628 | 225
QUICK I 3360 124 V3200 ¢ 111

Table_3-3_: comparison of sort programs

on a §87.760 processor (code size in
byte, time in milLliseconds)
| code size [bytel !

program | our comp. ! Motorola | change
SHELL ! 1976 2048 | + 4 X
HEAP ! 2250 | 2394 1 + 6 X
D0BOS | 2140 | 2256 | + 5 X
QUICK { 2746 3036 | +10 X

Table_3-3_: comparism of sort programs
on a M468000 processor



We are just starting to study
code selection algorithm fits
framevork of an optimizing
Lot of optimizations interfere with code
especially the decision

possible optimization is
profitable. Common subexpression elimina-
tion at the addressing tevel, for example,
the of the
an expression
is Loaded into a register white it could
have been evaluated within the addressing
part of an dnstruction. We believe that
codegenerators generated by the CGSS can
be used to such optimizations,
e.g. by machine dependent
attributes for controlling optimization
modules or by actually performing optimi-
which have been found possible by

machine 1independent phases of
the compiler.

how our
into the

compiler. A
setection,

vhether a

may deteriorate
generated code if

quality
address

support
computing

zations
previous,

The most important improvement on the
way to an automatically generated "produc-

tion quality" code generator is the
integration of a more sophisticated
register allocation algorithm 1into our
system. This will reduce the size of the
generated code and above all shorten the
execution time.

One problem already mentioned 1is the
formalization of the conditions and
actions 1in the TMD, which would conside-

rably reduce the size of machine descrip-
tions. We are not working in this direc-
tion 1in the moment because the present
form allows more experiments with the
code generator.

The code selection algorithm proposed
by Glanville and implemented by the CGSS
uses a special kind of pattern matching
in trees, the parsing with an LR parser,
for the purpose of code selection. Our
resutts prove that it 1s possible to
produce good code with this method and
that 1t is efficient enough to be used 1in
compilers. Nevertheless, other realiza-

65

tions of the pattern matching are possib-
le, and more experiments 1in this field
would be 1interesting.

In the present form, the CGSS allows
to build, with a minimum of effort, code
generators that are reliable, need only
reasonable resources at run time and
produce good code that can stand a
comparison vith a conventional code
generator.

References

CArmingeon 811 H. Armingeon :
Ein Pascal-Ubersetzer fir den MC 48000
Diplomarbeit, Universitdt Karlsruhe,
Fakultdt far Informatik 1981

fCattell 78] R.G.G. Cattell:
Formalization and Automatic Derivation
of Code Generators
PhD Thesis, Carnegie-Mellon Univ. 1978

[Dencker 771 P. Dencker :
Ein neues LALR(1)-System
Diplomarbeit, Universitdt Karlsruhe,
Fakultdt far Informatik 1977

[Ganapathi 801 M. Ganapathi:
Retargetable Code Generation and
Optimization using Attribute Grammars
PhD Thesis,

University of Wisconsion-Madison 1980

[Ganapathi/Fischer 81]
M. Ganapathi, C. Fischer:
BibLiography on Automated Retargetable
Code Generation
§igptan Notices, Yol. 10, No. 10,
October 1981

[GlLanvillte 78] R.S. Glanville:
A Machine Independent Algorithm for
Code Generation and its Use in
Retargetablile Compilers

PhD Thesis, University of Carlifornia,
Berkeley 1978



LJangohn/Landwehr 801
H.-8t. Jansohn, R. Landwehr:
CGSS8: Ein System zur automatischen
Erzeugung von Codegeneratoren
Diptomarbeit, Universitdt Kartsruhe,
Fakultdt far Informatik 1980

CKozLlak 81 R.H. KozlLak:
Machine Independent Code Generation
Technical Report CSRG-125,
University of Toronto 1981

b6



