
Generation of Run-Time Environments

Gail E. Kaiser
Columbia University

Department of Computer Science
New York, NY 10027

Abstract
Attribute grammars have been used for many years for automated

compiler construction. Attribute grammars support the description of
semantic analysis, code generation and some code optimization in a

formal declarative style. Other tools support the automation of lexical
analysis and parsing. However, there is one large part of compiler
construction that is missing from our toolkit: run-time environments.
This paper introduces an extension of attribute grammars that supports
the generation of run-time environments. The extension also supports
the generation of interpreters, symbolic debugging tools, and other
execution-time facilities.

1. Introduction
Integrated programming environments are rapidly replacing the

traditional tools used by programmers to edit, compile and debug their
programs. The key components of an integrated programming
environment are a standard user interface and a common database. A
large number of prototype and teaching programming environments are
now built using structure editing technology, which supports both of
these features (for example, Tektronix’ Magpie [3], the University of
Wisconsin at Madison’s Editor Allen Poe [8], Brown University’s
Pecan [21] and Carnegie-Mellon University’s Gandalf [ZO]). Each of
these environments consists of an integrated collection of tools that

may be applied incrementally as the programmer writes and tests her
programs. In some cases, the tools are automatically applied without
the explicit intervention by the programmer. For example, type
checking and symbol resolution are performed automatically as the
program is created and modified: code generation and some code

optimization may also be performed incrementally.

The early structure editor-based programming environments, such as
the Cornell Program Synthesizer [24], were entirely hand-coded. Then
Medina-Mora [19] demonstrated that a structure editing environment
can be generated from an environmenf descripfion. A program called
an environment generator combines an environment description with
the common editor kernel to produce the desired programming
environment. The person who writes the environment description is
called the implementor of the programming environment while a

person who uses the programming environment to write her programs
is called a user.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

0 1986 ACM 0-89791-197-O/86/0600-3051 75~

An environment description has two components, the syntax
description and the semantics description. The synrux descriprion

includes the abstract syntax (or structure) of the programming language
and the concrete syntax (or user interface) for programs in the
language. It is now well-established that a syntax description is written
in a declarative notation similar in style to a context-free grammar or
BNF. It is very easy to write a syntax description for a conventional
programming language. It might take two days for an implementor to

write the syntax description for Pascal and as much as two weeks for

the more complex syntax of Ada. A syntax description alone can be
used as an environment description if no semantics processing is
required. An environment generator can combine the syntax
description with the editor kernel to produce a pure syntax-directed
editor that supports program editing and enforces correct syntax.

The semantics descripfion specifies all the processing performed by
the environment, i.e., everything the environment does that is not
among the standard facilities provided by the editor kernel. In other
words, the syntax description describes the program database and the
semantics description describes the tools that operate on the database.
The semantics processing of a programming environment is performed
by a collection of tools that are knowledgeable about the particular
programming language. The tools are often divided into two
categories: the tools that handle static (compile-time) semantics and the

tools that handle dynamic (run-time) semantics. The implementor of a
programming environment describes the semantics processing in terms
of the static and dynamic properties of the programming language.
Sfaric proper&s can be determined by inspection of the program while

dynamic properlies reflect the interaction between the user and the
programming environment. Compilation is described in terms of static
properties, while the run-time support is characterized by dynamic
properties.

1.1. The Problem of Semantics Description
The description of static and dynamic properties is very difficult, In

contrast to the syntax description, there is no commonly accepted form
for the semantics description of a programming environment, and the
development of a semantics description for a relatively simple
environment such as the Gnome teaching environment [lo] can take
many months. However, there are two methods of semantics
description, action routines and attribute grammars, that have been
more widely used than their competitors in the generation of integrated
programming environments.

Action routhes were proposed by Medina-Mora in [6]. The

51

semantics processing is written as a set of routines in a conventional

programming language. A particular routine is associated with each

ruh in the abstract syntax. The corresponding routine is automatically

invoked by the editor kernel when an editing command is applied to

any object that is instance of the rule. Action routines were adapted
from the semantic routines associated with parser generators such as

YACC [15].

Atfribute grummars, originally proposed by Knuth [18], have
become a standard technique for compiler generation [5,9]. Attribute
grammars were adapted to interactive programming environments by
Reps [4,23]. The semantics processing is written as a set of attribute
definitions associated with each rule in the abstract syntax. An
incremental evaluator automatically m-evaluates all attributes whose
values may have changed as the result of a modification of the syntax

tree.

Action routines, attribute grammar and other mechanisms have
proved extremely useful for speeding up the development of
programming environments. However, none of these methods fulfill
all the requirements of an implementor of a programming environment.

The basic problem with action routines is that the design,
implementation and debugging of the routines is tedious and error-
prone compared to the ease with which a syntax description can be
developed. The, implementor has to consider the possible orders in
which the action routines might be invoked and how this effects the
integrity of the data structures that represent the auxiliary information
maintained by the action routines. In contrast, dependencies among
attribute definitions are handled automatically by the attribute
evaluator.

However, attribute grammars are useful for describing only for a
certain subclass of program development tools. They handle static
properties quite well, but are unsuited to the description of dynamic
properties because of the derived nature of the attributes. The value of
each attribute is calculated from the source program and other
attributes. By definition, it cannot depend in any way on the history of
modifications to the source or of the execution of the source. This
feature is exactly what is desired for static semantic checking and for
code generation, but it is inappropriate for the dynamic properties of
run-time environments where the semantic state depends on the history
of the program execution.

1.2. A Solution

This problem has been solved by action equations, an extension of
attribute grammars that supports the expression of history or dynamic

properties. lhis is done by embedding equations similar to attribute
definitions in an event-driven architecture. The evetis activate
equations in the same sense that user commands trigger action routines.
The editor kernel orders the evaluation of active equations according to

the commands invoked by the user and the dependencies given by the
equations. Equations that apply at all times are not attached to
particular events and these correspond exactly to attribute grammar
definitions.

This event-driven nature is one of the crucial differences between
action equations and attribute grammars. Another way of stating this
difference is that action equations support multiple events while

attribute grammars support only one event, the change event. In the

attribute. grammar paradigm, the change event can be received from the
user and propagated by attribute detinitions to other defM.ions. in the

action equations paradigm, the change event, standard events and
implementor-defined events can all be received from the user and/or
sent from action equations to other equations, (The srundard events

include create, delete, access, exit and enter,) This makes it easy to

invoke particular operations in response to particular user commands,
as described in Section 5.

An important implication of multiple events is that an incremental
evaluator for action equations can easily handle circular &pendencies

among the equations while incremental evaluators for attribute
grammar require non-circularity. This is because an equation activated
by an event is evaluated exactly once in response to the event rather
than (conceptually) re-evaluated repeatedly until quiescence. This
distinction is built into the incremental evaluation scheme for action
equations. The result is an easy mechanism for describing and

implementing iteration and recursion that cannOt be matched by
attribute grammars. This is explained in Section 3.

Another crucial distinction between the two paradigms is that
attribute grammars are applicative while action equations support
certain non-applicative mechanisms. Attribute grammars require that

attribute defmitions he purely functional. This means that an attribute
definition is re-evaluated (until quiescence) only when the program
changes, and then the attribute definition is restricted to replacing the
old value with an entirely new value. These applicative restrictions are
removed in the new paradigm. An action equation may be re-evaluated

due to the receipt of an event, and then the equation is permitted to
directly modify the current value of the attribute. This permits a more
efftcient implementation of the run-time stack of activation records and
other run-time support structures. This is discussed in Section 4.

1.3. Compile-Time Semantics
Since attribute grammars are a strict subset of action equations,

compile-time semantics are handled in exactly the same manner in the
two paradigms. Symbol resolution, type checking, flow analysis for
anomaly detection and source-level optimizations, and code generation

are described using standard attribute grammar mechanisms.

Compile-time semantics are not discussed further in this paper. The
rest of this paper is concerned with run-time semantics. Section 2 gives
an overview of the differences between attribute. grammars sad action
equations. Section 3 discusses the description of interpreters using
action equations. Section 4 describes the generation of run-time
support for program execution and Section 5 explains additional

support for language-oriented debugging facilities. Section 6 briefly
discusses the implementation of action equations and Section 7
summarixes the significant contributions of this research.

2. Introduction to Action Equations
The action equations paradigm was developed as an extension to

attribute grammars and follows the same basic form. An attribute
grammar associates a set of attributes with each rule in a context-free
grammar. Each attribute is given a function that uniquely determines
its value. The function may take as arguments the other attributes

52

associated with the same rule. In the case where the ruledefmes a

non-terminal, the function may also take as arguments the values of the
children; in the case of a terminal, the function may also take as an
argument the value of the terminal (for example, an identifier, a string

or an integer). An attribute grammar follows the format illustrated in
Figure 2-l. Each association between an attribute and its defining
function is called an equation.

Action equations extend this attribute grammar notation to treat

some of these equations as active while others are passive. If fi in
Figure. 2-l is active, then the itb attribute. (ai) necessarily has the value

f,(arg,, arg,). In contrast, if fi is passive, then the value of the jth

attribute (a$ does not necessarily have the value f$arg,, a@. It

retains its most recent value rather than being updated to maintain this
constraint. Active equations correspond to attribute definitions in

rule;

1 Attribute definitions for rule;.)

=k := fk(argI# arg,)
. . .
=I := fl(argl, arg,)

rulej

1 Attribute definitions for rulei.)

=a := f,(argI, arg,)
. . .

=P := fp(argl, arg,)

Figure 2-1: An Attribute Grammar

attribute grammars, while passive equations are an innovation of action
equations.

The implementor may specify that some equations are permanently
active, as in attribute grammars. Other equations may be changed from
passive to active status. After a passive equation has been activated, it
returns to passivity immediately after the corresponding attribute has
been updated. Passive equations are. indicated by attaching each
passive equation to an event. Our even1 corresponds to a message in an
object-oriented language (such as Smalltalk [14]) and the equations
attached to the event correspond to a method. (An&- paper
[13] describes action equations as an object-oriented description

language.) The collection of equations associated with a particular rule
am normally listed as in Figure 2-2. The equations not attached to any
event are permanently active while the equations attached to a

particular event are passive until the event is received by an object
defined by the rule.

As with messages in object-oriented systems, events are normally
generated by objects (the exception is events that represent user
commands). Therefore, it must be possible to send an event as well as
receive an event. This is supported by further extending attribute
grammar-style equations to propagate events as well as apply functions.
The propagare equation is illustrated in Figure 2-3. More than one
destination attribute may be given. The propagation takes place if and
only if the equation becomes active.

rule

(Permanently active equations. 1

ai := fi(argl, arg,)
. . .
a. := fj(argl, . . ., arg,) I

(Passive equations for eventI.)

event1 -->
=k := fk(argl, . . ., arg,)
. . .

=1 := fl(argl, .-., arg,)

. . .

{ Passive equations for event,. 1

event, -->
a0 := f,(argl, . . ., arg,)
. . .

aP
:= fp(argl, . . ., arg,)

Figure 2-2: Attaching Equations to Events

{ A propagate equation is always
attached to some event with
respect to some rule. 1,

propaaate <event> & <object>

Figure 2-3: The Propagate Equation

3. Implementation of Interpreters
Action equations support the implementation of conventional control

constructs using events and propagate equations. Sequencing,
selection, iteration and branching can be expressed with simple
combinations of these two facilities. Consider the description of
iteration shown in Figure 3- 1. There is a cimularity among the sources

and destinations of the propagate equations that describe the flow of
control through the loop. This circularity would be prohibited in an
attribute grammar but is no problem for action equations.

The interpretation works as follows. The loop statement receives the

run event The user of the programming environment sent the run
event by doing two things. First, he moved the program cursor to
highlight the part of the program he wanted to execute; this might be
the entim program, any statement enclosing the loop statmen~ or just

the loop statement. Then he selected the run command. In response,
the command interpreter sent the run event to the object highlighted by
the cursor.

When the loop statement receives the run event, the
“propapates run & init” equation is activated. This propagate equation
sends the run event to the init component of the loop statement. When
the run event is received by the initialization statement, the equations
(not shown) that execute this statement are activated. After completion
of these equations, then the “Dropagates run & cond” equation is
activated This sends the Nn event to the cond component of the loop

statement.

When the run event is received by the condition expression, it
activates the equations (not shown) that evaluate this expression and set
the result attribute to the value of the expression. Then the
“pronanates run & if condresult then body” equation is activated. If

the result attribute of the cond component is true, then the run event is

53

(Abstract syntax for loop
statement. The loop non-
terminal has four children:
three are statements and
one is an expression. 1

loop =>
init: STATEMENT
cond: EXPRESSION
reinit: STATEMENT
body: STATEMENT

(Passive equations
for loop statement.

run -->
propagates run G

I

init

(: The "run on init, reinit"
notation% simply short-hand
for writing each of the two
events separately with the
equations attached to each.)

run gR init, reinit -->
propagates run &g cond

(When the run event is received
by the cond component, its result
attribute is set by a constraint
such as
"result : = cscmantic function>”
that is associated with the particular
expression. If the new value of
result is false, then the
propagation does not occur. 1

run s cond -->
propaaates run &

if cond.result then body

run on body -->
T;;opaoates run Q reinit

Figure 3-1: Loop Statement Syntax and Semantics

sent to the body component of the loop statement.

The run event continues propagating around the loop, through the
body, the re-initialization and the condition until evaluation of the
condition expression returns false. When this happens, the run event of
the “prouaaates run @ if condmsult then body” equation is not sent at
all. Control returns to the source of the original run event that started
the loop execution.

4. Run-Time Support for Program Execution
An interpreter or a run-time environment for compiled code must

implement the memory management required for subroutine invocation
and data manipulation. Tbis is supported by (1) extending attribute
grammars further to permit any objects, not just attributes. to take part
in equations and (2) augmenting the resulting action equations with the
view defmition notation described by Garlan [12]. The fmt change
permits action equations to modify the source program as well as the
values of attributes, introducing a potentially dangerous source of side-

effects. However, this ability is used not to modify the source program
constructed by the user but to modify alternative views of the source
program that represent the internal state of the run-time envimnment

A sfafic view consists of a collection of rules that deft an abstract
syntax. Figure 4-l gives two static views for a procedure: Source and
Execution. The Source view describes the standard abstract syntax for

a procedure, while the Execution view defines an activation record for

a procedure. During program execution, an activation record is pushed

onto the run-time stack to represent a procedure invocation.

Notice that both views define a name component as an instance of

the identifier definition (identdef) terminal. Consequently, this
component has exactly the same value in both views. Because of the
‘ReadOnly’ qualification given in the Execution view, the name

component can be created (and deleted) with respect to the Source view
but not with respect to the Execution view. This stands to reason, since

it is (generally) not appropriate to change the name of a procedure
during execution.

Both views also define parameters and locals components, but in
each case with different types. In the Source view, both parameters and

locals are vardefs. A vardef (not shown) consists of a name and a type.
In the Execution view, both parameters and locals am blocks:
terminals that represent a block of memory. The name and type of a

view Source

procedure =>
name: identdef
parameters: seq of vardef
locals: seq of vardef
body: sea of STATEMENT

view Execution

(The default qualification
is 'ReadWrite'.)

procedure =>
name: identdef

qualified 'ReadOnly'
parameters: ses of block
locals: seu of block

I "ref to" indicates a
symbolic reference to an
object elsewhere in the
same or another syntax tree.
The reference terminal can
be used to extend a rigid
syntax tree to an
arbitrary graph structure. 1

pc: ref to STATEMENT
body: s of STATEMENT

oual??ied 'ReadOnly'

Figure 4-l: Two Static Views of Prccedum Syntax

parameter or local variable are not accessible in the Execution view and
the block of memory is not accessible in the Source view. The block of
memory is used for storing the value of the actual parameter or the
local variable during program execution.

Figure 4-2 gives the Execution view for the enclosing program: a

stack of activation records, an expression stack and a heap for dynamic
storage allocation. The entire internal state of an interpreter or a run-
time environment can be described by a static view in this manner.

view Execution

program =>
stack: sea of procedure
estack: sea of block
heap: block

Figure 4-2: Execution View of Program

54

So far, only pieces of abstract syntax have been associated with a

particular static view. However, each action equation must also be
explicitly associated with a particular view. Figure 4-3 shows part of
both the syntax and semantics of a procedure call statement. Actual

parameter evaluation and parameter passing are not illustrated. In this
example, the run event and the action equations attached to the run
event are associated with the Execution view.

view Execution

(An "identuse" is
an identifier use. J

call =>
name: identuse
actuals: sea of EXPRESSION

(Defsite points to
the definition of
the called procedure.)

defsite: ref to procedure
oualified ‘ReadOnly'

run -->
"program->stack :-

(The "@" operator
dereferences a reference
and the "#" operator
indicates concatenation.)

copy @defsite t
*program->stack

propasate run u @defsite

Figure 4-3: Execution View of Call Statement

The equation attached to the run event in Figure 4-3 has the effect of
pushing a copy of the called procedure. Since this is the Execution
view rather than the Source view, it is an activation record rather than
the source for the procedure that is actually pushed. The propagate
equation initiates execution of the invoked procedure.

Notice how simple it is to describe procedure invocation. This is
why Garlan’s view mechanism was adopted for the action equations
paradigm. It would be more difficult to express the same semantics

processing using attributes rather than views. It would be relatively
easy to declare the stack and heap as attributes rather than components,
but the manipulation of activation records would be more complex.
Without views, the implementor would have to explicitly construct the
appropriate activation record on each procedure invocation and
explicitly maintain references to the shared information.

5. Interactive Execution and Debugging
The only requirements of interactive execution and debugging that

cannot be satisfied by the facilities previously described are those that
involve direct interaction with the user of the programming
environment. These requirementsare met using the &lay equation and
Garlan’s display views Ill].

A disptay view describes how a static view is displayed on a terminal
or workstation screen. It also supports editing commands such as

create an object and exit the current object with the cursor. These
editing commands are always applied to the underlying attributed
syntax tree in terms of the displayed representation. Display views are
sufficient to support both display and modification of the internal state
of the programming environment. During debugging, the user can

display the Source and Eexecution views of her program in different
windows.

The same mechanism can be used for stream input/output, where the
stream is described in the IO view of the program. Implementation of
the write statement is extremely easy. The value to be written is
concatenated to the end of the I/O stream, which is automatically
displayed on the screen. The read statement is slightly mom difficult
and requires the addition of the delay equation. The function of the
&lay equation is to request a particular event and delay the other active

equations until the user sends the event. The user does this by selecting
the command that corresponds to the event. The delay equation

implements the read statement by suspending program execution until
the user has entered another line of input.

The delay equation has the form illustrated in Figure 5-1, where
<object> is an address expression and cevenfz= is any standard or
implementor-defined event that can be selected by the user as a
command. The evaluation of a delay equation means that the currently
active equations cannot be evaluated until <evenr, has been received

by <object>. The active equations are suspended when the &lay
equation is evaluated and awakened when the event occurs at the

object. This happens when the user performs some activity that has the
effect of sending the standard or implementor-defmed event to the
appropriate object.

I A delay equation is always
attached to some event with
respect to some rule.)

delay until ccvenl> & <object>

Figure S-1: The Delay Equation

The delay equation is the means for implementing debugging
facilities such as breakpoints and singlestepping. Program execution
would be suspended at a marked statement or after every statement,
respectively. until the user invokes the continue command Figure 5-2

illustrates the description of breakpoints. The user of the programming
environment would insert a break statement into the body of a
prccedure (in the execution view) to indicate a breakpoint.

view Execution

I The break statement
has no components. t

break =+ nil

run -->
delav until continue

Figure 5-2: Break Statement Syntax and Semantics

6. Implementation
The implementation of the action equations paradigm is explained in

[17]. The basic idea is that action equations are translated to (1)
dependency graphs and (2) procedures written in a special free-oriented
programming language. The dependency graphs are used by the
structure editor kernel to determine the order in which to invoke the
procedures corresponding to active equations. Each procedure

implements a single action equation. The algorithm is an extension of
Reps’ incremental attribute evaluation algorithm for attribute grammars

WI.

55

Two versions of the tree-oriented programming language and
corresponding kernels have been implemented, one in Pascal for the
DOSE generic structure editor (on the Perq workstation) [16,7] and
one in C for the ALOE structure editor generator (on UnixTM) [l. 191.
The translator has not yet been completed Only toy environments
have as yet been described using action equations, but several real
environments have been implemented using the tree-oriented
programming language directly.

7. Conclusions
The primary result of the research described in this paper is the

development of a new paradigm within which implementors can easily
develop the run-time components of structure editor-based
programming environments. The action equations paradigm represents
a significant improvement over previously proposed paradigms. The
major improvement over action routines is the declarative style of

notation. This raises the level of abstraction at which implementors can
describe semantics processing and drastically eases the debugging and
enhancement of their programming environments. The major
improvement over attribute grammars is the simple means for
expressing dynamic as well as static properties of the programming
environment. This allows the implementor to specify both code
generation and the run-time support for program execution.

Action equations can also be used for generation of compilers and
run-time environment as separate tools, apart Born programming
environments, in the same manner that attribute grammars are currently
used for compiler generation. The implementation in this case is much
easier, since the action equations am evaluated once, until quiescence,
with respect to the whole program rather than incrementally as the
program is modified.

Acknowledgements
The research discussed in this paper was performed in partial

fulfillment of the requirements for the degree of Doctor of Philosophy
at Carnegie-Mellon University. I would like to thank my advisor, Nice
Habermann, for his many years of technical and personal support. I
would like to thank David Garlan for developing the view mechanism

that provides the structural support for action equations and for
countless hours of fruitful discussion. I would also like to thank the
Hertz Foundation for supporting me for live of my years in graduate
school. This research was supported in part by the Software
Engineering Division of CENTACS/CORADCOM, Fort Monmouth,

NJ.

References WI

Dl

PI

Vincenzo Ambriola, Gail E. Kaiser and Robert J. Ellison.
An Action Routine Model for ALOE.
Technical Report CMU-CS-84- 156, Carnegie-Mellon

University, Department of Computer Science, August, 1984.

David R. Barstow, Howard E. Shrobe and Erik Sandewall.
Interactive Programming Environments.
McGraw-Hill Book Co., New York, NY, 1984.

[161

/31

141

[A

WI

171

181

r93

r101

Vll

WI

r131

1141

Norman M. Delisle, David E. Menicosy and Mayer
D. Schwartz.
Viewing a Programming Environment as a Single Tool.
In Proceedings of the SIGSOFTISIGPLAN Software

Engineering Symposium on Practical Software
Development Environments. April, 1984.

Alan Demers. Thomas Reps and Tim Teitelbaum.
Incremental Evaluation for Attribute Grammars with

Applications to Syntax-directed Editors.
In Conference Record of the Eighth Annual ACM Symposium

on Principles of Programming Languages {POPL).
January, 1981.

Rodney Farmw.
Generating a Production Compiler horn an Attribute Grammar.
IEEE Software l(4), October, 1984.

Peter H. Fe&r and Raul Medina-Mora.
An Incremental Programming Environment.
IEEE Transactions on Soflware Engineeting SE-7(S),

September, 1981.

Peter H. Fe& and Gait E. Kaiser.
Display-Oriented Structure Manipulation in a Multi-Purpose

SysteN.
In Proceedings of the IEEE Computer Society’s Seventh

International Computer Software and Applications
Conference (COMPSAC ‘83), pages 4048. November,
1983.

Ch%les N. Fischer, Gregory F. Johnson, Jon Mauney, Anil Pal,
Daniel L. Stock,
The POE Language-Based Editor Project.
In Proceedings of the SIGSOFTISIGPLAN SoJ?ware

Engineering Symposium on Practical Software
Development Environments. April, 1984.

Harald Ganzinger, Knut Ripken and Reinhard Wilhelm.
Automatic Generation of Optimizing Multipass Compilers.
In Information Processing 77, pages 535540. North-Holland

Publishing Co., New York, NY, 1977.

David B. Garlan and Philip L. Miller.
GNOME: An Introductory Programming Environment Based

on a Family of Structure Editors.
In Proceedings of the SIGSOFTlSIGPL&V Sofwzre

Engineering Symposium on Practical Software
Development Environments. April, 1984.

David B. Garlan.
FleUble Unparsing in a Structure Editing Environment.
Technical Report CMU-CS-85-129, Carnegie-Mellon

University, Department of Computer Science, April, 1985.

David B. Garlan.
Representational Transformations for Tools in Structure

Editing Environments.
PhD thesis, Carnegie-Mellon University, 198x.
In progress.

David Garlan and Gail E. Kaiser.
MELD An Object-Oriented Language for Describing Features.
Submitted to the ACM Conference on Object oriented

Programming Systems, Languages, and Applications, 1986.

Adele Goldberg and David Robson.
Smalltalk- The Language and its Implementation.
Addison-Wesley Publishing Co., Reading, MA, 1983.

SC. Johnson and ME. Lesk.
Language Development Tools.
The Bell System Technical Journal 57(6), July-August 1978.

Gail E. Kaiser.
Tree Manipulation Language user’s Manual.
Technical Report RTL84-TM-106, Siemens Research and

Technology Laboratories, February, 1984.

56

1171

ml

WI

m

WI

1221

WI

Gail E. Kaiser.
Semantics of Structure Editing Environments.
PhD thesis, Carnegie-Mellon University, May, 1985.
Technical Report CMU-CS-85-131.

Donald E. Knuth.
Semantics of Context-Free Languages.
Mathematical Sysrems Tkeov 2(2), June, 1968.

Raul Medina-Mora.
Syntax-Directed Editing: Towards Integrated Programming

Environments.
PhD thesis, Carnegie-Mellon University, March, 1982.

David Notkin.
The GANDALF Project.
The Journal of Sysrems and Sofmare S(2), May, 1985.

Steven P. Reiss.
Graphical Program Development with PECAN Program

Development Systems.
In Proceedings of the SIGSOFTISIGPL,AN Sofmare

Engineering Symposium on Practical Software
Development Environments. April, 1984.

Thomas Reps, Tim Teitelbaum and Alan Demers.
Incremental Context-Dependent Analysis for Language-Based

Editors.
ACM Transactions on Programming Languages and Systems

(TOPLAS) 5(3), July, 1983.

Thomas Reps and Tim Teitelbaum.
The Synthesizer Generator.
ln Proceedings of the SIGSOFTISIGPLAN Sojware

Engineering Symposium on Practical Software
Development Environments. April, 1984.

Tim Teitelbaum and Thomas Reps.
The Cornell Program Synthesizer: A Syntax-Directed

Programming Environment.
Communications of the ACM 24(g), September, 1981.
Appears in [2].

57

