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AB!mwcT 
Data flow analysis is a time-consuming part of the 
optimization process. As transformations are made 
in a multiple pass global optimizer, the data flow 
information must be updated to reflect these 
changes. Various approaches have been used, 
including complete recalculation as well as partial 
recalculation over the affected area. The approach 
presented here has been designed for maximum 
efficiency. Data flow information is completely cal- 
culated only once, using an interval analysis 
method which is slightly faster than a purely itera- 
tive approach, and which allows partial recomputa- 
tion when appropriate. A minimal set of data flow 
information is computed, keeping the computation 
and update cost low. Following each set of 
transformations, the data flow information is 
updated based on knowledge of the effect of each 
change. This approach saves considerable time 
over complete recalculation, and proper ordering 
of the various optimiitions minimizes the amount 
of update required. 

1. Introduction 
This paper describes the data flow analysis imple- 
mentation in a machine-specific multiple pass 
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optimizer. The major contribution of this work is 
the methods which have been employed to improve 
the speed of the entire optimization process. 
These are: 

1. 

2. 

3. 

Use of a small set of data flow information 
to support a number of global optimizations. 

Use of interval analysis to both speed up the 
process of data flow computations, and to 
allow partial recalculation where appropriate. 

Incremental update of data flow information 
between components of the optimization pro- 
cess, based on knowledge of the nature of the 
transformations being made. 

Data flow update for each interval is based on the 
existing data flow information for that interval. As 
a result, the update for each interval is done 
independently of the update for other intervals. 
The cost of this update method is O(n*c) where n 
is the number of intervals in the graph, and c is the 
number of changes. Unlike methods which pro- 
pagate a change outward, this cost is independent 
of how much of the graph is actually affected by a 
transformation. However, this constant cost is 
offset by the straightforward manner in which it 
can be implemented. The update process for each 
interval consists of testing and setting bits in a bit 
vector, which can be done very effxiently. 

2. Related Work 

The optimization strategy of the PL.8 compiler 
[Ausl 821 has many similarities to this implementa- 
tion. They also implemented optimization using a 
used a low level intermediate representation. 



However, their data flow analysis was done using 
AlIen/Cocke interval analysis, and the data flow 
information was updated between passes by com- 
plete recalculation. The approach to data flow 
analysis presented here differs in that it incor- 
porates structural analysis [Shar 801 to speed up 
the computation of data flow information, and 
incremental update of that information between 
passes to save additional compilation time. 

Incremental update of data flow information has 
been investigated mostly from the point of view of 
incremental compilers. In an incremental com- 
piler, current data flow information can be used to 
produce optimized cede, as well as to provide the 
user with information on program behavior. Paull 
and Ryder [Paul 831, [Pau188] present an incremen- 
tal update algorithm for Allen/Cocke interval 
analysis [Alle 761, with a worst case update cost of 
O(n*c) for reducible digraphs, where n is the 
number of nodes, and c is the number of changes. 
Pollock [Poll 851 presents an incremental update 
algorithm designed to support optimization, usiug a 
flow graph of dags and a history of optimization 
transformations. Zadeck took another approach 
[Zade 841, using graph splitting to incrementally 
update cluster problems, exhibiting O(n + e)*c 
worst case behavior, where n is the number of 
nodes in the graph, and e is the number of edges. 
L. and K. Ottenstein [Otte 841 also address the 
problem of incremental update, presenting an 
approach designed to support program slicing. 

All of these approaches use an outward propaga- 
tion of program changes, so that the actual update 
cost is proportional to the area affected. However, 
the cost of these update methods is high both in 
terms of the amount of information required, as 
well as the amount of work that must be done at 
each step in the update process. 

When it is expected that the effects of a change 
will be fairly localized (as one might expect with 
incremental compilation), such approaches may be 
desirable, since the update cost can then be 
expected to be rather limited. However, the prob- 
lem of data flow update between optimization 

passes does not exhibit this same locality, as 
transformations may be sprinkled throughout the 
flow graph. Another difference is that the transfor- 
mations made by an optimizer are of a restricted 
set, and therefore easily characterized, unlike the 
transformations made by a program edit. Utilizing 
this knowledge, data flow update can be tailored to 
the specific transformations of each pass, making 
the process more efficient. 

3. Background 

The data flow analysis approach described here has 
been developed as part of an optimizer targeted for 
the HP Precision Architecture, developed in the 
Spectrum Program at Hewlett-Packard [Birn 851. 
Optimizations that are supported include machine- 
specific as well as traditional data flow based 
optimizations. A major goal in the design of the 
data flow analysis was that it ,should be as fast as 
possible, since the optimizer would be integrated 
with production compilers. In order to meet this 
objective, a data flow analysis package has been 
designed which will support a number of optimiza- 
tions with a simple set of data flow information 
represented efficiently. An adaptation of Sharir’s 
approach to interval analysis is used to support 
data flow calculation, giving both a realization of 
the control flow of the program as well as an effi- 
cient calculation method [Shar 801. Because optim- 
ization is done at the level of machine language, 
data flow information is gathered for both memory 
and register resources. Both forward and back- 
ward data flow calculation are supported. 

The low level representation upon which optimiza- 
tions are performed contains a doubly-linked list of 
machine instructions [Cout 86b] [John 861. Each 
instruction entry in the graph contains opcode, 
source, and target information as well as additional 
information required by the optimizer. All 
operands, including both memory and registers, are 
specified using re~urce IDS. Registers are chosen 
from an infinite set, and register assignment is per- 
formed by the optimizer. A value numbering 
scheme is used by the code generators to ensure 
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that identical operations always receive the same 
unique target resource ID. Resource IDS are also 
used to convey a&sing information to the optim- 
izer, Each resource ID may represent a reference 
to a single resource (register or memory), or to 
one of a number of resources [Cout S6a]. 

As local data flow information is gathered, the 
resource IDS are replaced with sequence numberx. 
Sequence numbers can be expressed as Gnstruc- 
tion, resource ID> pairs. Each sequence number 
is used exactly once, and represents either a defini- 
tion or a use of a particular resource in an instruc- 
tion. Data flow information is expressed as sets 
(bit vectors) of sequence numbers. To save space, 
bit vectors are implemented as a linked list of data 
blocks representing 64 contiguous elements each. 
Deftition and use sequence numbers are clustered 
in different partitions to decrease the number of 
data blocks in each bit vector. 

In addition to the Gnstruction, resource ID> 
pairs, there is a special sequence number for each 
resource ID called the any-ref sequence number. 
This sequence number is not associated with any 
particular instruction and is used to convey more 
general information about a given resource ID, and 
which is not associated with a particular instruc- 

is complete, the instruction 
into basic blocks. These 

tion. 

4. Interval Analysis 

Once code generation 
graph is partitioned 
comprise the basic unit for which local data flow 
information is calculated. In addition, these basic 
blocks become the base units for the interval struc- 
ture. The interval analysis approach rediscovers 
the control flow of the code, and builds a hierarchy 
of control structures, each such structure being 
represented as an interval. 

The fast step in performing interval analysis is to 
calculate the set of dominators for each basic 
block. The standard approach to calculating domi- 
nators [Aho 771 is to initialize the dominators set 
for each node, except the first, to contain all nodes. 

However, since these sets are usually sparse, it is 
more efficient to initialize the set for each node to 
contain only itself. These sets are then propagated 
by iterating over the nodes in reaching depth-fust 
order, At each node, the intersection is taken of 
the dominator sets of the predecessors which have 
been visited during some iteration. This continues 
until there are no changes. 

Once dominators have been computed, the interval 
structures are identified. Sharir’s approach recog- 
nized single-entry/single-exit loops, if-then and if- 
then-else constructs. All other control structures 
were contained in proper intervals (loops with a 
single entry and possible multiple exits), or 
improper intervals (single-entry loops which con- 
tain irreducible flow graphs). For recognized con- 
trol structures such as loops or if-then intervals, no 
iteration is required during global data flow 
analysis. Instead, data flow information is pro- 
pagated using a formula specific to each interval. 
Data flow information for both proper and 
improper intervals is calculated in an iterative 
fashion, but can be limited in the case of proper 
intervals. 

In adapting Sharir’s approach to our needs, a con- 
trol structure has been added for switch/case state- 
ments. It supports the Pascal-like case statement 
as well as the switch statement in C, which allows 
fall-through from one case to another. This struc- 
ture consists of a set of nodes with the following 
properties (figure 1): 

1. The first node has three or more successors, 
or sister nodes. 

2. Each sister node has, in addition to the first 
node, at most one other predecessor which is 
also a sister node. 

3. Each of the sister nodes has a single succes- 
sor, which is either another sister node, or 
the single successor node to the switch/case 
interval. 
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figure 1 : Switch Interval 

The second contribution to Sharir’s approach has 
been to limit the scope of improper intervals. In 
his approach, the effect of an irreducibility is con- 
tained only within the next enclosing loop. ln this 
approach, au improper interval as been limited to 
the smallest group of nodes which contains: 

1. One node which dominates all other nodes in 
the group, and 

2. All nodes which lie on a path between the 
dominating node and any member of the 

group. 

This approach often produces a smaller improper 
interval, thus limiting the scope of iterative compu- 
tation (figure 2). 
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figure 2 : Improper Interval 

5. Local Data Flow Calculation 

Local data flow information is gathered in a for- 
ward pass over each basic block. Certain local 
optimizations are performed during this pass, 
including constant propagation, common subex- 
pression elimination, redundant load elimination, 
and peephole optimizations. The following local 
information is computed for definitions [John 861: 

M-GEN (Might GENerate) - The set of defti- 
tions within this basic block which may 
reach the end of this basic block. 

W-D-KILL (Will Definition KILL) - The set of 
deftitions outside this basic block which 
defme resources that are definitely defined 
in this basic block. 

and the following local information for uses: 

MAJSE (Might USE) - The set of uses within this 
basic block which have no definite preceding 
definition in this basic block. 

W-U-KILL (Will Use KILL) - The set of uses 
outside this basic block which use resources 
that are definitely defined in this basic 
block. 

There are two types of definitions, might definitions 
and will d@Initions. A might definition of a 
resource indicates that the resource may or may 
not be absolutely defined, while a will definition 
indicates that the resource will deftitely be 
defmed. Might definitions occur due to either 
a&sing or conditionally executed (skipped) instruc- 
tiOllS. 

6. Global Data Flow Calculation 

The next step in data flow analysis is to propagate 
the local information out to the outermost interval. 
This is done using specific formulae for each type 
of interval (see figure 3). This produces local data 
flow information (M-GEN, WD-KILL, MUSE, 
and W-U-KILL) for each interval. 
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Outward propagation: 

Example: If-Then Interval 

F ,,[If-~enl = (F,,W=nlo FREAcHIIfl) V FREAcH[lfl 

%,W~4 = Ok&f] 0 f%,[Thenl) V %,Vl 
where V denotes functional join and o denotes functional composition 

Inward propagation: 

REACH-TOP[Ifl = REACH-TOP[If-Then] 

REACH-TOPpen] = F-&Ifj( REACH-TOP[If-Then] ) 

NEED-BOT[Ifl = FNEED[Then]( NEEDBOTpf-Then] ) 

NEED-BOT[Then] = NEED-BOT[If-Then] 

figure 3 : data flow propagation 

Global data flow information is then propagated 
inward from the outermost interval (see example). 
The following information is computed: 

REACHTOP (REACH at TOP) - The set of 
sequence numbers which represent defti- 
tions which may be defined along some path 
between the beginning of the procedure and 
the top of this interval. 

NEED-BOT (NEED at BOTtom) - The set of 
sequence numbers which represent uses 
which might be reached by a definition at 
the bottom of this interval. 

This information is computed using functions of 
the form 

F = < A,B > such that F( X ) = A fl X U B 

These functions are as follows: 

F NEED = < -W-U-KILL, M-USE > 

F RJ?Aal = < vW_DJILL , M-GEN > 

In the NEEDBOT set, the presence of the any-ref 
sequence number for a particular resource indi- 
cates that there exists some use of that sequence 
number which is exposed, i.e. the resource is live at 
the end of this interval. 

These basic data flow sets are sufficient to support 
the data flow based optimizations which have been 
implemented, with the exception of Common 
Subexpression Elimination. Traditionally, this 
optimization depends upon the calculation of avail- 
able expressions. Rather than generate a third 
type of data flow information with a different 
domain (resource IDS rather than sequence 
numbers), an approach was sought which could be 
incorporated into the data flow computations for 
reaching definitions. 

The any-ref numbers are used in the MGEN, 
WD-KILL, and REACHTOP sets to indicate the 
undefined state of a particular resource. A 
resource becomes undefined when a resource upon 
which its definition is dependent is redefined. The 
motivation for tracking the undefined state of a 
resource, rather than its availability, is that this 
information can be propagated along with the 
REACHTOP information, using set union opera- 
tions. Thus, if the resource x were defined by the 
following expression, 

x=y+z 

then any definition of the resource y would be a 
“definition” of UNDEF(x). If the UNDEF (or 
any-ref) sequence number is not set for a particular 
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resource, then that resource can be considered to 
be available, and therefore a candidate for com- 
mon subexpression elimination. Although this 
information is implemented in conjunction with the 
Reaching Definitions, conceptually there exist 

separate data flow sets and functions for the 
UNDEF information: 

F UNDEF = C vW,DEF, M-KILL > 

W,DEF (Will DEFine) - the set of resources 
which have deftitions which will deftitely 
reach the end of this basic block. 

M-KILL (Might KILL) - the set of resources that 
may be invalidated in this basic block by the 
redefinition of resources upon which they 
depend. 

Note that the domain of these sets and functions is 
the set of resource numbers as represented by the 
any-ref sequence numbers, not sequence numbers 
as such. 

7. Use of Data Flow Information 

The REACH-TOP and NEED-BOT sets provide 
data flow information for basic blocks, which are 
the lowest level in the interval structure hierarchy. 
However, most global optimization components 
require data flow information at each instruction, 
A traversal within the basic block coupled with the 
REACHTOP and the NEED-BOT sets at the 
basic block boundary are used to derive this infor- 
mation whenever needed. The different sets com- 
puted are outlined below. 

Reaching Definitions: The set of definitions for a 
resource R that may reach an instruction I. 

Exposed Uses: The set of uses for a resource R 
that are upward exposed at an instruction I. 

Available Resources: The set of resources available 
at an instruction I. Availability of a 
resource R is derived from the dependency 
information for R and the UNDEF bit for 
R in the REACHTOP of the basic block 
containing I. 

Def-Use Webs: The definitions and uses of a 
resource R are partitioned into disjoint sets 
called webs. For each use in a web, all the 
definitions that can reach it are in the web 
and for each deftition in the web, all its 
uses are in the same web. The 
REACHTOP and the NEEDBOT sets 
are used to build webs. The def-use webs 
are used for register allocation, store to 
copy optimization and unused definition 
elimination. 

8. Data Flow Update 

All the global optimizations use the data flow 
information outlined in the previous section. Since 
the same data flow sets are used by all com- 
ponents, they need to be kept accurate as various 
optimizations are done, The local data flow sets are 
not updated, since they are not used by any of the 
optimizations. The data flow based optimizations 
performed are common subexpression elimination 
(CSE), store to copy optimization, unused defini- 
tion elimination, loop invariant code motion 
(LICM), induction variable elaboration (IVE) 
[Cock 7q, register web-based optimizations and 
register allocation using graph coloring [Chai 821. 

No data flow update is required after register allo- 
cation, which is performed last. Unused definition 
elimination maintains the correctness of the data 
flow and thus does not require update. Sequence 
numbers for the instructions deleted in the process 
are invalidated, and ignored in the data flow sets. 
Register web-based optimization changes certain 
instructions to simpler instructions. The sequence 
numbers of the original instruction are retained 
and thus the data flow information remains valid. 
The ordering of the other optimizations is done to 
minimize data flow update. Common Subexpres- 
sion Elimination is the only optimization that uses 
the UNDEF sets. This optimization is performed 
first so that UNDEF information is never updated. 
CSE is also the only component which does not 
use NEEDBOT information. The NEED_BOT 
sets are computed after CSEs, so that they do not 
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have to be updated. 

As mentioned earlier, the approach used in this 

bptimizer is to incrementally update the data flow 

sets in each component based on the particular 

transformations made. This approach requires 

additional work to characterize the effect of each 

transformation, so that the data flow can be 

updated accurately. The benefit is to drastically 

reduce the time taken by the update. Also, the time 

taken by the update becomes proportional to the 

amount of optimization done by a particular com- 

ponent. 

The incremental update algorithms for the various 

components are given below. 

8.1 Update after Common Subexpression 
Elimination 

This component removes redundant definitions 

when an earlier result is still available. For each 

instruction that is deleted, the set of reaching 

definitions for the instruction target is computed. 

The definitions in this set that have also been elim- 

inated are recursively replaced by their reaching 

definitions. These are called the recursive reaching 
definitions. The update algorithm is given below: 

compute the recursive reaching dejinifions for all 

instructions deleted; 

for each interval I in the procedure do 

for each instruction that is deleted do 

use of the memory resource by a procedure call. 

The same mechanism is also used to represent a 

definition at procedure entry and a use at pro- 

cedure exit. The optimization changes store 

instructions in the web to copy instructions, deletes 

load instructions, adds a store before any call that 

may use the memory resource and adds a load 

instruction after any call that may modify the 

memory resource. 

When a store instruction is converted into a copy, 

the sequence number of the memory resource is 

changed to be a sequence number of the register 

target. Since this sequence number is already in the 

data flow sets, no update is needed. The update for 

the other transformations is given below: 

for each interval I in the procedure do 

for each load instruction deleted do 

if the memory use is in NEEDBOT[I] then 

add all the exposed uses of the load 

target to NEED-BOT[I]; 

end if 

end for 

.--I T - sequence number of the instruction targel; 

if T is in REACH-TOP[I] then 
replace T by its recursive reaching 
definitions in REACH-TOP[T]; 

end if 

end for 

end for 

for each store instruction added before a call 

or at procedure exit do 

if the special memory use is 

in NEED-BOT[I] then 

add the use of the load target in the 

store, to NEED-BOT[I]; 

end if 

end for 

for each load instruction added after a call 

or at procedure entry do 

if the special memory definition is 

in REACH-TOP[I] then 

add the definition of the load target 

to REACH-TOP[I]; 

end if 

8.2 Update after Store to Copy Optimization 
end for 

end for 

This optimization promotes certain memory 

resources to registers. Each def-use web of the 83 Update after Loop Invariant Code 
memory resource is independently considered for Motion 
the optimization. The web may contain special 

definitions and uses to denote the modification or 
This optimization moves computations within a 
loop that yield the same result for every iteration, 

160 



to the loop preheader. This movement of instruc- 
tions affects the data flow only inside the loop 
interval. Outside the loop interval the data flow 
information remains accurate. The update is done 
after the optimization of each loop. 

for each instruction moved out do 
for each sub-interval I of the loop do 

add the definition of the instruction 
target to RFACI-LTOP[I]; 
add all the exposed uses of the target 
to NEED_BOT[I]; 
if any of the operands of the instruction 
are not live on exit from the loop, remove 
the use of the operands from NEED-BOT[I]; 

end for 
add the exposed uses of the target 
to NEED-BOT[loop preheader]; 

end for 

8.4 Update abler Induction Variable Elabora- 
tion 

This optimization replaces multiplication opera- 
tions within a loop by iterative addition operations. 
A new resource is created to hold the result of the 
multiplication and updated appropriately. 

A different approach is used for update after IVE 
than for other components. Since IVE introduces 
definitions and uses of new resources, it is very dif- 
ficult to do the data flow update for each transfor- 
mation incrementally. Further, the effects of most 
of the new instructions and temporaries added are 
limited to the loop interval. Thus the data flow 
information for the loop interval is completely 
recomputed. This gives acceptable results since the 
recomputation overhead is limited to the loop 
interval. 

For new instructions added to the loop preheader, 
the operand uses need to be exposed to the 
corresponding definitions. If the definitions are not 
within the preheader, some additional update is 
required outside the loop interval. For each such 
new use, there is an existing exposed use of the 
same resource in the loop. The new use is added to 

the NEED-BOT wherever the earlier use was in 
the NEED-BOT set. 

9. Results 

The time taken for data flow update was measured 
for a wide variety of sample programs. We present 
here measurements of the time taken by data flow 
update for each component relative to the time 
taken for complete data flow computation. The 
time for data flow computation includes the time 
for calculating the local data flow sets, propagation 
of data flow and calculating global data flow sets. 
The time for building the interval structure and 
assigning sequence numbers is not counted, since 
that is not required for recomputation of data flow 
information. 

The various programs in the table were compiled 
with optimization using the FORTRAN, C and 
Pascal compilers containing the common optimizer. 
Gprof[Grah 821 was used to obtain the timings for 
different parts of the optimizer. Several runs of the 
compiler were made for each test file. The profd- 
ing results for alI the runs of the various files in 
each set were summed up. Using this data, the 
ratio of the data flow update time for different 
components to the data flow computation time was 
taken. 

The data in the table shows that the time taken for 
data flow update is much smaller than the time it 
would have taken to recompute the information. 
The time taken for data flow update in the bench- 
marks is much higher than for the operating system 
and the compiler code. This is because the amount 
of optimizations for the benchmarks is much larger 
as indicated by the code size reduction numbers. 
The benchmarks are very loop intensive, which 
accounts for the high ratios for update after Loop 
Invariant Code Motion. The ratio for update after 
Induction Variable Elaboration is zero for the 
compiler code case because no strength reduction 
was done in that code. 
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Code Size 
Program 

Ratio of Data Flow Update time to Data Flow Calculation 

Reduction aE Store/Copy LICM IVE 

C benchmarks [l] 46% 0.46 0.02 0.54 0.31 

FORTRAN 
benchmarks [2] 41% 0.26 0.11 0.60 0.02 

O.S. code [3] 17% 0.14 0.10 0.05 0.02 

Compiler code [4] 15% 0.29 0.07 0.07 0.00 

[l] The Ackerman, quicksort, puzzle, subscript puzzle, sieve and dhrystone benchmarks. 

[2] The Linpack and Whetstone benchmarks. 

[3] Two files from an operating system source, written in Pascal with system extensions. 

[4] Four files from the C compiler source, written in C. 

Table 1 : Data Flow Update Timings 

10. Conclusion 

A unified approach to data flow analysis has been 

presented which provides an efficient framework 

for data flow based optimizations. Using a simple 

set of data flow information, a number of optimiza- 

tions have been implemented. Utilization of inter- 

val analysis allows rediscovery of control flow infor- 

mation at a low level, as well as providing an effi- 

cient method of calculation. Between optimization 

components, update of data flow information has 

been implemented using a combination of localized 

recalculation and direct update of data flow sets 

based on the transformations performed. As 

demonstrated, this incremental approach to data 

flow update offers a significant improvement in 

efficiency over recalculation. 
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