
An Efficient Approach to Data Flow Analysis in a Multiple Pass Global Optimizer

Suneel Jain
Carol Thompson

Hewlett-Packard
19447 Pruneridge Avenue

Cupertino, CA 95014

AB!mwcT
Data flow analysis is a time-consuming part of the
optimization process. As transformations are made
in a multiple pass global optimizer, the data flow
information must be updated to reflect these
changes. Various approaches have been used,
including complete recalculation as well as partial
recalculation over the affected area. The approach
presented here has been designed for maximum
efficiency. Data flow information is completely cal-
culated only once, using an interval analysis
method which is slightly faster than a purely itera-
tive approach, and which allows partial recomputa-
tion when appropriate. A minimal set of data flow
information is computed, keeping the computation
and update cost low. Following each set of
transformations, the data flow information is
updated based on knowledge of the effect of each
change. This approach saves considerable time
over complete recalculation, and proper ordering
of the various optimiitions minimizes the amount
of update required.

1. Introduction
This paper describes the data flow analysis imple-
mentation in a machine-specific multiple pass

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage.

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish, requires a fee and/

or specific permission.

0 1988 ACM 0-89791-269-l/88/0006/0154 $1.50

Language Design and Implementation
Atlanta, Georgia, June 22-24, 1988

154

optimizer. The major contribution of this work is
the methods which have been employed to improve
the speed of the entire optimization process.
These are:

1.

2.

3.

Use of a small set of data flow information
to support a number of global optimizations.

Use of interval analysis to both speed up the
process of data flow computations, and to
allow partial recalculation where appropriate.

Incremental update of data flow information
between components of the optimization pro-
cess, based on knowledge of the nature of the
transformations being made.

Data flow update for each interval is based on the
existing data flow information for that interval. As
a result, the update for each interval is done
independently of the update for other intervals.
The cost of this update method is O(n*c) where n
is the number of intervals in the graph, and c is the
number of changes. Unlike methods which pro-
pagate a change outward, this cost is independent
of how much of the graph is actually affected by a
transformation. However, this constant cost is
offset by the straightforward manner in which it
can be implemented. The update process for each
interval consists of testing and setting bits in a bit
vector, which can be done very effxiently.

2. Related Work

The optimization strategy of the PL.8 compiler
[Ausl 821 has many similarities to this implementa-
tion. They also implemented optimization using a
used a low level intermediate representation.

However, their data flow analysis was done using
AlIen/Cocke interval analysis, and the data flow
information was updated between passes by com-
plete recalculation. The approach to data flow
analysis presented here differs in that it incor-
porates structural analysis [Shar 801 to speed up
the computation of data flow information, and
incremental update of that information between
passes to save additional compilation time.

Incremental update of data flow information has
been investigated mostly from the point of view of
incremental compilers. In an incremental com-
piler, current data flow information can be used to
produce optimized cede, as well as to provide the
user with information on program behavior. Paull
and Ryder [Paul 831, [Pau188] present an incremen-
tal update algorithm for Allen/Cocke interval
analysis [Alle 761, with a worst case update cost of
O(n*c) for reducible digraphs, where n is the
number of nodes, and c is the number of changes.
Pollock [Poll 851 presents an incremental update
algorithm designed to support optimization, usiug a
flow graph of dags and a history of optimization
transformations. Zadeck took another approach
[Zade 841, using graph splitting to incrementally
update cluster problems, exhibiting O(n + e)*c
worst case behavior, where n is the number of
nodes in the graph, and e is the number of edges.
L. and K. Ottenstein [Otte 841 also address the
problem of incremental update, presenting an
approach designed to support program slicing.

All of these approaches use an outward propaga-
tion of program changes, so that the actual update
cost is proportional to the area affected. However,
the cost of these update methods is high both in
terms of the amount of information required, as
well as the amount of work that must be done at
each step in the update process.

When it is expected that the effects of a change
will be fairly localized (as one might expect with
incremental compilation), such approaches may be
desirable, since the update cost can then be
expected to be rather limited. However, the prob-
lem of data flow update between optimization

passes does not exhibit this same locality, as
transformations may be sprinkled throughout the
flow graph. Another difference is that the transfor-
mations made by an optimizer are of a restricted
set, and therefore easily characterized, unlike the
transformations made by a program edit. Utilizing
this knowledge, data flow update can be tailored to
the specific transformations of each pass, making
the process more efficient.

3. Background

The data flow analysis approach described here has
been developed as part of an optimizer targeted for
the HP Precision Architecture, developed in the
Spectrum Program at Hewlett-Packard [Birn 851.
Optimizations that are supported include machine-
specific as well as traditional data flow based
optimizations. A major goal in the design of the
data flow analysis was that it ,should be as fast as
possible, since the optimizer would be integrated
with production compilers. In order to meet this
objective, a data flow analysis package has been
designed which will support a number of optimiza-
tions with a simple set of data flow information
represented efficiently. An adaptation of Sharir’s
approach to interval analysis is used to support
data flow calculation, giving both a realization of
the control flow of the program as well as an effi-
cient calculation method [Shar 801. Because optim-
ization is done at the level of machine language,
data flow information is gathered for both memory
and register resources. Both forward and back-
ward data flow calculation are supported.

The low level representation upon which optimiza-
tions are performed contains a doubly-linked list of
machine instructions [Cout 86b] [John 861. Each
instruction entry in the graph contains opcode,
source, and target information as well as additional
information required by the optimizer. All
operands, including both memory and registers, are
specified using re~urce IDS. Registers are chosen
from an infinite set, and register assignment is per-
formed by the optimizer. A value numbering
scheme is used by the code generators to ensure

155

that identical operations always receive the same
unique target resource ID. Resource IDS are also
used to convey a&sing information to the optim-
izer, Each resource ID may represent a reference
to a single resource (register or memory), or to
one of a number of resources [Cout S6a].

As local data flow information is gathered, the
resource IDS are replaced with sequence numberx.
Sequence numbers can be expressed as Gnstruc-
tion, resource ID> pairs. Each sequence number
is used exactly once, and represents either a defini-
tion or a use of a particular resource in an instruc-
tion. Data flow information is expressed as sets
(bit vectors) of sequence numbers. To save space,
bit vectors are implemented as a linked list of data
blocks representing 64 contiguous elements each.
Deftition and use sequence numbers are clustered
in different partitions to decrease the number of
data blocks in each bit vector.

In addition to the Gnstruction, resource ID>
pairs, there is a special sequence number for each
resource ID called the any-ref sequence number.
This sequence number is not associated with any
particular instruction and is used to convey more
general information about a given resource ID, and
which is not associated with a particular instruc-

is complete, the instruction
into basic blocks. These

tion.

4. Interval Analysis

Once code generation
graph is partitioned
comprise the basic unit for which local data flow
information is calculated. In addition, these basic
blocks become the base units for the interval struc-
ture. The interval analysis approach rediscovers
the control flow of the code, and builds a hierarchy
of control structures, each such structure being
represented as an interval.

The fast step in performing interval analysis is to
calculate the set of dominators for each basic
block. The standard approach to calculating domi-
nators [Aho 771 is to initialize the dominators set
for each node, except the first, to contain all nodes.

However, since these sets are usually sparse, it is
more efficient to initialize the set for each node to
contain only itself. These sets are then propagated
by iterating over the nodes in reaching depth-fust
order, At each node, the intersection is taken of
the dominator sets of the predecessors which have
been visited during some iteration. This continues
until there are no changes.

Once dominators have been computed, the interval
structures are identified. Sharir’s approach recog-
nized single-entry/single-exit loops, if-then and if-
then-else constructs. All other control structures
were contained in proper intervals (loops with a
single entry and possible multiple exits), or
improper intervals (single-entry loops which con-
tain irreducible flow graphs). For recognized con-
trol structures such as loops or if-then intervals, no
iteration is required during global data flow
analysis. Instead, data flow information is pro-
pagated using a formula specific to each interval.
Data flow information for both proper and
improper intervals is calculated in an iterative
fashion, but can be limited in the case of proper
intervals.

In adapting Sharir’s approach to our needs, a con-
trol structure has been added for switch/case state-
ments. It supports the Pascal-like case statement
as well as the switch statement in C, which allows
fall-through from one case to another. This struc-
ture consists of a set of nodes with the following
properties (figure 1):

1. The first node has three or more successors,
or sister nodes.

2. Each sister node has, in addition to the first
node, at most one other predecessor which is
also a sister node.

3. Each of the sister nodes has a single succes-
sor, which is either another sister node, or
the single successor node to the switch/case
interval.

156

figure 1 : Switch Interval

The second contribution to Sharir’s approach has
been to limit the scope of improper intervals. In
his approach, the effect of an irreducibility is con-
tained only within the next enclosing loop. ln this
approach, au improper interval as been limited to
the smallest group of nodes which contains:

1. One node which dominates all other nodes in
the group, and

2. All nodes which lie on a path between the
dominating node and any member of the

group.

This approach often produces a smaller improper
interval, thus limiting the scope of iterative compu-
tation (figure 2).

I
I

II-T

I
I
I
I *........ ’ : ’ : ’ : ’ : ’ : ’ : I :

;B

: : I - ***.... I I

I

I..

I

I
L-,-------,--J

----- sbarir’rappmacb

. J--w

figure 2 : Improper Interval

5. Local Data Flow Calculation

Local data flow information is gathered in a for-
ward pass over each basic block. Certain local
optimizations are performed during this pass,
including constant propagation, common subex-
pression elimination, redundant load elimination,
and peephole optimizations. The following local
information is computed for definitions [John 861:

M-GEN (Might GENerate) - The set of defti-
tions within this basic block which may
reach the end of this basic block.

W-D-KILL (Will Definition KILL) - The set of
deftitions outside this basic block which
defme resources that are definitely defined
in this basic block.

and the following local information for uses:

MAJSE (Might USE) - The set of uses within this
basic block which have no definite preceding
definition in this basic block.

W-U-KILL (Will Use KILL) - The set of uses
outside this basic block which use resources
that are definitely defined in this basic
block.

There are two types of definitions, might definitions
and will d@Initions. A might definition of a
resource indicates that the resource may or may
not be absolutely defined, while a will definition
indicates that the resource will deftitely be
defmed. Might definitions occur due to either
a&sing or conditionally executed (skipped) instruc-
tiOllS.

6. Global Data Flow Calculation

The next step in data flow analysis is to propagate
the local information out to the outermost interval.
This is done using specific formulae for each type
of interval (see figure 3). This produces local data
flow information (M-GEN, WD-KILL, MUSE,
and W-U-KILL) for each interval.

157

Outward propagation:

Example: If-Then Interval

F ,,[If-~enl = (F,,W=nlo FREAcHIIfl) V FREAcH[lfl

%,W~4 = Ok&f] 0 f%,[Thenl) V %,Vl
where V denotes functional join and o denotes functional composition

Inward propagation:

REACH-TOP[Ifl = REACH-TOP[If-Then]

REACH-TOPpen] = F-&Ifj(REACH-TOP[If-Then])

NEED-BOT[Ifl = FNEED[Then](NEEDBOTpf-Then])

NEED-BOT[Then] = NEED-BOT[If-Then]

figure 3 : data flow propagation

Global data flow information is then propagated
inward from the outermost interval (see example).
The following information is computed:

REACHTOP (REACH at TOP) - The set of
sequence numbers which represent defti-
tions which may be defined along some path
between the beginning of the procedure and
the top of this interval.

NEED-BOT (NEED at BOTtom) - The set of
sequence numbers which represent uses
which might be reached by a definition at
the bottom of this interval.

This information is computed using functions of
the form

F = < A,B > such that F(X) = A fl X U B

These functions are as follows:

F NEED = < -W-U-KILL, M-USE >

F RJ?Aal = < vW_DJILL , M-GEN >

In the NEEDBOT set, the presence of the any-ref
sequence number for a particular resource indi-
cates that there exists some use of that sequence
number which is exposed, i.e. the resource is live at
the end of this interval.

These basic data flow sets are sufficient to support
the data flow based optimizations which have been
implemented, with the exception of Common
Subexpression Elimination. Traditionally, this
optimization depends upon the calculation of avail-
able expressions. Rather than generate a third
type of data flow information with a different
domain (resource IDS rather than sequence
numbers), an approach was sought which could be
incorporated into the data flow computations for
reaching definitions.

The any-ref numbers are used in the MGEN,
WD-KILL, and REACHTOP sets to indicate the
undefined state of a particular resource. A
resource becomes undefined when a resource upon
which its definition is dependent is redefined. The
motivation for tracking the undefined state of a
resource, rather than its availability, is that this
information can be propagated along with the
REACHTOP information, using set union opera-
tions. Thus, if the resource x were defined by the
following expression,

x=y+z

then any definition of the resource y would be a
“definition” of UNDEF(x). If the UNDEF (or
any-ref) sequence number is not set for a particular

158

resource, then that resource can be considered to
be available, and therefore a candidate for com-
mon subexpression elimination. Although this
information is implemented in conjunction with the
Reaching Definitions, conceptually there exist

separate data flow sets and functions for the
UNDEF information:

F UNDEF = C vW,DEF, M-KILL >

W,DEF (Will DEFine) - the set of resources
which have deftitions which will deftitely
reach the end of this basic block.

M-KILL (Might KILL) - the set of resources that
may be invalidated in this basic block by the
redefinition of resources upon which they
depend.

Note that the domain of these sets and functions is
the set of resource numbers as represented by the
any-ref sequence numbers, not sequence numbers
as such.

7. Use of Data Flow Information

The REACH-TOP and NEED-BOT sets provide
data flow information for basic blocks, which are
the lowest level in the interval structure hierarchy.
However, most global optimization components
require data flow information at each instruction,
A traversal within the basic block coupled with the
REACHTOP and the NEED-BOT sets at the
basic block boundary are used to derive this infor-
mation whenever needed. The different sets com-
puted are outlined below.

Reaching Definitions: The set of definitions for a
resource R that may reach an instruction I.

Exposed Uses: The set of uses for a resource R
that are upward exposed at an instruction I.

Available Resources: The set of resources available
at an instruction I. Availability of a
resource R is derived from the dependency
information for R and the UNDEF bit for
R in the REACHTOP of the basic block
containing I.

Def-Use Webs: The definitions and uses of a
resource R are partitioned into disjoint sets
called webs. For each use in a web, all the
definitions that can reach it are in the web
and for each deftition in the web, all its
uses are in the same web. The
REACHTOP and the NEEDBOT sets
are used to build webs. The def-use webs
are used for register allocation, store to
copy optimization and unused definition
elimination.

8. Data Flow Update

All the global optimizations use the data flow
information outlined in the previous section. Since
the same data flow sets are used by all com-
ponents, they need to be kept accurate as various
optimizations are done, The local data flow sets are
not updated, since they are not used by any of the
optimizations. The data flow based optimizations
performed are common subexpression elimination
(CSE), store to copy optimization, unused defini-
tion elimination, loop invariant code motion
(LICM), induction variable elaboration (IVE)
[Cock 7q, register web-based optimizations and
register allocation using graph coloring [Chai 821.

No data flow update is required after register allo-
cation, which is performed last. Unused definition
elimination maintains the correctness of the data
flow and thus does not require update. Sequence
numbers for the instructions deleted in the process
are invalidated, and ignored in the data flow sets.
Register web-based optimization changes certain
instructions to simpler instructions. The sequence
numbers of the original instruction are retained
and thus the data flow information remains valid.
The ordering of the other optimizations is done to
minimize data flow update. Common Subexpres-
sion Elimination is the only optimization that uses
the UNDEF sets. This optimization is performed
first so that UNDEF information is never updated.
CSE is also the only component which does not
use NEEDBOT information. The NEED_BOT
sets are computed after CSEs, so that they do not

159

have to be updated.

As mentioned earlier, the approach used in this

bptimizer is to incrementally update the data flow

sets in each component based on the particular

transformations made. This approach requires

additional work to characterize the effect of each

transformation, so that the data flow can be

updated accurately. The benefit is to drastically

reduce the time taken by the update. Also, the time

taken by the update becomes proportional to the

amount of optimization done by a particular com-

ponent.

The incremental update algorithms for the various

components are given below.

8.1 Update after Common Subexpression
Elimination

This component removes redundant definitions

when an earlier result is still available. For each

instruction that is deleted, the set of reaching

definitions for the instruction target is computed.

The definitions in this set that have also been elim-

inated are recursively replaced by their reaching

definitions. These are called the recursive reaching
definitions. The update algorithm is given below:

compute the recursive reaching dejinifions for all

instructions deleted;

for each interval I in the procedure do

for each instruction that is deleted do

use of the memory resource by a procedure call.

The same mechanism is also used to represent a

definition at procedure entry and a use at pro-

cedure exit. The optimization changes store

instructions in the web to copy instructions, deletes

load instructions, adds a store before any call that

may use the memory resource and adds a load

instruction after any call that may modify the

memory resource.

When a store instruction is converted into a copy,

the sequence number of the memory resource is

changed to be a sequence number of the register

target. Since this sequence number is already in the

data flow sets, no update is needed. The update for

the other transformations is given below:

for each interval I in the procedure do

for each load instruction deleted do

if the memory use is in NEEDBOT[I] then

add all the exposed uses of the load

target to NEED-BOT[I];

end if

end for

.--I T - sequence number of the instruction targel;

if T is in REACH-TOP[I] then
replace T by its recursive reaching
definitions in REACH-TOP[T];

end if

end for

end for

for each store instruction added before a call

or at procedure exit do

if the special memory use is

in NEED-BOT[I] then

add the use of the load target in the

store, to NEED-BOT[I];

end if

end for

for each load instruction added after a call

or at procedure entry do

if the special memory definition is

in REACH-TOP[I] then

add the definition of the load target

to REACH-TOP[I];

end if

8.2 Update after Store to Copy Optimization
end for

end for

This optimization promotes certain memory

resources to registers. Each def-use web of the 83 Update after Loop Invariant Code
memory resource is independently considered for Motion
the optimization. The web may contain special

definitions and uses to denote the modification or
This optimization moves computations within a
loop that yield the same result for every iteration,

160

to the loop preheader. This movement of instruc-
tions affects the data flow only inside the loop
interval. Outside the loop interval the data flow
information remains accurate. The update is done
after the optimization of each loop.

for each instruction moved out do
for each sub-interval I of the loop do

add the definition of the instruction
target to RFACI-LTOP[I];
add all the exposed uses of the target
to NEED_BOT[I];
if any of the operands of the instruction
are not live on exit from the loop, remove
the use of the operands from NEED-BOT[I];

end for
add the exposed uses of the target
to NEED-BOT[loop preheader];

end for

8.4 Update abler Induction Variable Elabora-
tion

This optimization replaces multiplication opera-
tions within a loop by iterative addition operations.
A new resource is created to hold the result of the
multiplication and updated appropriately.

A different approach is used for update after IVE
than for other components. Since IVE introduces
definitions and uses of new resources, it is very dif-
ficult to do the data flow update for each transfor-
mation incrementally. Further, the effects of most
of the new instructions and temporaries added are
limited to the loop interval. Thus the data flow
information for the loop interval is completely
recomputed. This gives acceptable results since the
recomputation overhead is limited to the loop
interval.

For new instructions added to the loop preheader,
the operand uses need to be exposed to the
corresponding definitions. If the definitions are not
within the preheader, some additional update is
required outside the loop interval. For each such
new use, there is an existing exposed use of the
same resource in the loop. The new use is added to

the NEED-BOT wherever the earlier use was in
the NEED-BOT set.

9. Results

The time taken for data flow update was measured
for a wide variety of sample programs. We present
here measurements of the time taken by data flow
update for each component relative to the time
taken for complete data flow computation. The
time for data flow computation includes the time
for calculating the local data flow sets, propagation
of data flow and calculating global data flow sets.
The time for building the interval structure and
assigning sequence numbers is not counted, since
that is not required for recomputation of data flow
information.

The various programs in the table were compiled
with optimization using the FORTRAN, C and
Pascal compilers containing the common optimizer.
Gprof[Grah 821 was used to obtain the timings for
different parts of the optimizer. Several runs of the
compiler were made for each test file. The profd-
ing results for alI the runs of the various files in
each set were summed up. Using this data, the
ratio of the data flow update time for different
components to the data flow computation time was
taken.

The data in the table shows that the time taken for
data flow update is much smaller than the time it
would have taken to recompute the information.
The time taken for data flow update in the bench-
marks is much higher than for the operating system
and the compiler code. This is because the amount
of optimizations for the benchmarks is much larger
as indicated by the code size reduction numbers.
The benchmarks are very loop intensive, which
accounts for the high ratios for update after Loop
Invariant Code Motion. The ratio for update after
Induction Variable Elaboration is zero for the
compiler code case because no strength reduction
was done in that code.

161

Code Size
Program

Ratio of Data Flow Update time to Data Flow Calculation

Reduction aE Store/Copy LICM IVE

C benchmarks [l] 46% 0.46 0.02 0.54 0.31

FORTRAN
benchmarks [2] 41% 0.26 0.11 0.60 0.02

O.S. code [3] 17% 0.14 0.10 0.05 0.02

Compiler code [4] 15% 0.29 0.07 0.07 0.00

[l] The Ackerman, quicksort, puzzle, subscript puzzle, sieve and dhrystone benchmarks.

[2] The Linpack and Whetstone benchmarks.

[3] Two files from an operating system source, written in Pascal with system extensions.

[4] Four files from the C compiler source, written in C.

Table 1 : Data Flow Update Timings

10. Conclusion

A unified approach to data flow analysis has been

presented which provides an efficient framework

for data flow based optimizations. Using a simple

set of data flow information, a number of optimiza-

tions have been implemented. Utilization of inter-

val analysis allows rediscovery of control flow infor-

mation at a low level, as well as providing an effi-

cient method of calculation. Between optimization

components, update of data flow information has

been implemented using a combination of localized

recalculation and direct update of data flow sets

based on the transformations performed. As

demonstrated, this incremental approach to data

flow update offers a significant improvement in

efficiency over recalculation.

11. Acknowledgements

The work described in the paper was done at HP’s

Computer Language Lab and HP Laboratories.

The authors gratefully acknowledge significant con-

tributions made to the design and implementation
of the data flow analysis by Peter Canning, Debbie

Coutant, Mark Scott Johnson, Terrence Miller and

Karl Pettis.

12. References

rfio771

[Alle 761

[Ausl 821

[Birn 851

[Chai 821

162

A.V. Aho and J.D. Ulhnan, Principles
of Compiler Design. Addison-Wesley,

1977.

F.E. Allen and J. Co&e, “A Program

Data Flow Analysis Procedure”, Com-

munications of the ACM, March 1976.

M. Auslander and M. Hopkins, “An

Overview of the PL.8 Compiler”, Proc.

of the SIGPLAN Symp. on Compiler
Constmction, June 1982.

J.S. Birnbaum and W.S. Worley Jr.,

“Beyond RISC: High-Precision Archi-

tecture”, Hewlett-Packurd Journal, 36~8,
August 1985.

GJ. Chaitin, ‘Register Allocation and

Spilling via Graph Coloring”, Proc. of
the SIGPL.AN Sjmp. on Compiler

[Cout 86a]

[Cout 86b]

[Cock 771

[Grah 821

[John 861

[Otte 84)

[Paul 831

[Paul 881

[Poll 851

Construction, June 1982.

D.S. Coutant, “Retargetable High-
Level Alias Analysis”, Conf Record of

the 13th ACM Symp. on Principles of

Programming Languages, January 1986.

D.S. Coutant, C.L. Hammond, and
J.W. Kelley, “Compilers for the New
Generation of Hewlett-Packard Com-
puters”, Hewlett-Packard Journal, 37:1,
January 1986.

J. Cocke and K. Kennedy, “An Algo-
rithm for Reduction of Operator
Strength”, Communications of the
ACM, 20:11, November 1977.

S.L. Graham, P.B. Kessler and M.K.
McKusick, “gprof: a caII graph execu-
tion profiler”, Proc. of the SIGPLAN
Symp. on Compiler Construction, June
1982.

M.S. Johnson and T.C. Miller, “Effec-
tiveness of a Machine-Level Global
Optimizer”, Proc. of the SIGPLAN
Symp. on Compiler Construction, June
1986.

K.J. Ottenstein and L.M. Ottenstein,
‘The program dependence graph in a
software development environment,”
Proc. of the ACM
SIGSOFT/SIGPLAN Soj%vare Eng.
Symp. on Practical Software DeveIop-
ment Environments, April 1984.

MC. PauII and B.G. Ryder, “Incre-
mental data flow analysis algorithms”,
DCS-TR-131, Rutgers University, July
1983.

B.G. Ryder and M.C. PaulI, “Incre-
mental data flow analysis”, ACM Tran-
sactions on Programming Languages
and Systems, lO:l, January 1988.

L.L. Pohock and M.L. Soffa, “Incrom-
int - An INCRemental Optimizer for

Machine INdependent Transforma-
tions”, Proc. of SOFTFAR II - A
Second Conference on Software
Development Tools, Techniques, and
Alternatives, December 1985.

[Shar SO] M. Sharir, “Structural Analysis: A
New Approach To Flow Analysis in
optimizing Compilers”, Computer
Languages, 5, Pergamon Press Ltd.,
1980.

[Zade 841 F.K. Zadeck, “Incremental Data FIow
Analysis in a Structured Program Edi-
tor”, Proc. of the ACM SIGPLAN
Symposium on Compiler Construction,
June 1984.

163

