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Abstract 
Attribute grammars have been used for many years for automated 

compiler construction. Attribute grammars support the description of 
semantic analysis, code generation and some code optimization in a 

formal declarative style. Other tools support the automation of lexical 
analysis and parsing. However, there is one large part of compiler 
construction that is missing from our toolkit: run-time environments. 
This paper introduces an extension of attribute grammars that supports 
the generation of run-time environments. The extension also supports 
the generation of interpreters, symbolic debugging tools, and other 
execution-time facilities. 

1. Introduction 
Integrated programming environments are rapidly replacing the 

traditional tools used by programmers to edit, compile and debug their 
programs. The key components of an integrated programming 
environment are a standard user interface and a common database. A 
large number of prototype and teaching programming environments are 
now built using structure editing technology, which supports both of 
these features (for example, Tektronix’ Magpie [3], the University of 
Wisconsin at Madison’s Editor Allen Poe [8], Brown University’s 
Pecan [21] and Carnegie-Mellon University’s Gandalf [ZO]). Each of 
these environments consists of an integrated collection of tools that 

may be applied incrementally as the programmer writes and tests her 
programs. In some cases, the tools are automatically applied without 
the explicit intervention by the programmer. For example, type 
checking and symbol resolution are performed automatically as the 
program is created and modified: code generation and some code 

optimization may also be performed incrementally. 

The early structure editor-based programming environments, such as 
the Cornell Program Synthesizer [24], were entirely hand-coded. Then 
Medina-Mora [19] demonstrated that a structure editing environment 
can be generated from an environmenf descripfion. A program called 
an environment generator combines an environment description with 
the common editor kernel to produce the desired programming 
environment. The person who writes the environment description is 
called the implementor of the programming environment while a 

person who uses the programming environment to write her programs 
is called a user. 
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An environment description has two components, the syntax 
description and the semantics description. The synrux descriprion 

includes the abstract syntax (or structure) of the programming language 
and the concrete syntax (or user interface) for programs in the 
language. It is now well-established that a syntax description is written 
in a declarative notation similar in style to a context-free grammar or 
BNF. It is very easy to write a syntax description for a conventional 
programming language. It might take two days for an implementor to 

write the syntax description for Pascal and as much as two weeks for 

the more complex syntax of Ada. A syntax description alone can be 
used as an environment description if no semantics processing is 
required. An environment generator can combine the syntax 
description with the editor kernel to produce a pure syntax-directed 
editor that supports program editing and enforces correct syntax. 

The semantics descripfion specifies all the processing performed by 
the environment, i.e., everything the environment does that is not 
among the standard facilities provided by the editor kernel. In other 
words, the syntax description describes the program database and the 
semantics description describes the tools that operate on the database. 
The semantics processing of a programming environment is performed 
by a collection of tools that are knowledgeable about the particular 
programming language. The tools are often divided into two 
categories: the tools that handle static (compile-time) semantics and the 

tools that handle dynamic (run-time) semantics. The implementor of a 
programming environment describes the semantics processing in terms 
of the static and dynamic properties of the programming language. 
Sfaric proper&s can be determined by inspection of the program while 

dynamic properlies reflect the interaction between the user and the 
programming environment. Compilation is described in terms of static 
properties, while the run-time support is characterized by dynamic 
properties. 

1.1. The Problem of Semantics Description 
The description of static and dynamic properties is very difficult, In 

contrast to the syntax description, there is no commonly accepted form 
for the semantics description of a programming environment, and the 
development of a semantics description for a relatively simple 
environment such as the Gnome teaching environment [lo] can take 
many months. However, there are two methods of semantics 
description, action routines and attribute grammars, that have been 
more widely used than their competitors in the generation of integrated 
programming environments. 

Action routhes were proposed by Medina-Mora in [6]. The 
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semantics processing is written as a set of routines in a conventional 

programming language. A particular routine is associated with each 

ruh in the abstract syntax. The corresponding routine is automatically 

invoked by the editor kernel when an editing command is applied to 

any object that is instance of the rule. Action routines were adapted 
from the semantic routines associated with parser generators such as 

YACC [15]. 

Atfribute grummars, originally proposed by Knuth [18], have 
become a standard technique for compiler generation [5,9]. Attribute 
grammars were adapted to interactive programming environments by 
Reps [4,23]. The semantics processing is written as a set of attribute 
definitions associated with each rule in the abstract syntax. An 
incremental evaluator automatically m-evaluates all attributes whose 
values may have changed as the result of a modification of the syntax 

tree. 

Action routines, attribute grammar and other mechanisms have 
proved extremely useful for speeding up the development of 
programming environments. However, none of these methods fulfill 
all the requirements of an implementor of a programming environment. 

The basic problem with action routines is that the design, 
implementation and debugging of the routines is tedious and error- 
prone compared to the ease with which a syntax description can be 
developed. The, implementor has to consider the possible orders in 
which the action routines might be invoked and how this effects the 
integrity of the data structures that represent the auxiliary information 
maintained by the action routines. In contrast, dependencies among 
attribute definitions are handled automatically by the attribute 
evaluator. 

However, attribute grammars are useful for describing only for a 
certain subclass of program development tools. They handle static 
properties quite well, but are unsuited to the description of dynamic 
properties because of the derived nature of the attributes. The value of 
each attribute is calculated from the source program and other 
attributes. By definition, it cannot depend in any way on the history of 
modifications to the source or of the execution of the source. This 
feature is exactly what is desired for static semantic checking and for 
code generation, but it is inappropriate for the dynamic properties of 
run-time environments where the semantic state depends on the history 
of the program execution. 

1.2. A Solution 

This problem has been solved by action equations, an extension of 
attribute grammars that supports the expression of history or dynamic 

properties. lhis is done by embedding equations similar to attribute 
definitions in an event-driven architecture. The evetis activate 
equations in the same sense that user commands trigger action routines. 
The editor kernel orders the evaluation of active equations according to 

the commands invoked by the user and the dependencies given by the 
equations. Equations that apply at all times are not attached to 
particular events and these correspond exactly to attribute grammar 
definitions. 

This event-driven nature is one of the crucial differences between 
action equations and attribute grammars. Another way of stating this 
difference is that action equations support multiple events while 

attribute grammars support only one event, the change event. In the 

attribute. grammar paradigm, the change event can be received from the 
user and propagated by attribute detinitions to other defM.ions. in the 

action equations paradigm, the change event, standard events and 
implementor-defined events can all be received from the user and/or 
sent from action equations to other equations, (The srundard events 

include create, delete, access, exit and enter,) This makes it easy to 

invoke particular operations in response to particular user commands, 
as described in Section 5. 

An important implication of multiple events is that an incremental 
evaluator for action equations can easily handle circular &pendencies 

among the equations while incremental evaluators for attribute 
grammar require non-circularity. This is because an equation activated 
by an event is evaluated exactly once in response to the event rather 
than (conceptually) re-evaluated repeatedly until quiescence. This 
distinction is built into the incremental evaluation scheme for action 
equations. The result is an easy mechanism for describing and 

implementing iteration and recursion that cannOt be matched by 
attribute grammars. This is explained in Section 3. 

Another crucial distinction between the two paradigms is that 
attribute grammars are applicative while action equations support 
certain non-applicative mechanisms. Attribute grammars require that 

attribute defmitions he purely functional. This means that an attribute 
definition is re-evaluated (until quiescence) only when the program 
changes, and then the attribute definition is restricted to replacing the 
old value with an entirely new value. These applicative restrictions are 
removed in the new paradigm. An action equation may be re-evaluated 

due to the receipt of an event, and then the equation is permitted to 
directly modify the current value of the attribute. This permits a more 
efftcient implementation of the run-time stack of activation records and 
other run-time support structures. This is discussed in Section 4. 

1.3. Compile-Time Semantics 
Since attribute grammars are a strict subset of action equations, 

compile-time semantics are handled in exactly the same manner in the 
two paradigms. Symbol resolution, type checking, flow analysis for 
anomaly detection and source-level optimizations, and code generation 

are described using standard attribute grammar mechanisms. 

Compile-time semantics are not discussed further in this paper. The 
rest of this paper is concerned with run-time semantics. Section 2 gives 
an overview of the differences between attribute. grammars sad action 
equations. Section 3 discusses the description of interpreters using 
action equations. Section 4 describes the generation of run-time 
support for program execution and Section 5 explains additional 

support for language-oriented debugging facilities. Section 6 briefly 
discusses the implementation of action equations and Section 7 
summarixes the significant contributions of this research. 

2. Introduction to Action Equations 
The action equations paradigm was developed as an extension to 

attribute grammars and follows the same basic form. An attribute 
grammar associates a set of attributes with each rule in a context-free 
grammar. Each attribute is given a function that uniquely determines 
its value. The function may take as arguments the other attributes 
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associated with the same rule. In the case where the ruledefmes a 

non-terminal, the function may also take as arguments the values of the 
children; in the case of a terminal, the function may also take as an 
argument the value of the terminal (for example, an identifier, a string 

or an integer). An attribute grammar follows the format illustrated in 
Figure 2-l. Each association between an attribute and its defining 
function is called an equation. 

Action equations extend this attribute grammar notation to treat 

some of these equations as active while others are passive. If fi in 
Figure. 2-l is active, then the itb attribute. (ai) necessarily has the value 

f,(arg,, . . . . arg,). In contrast, if fi is passive, then the value of the jth 

attribute (a$ does not necessarily have the value f$arg,, . . . . a@. It 

retains its most recent value rather than being updated to maintain this 
constraint. Active equations correspond to attribute definitions in 

rule; 

1 Attribute definitions for rule;. ) 

=k := fk(argI# . . . . arg,) 
. . . 
=I := fl(argl, . . . . arg,) 

rulej 

1 Attribute definitions for rulei. ) 

=a := f,(argI, . . . . arg,) 
. . . 

=P := fp(argl, . . . . arg,) 

Figure 2-1: An Attribute Grammar 

attribute grammars, while passive equations are an innovation of action 
equations. 

The implementor may specify that some equations are permanently 
active, as in attribute grammars. Other equations may be changed from 
passive to active status. After a passive equation has been activated, it 
returns to passivity immediately after the corresponding attribute has 
been updated. Passive equations are. indicated by attaching each 
passive equation to an event. Our even1 corresponds to a message in an 
object-oriented language (such as Smalltalk [14]) and the equations 
attached to the event correspond to a method. (An&- paper 
[13] describes action equations as an object-oriented description 

language.) The collection of equations associated with a particular rule 
am normally listed as in Figure 2-2. The equations not attached to any 
event are permanently active while the equations attached to a 

particular event are passive until the event is received by an object 
defined by the rule. 

As with messages in object-oriented systems, events are normally 
generated by objects (the exception is events that represent user 
commands). Therefore, it must be possible to send an event as well as 
receive an event. This is supported by further extending attribute 
grammar-style equations to propagate events as well as apply functions. 
The propagare equation is illustrated in Figure 2-3. More than one 
destination attribute may be given. The propagation takes place if and 
only if the equation becomes active. 

rule 

( Permanently active equations. 1 

ai := fi(argl, . . . . arg,) 
. . . 
a. := fj(argl, . . ., arg,) I 

( Passive equations for eventI. ) 

event1 --> 
=k := fk(argl, . . ., arg,) 
. . . 

=1 := fl(argl, .-., arg,) 

. . . 

{ Passive equations for event,. 1 

event, --> 
a0 := f,(argl, . . ., arg,) 
. . . 

aP 
:= fp(argl, . . ., arg,) 

Figure 2-2: Attaching Equations to Events 

{ A propagate equation is always 
attached to some event with 
respect to some rule. 1, 

propaaate <event> & <object> 

Figure 2-3: The Propagate Equation 

3. Implementation of Interpreters 
Action equations support the implementation of conventional control 

constructs using events and propagate equations. Sequencing, 
selection, iteration and branching can be expressed with simple 
combinations of these two facilities. Consider the description of 
iteration shown in Figure 3- 1. There is a cimularity among the sources 

and destinations of the propagate equations that describe the flow of 
control through the loop. This circularity would be prohibited in an 
attribute grammar but is no problem for action equations. 

The interpretation works as follows. The loop statement receives the 

run event The user of the programming environment sent the run 
event by doing two things. First, he moved the program cursor to 
highlight the part of the program he wanted to execute; this might be 
the entim program, any statement enclosing the loop statmen~ or just 

the loop statement. Then he selected the run command. In response, 
the command interpreter sent the run event to the object highlighted by 
the cursor. 

When the loop statement receives the run event, the 
“propapates run & init” equation is activated. This propagate equation 
sends the run event to the init component of the loop statement. When 
the run event is received by the initialization statement, the equations 
(not shown) that execute this statement are activated. After completion 
of these equations, then the “Dropagates run & cond” equation is 
activated This sends the Nn event to the cond component of the loop 

statement. 

When the run event is received by the condition expression, it 
activates the equations (not shown) that evaluate this expression and set 
the result attribute to the value of the expression. Then the 
“pronanates run & if condresult then body” equation is activated. If 

the result attribute of the cond component is true, then the run event is 
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( Abstract syntax for loop 
statement. The loop non- 
terminal has four children: 
three are statements and 
one is an expression. 1 

loop => 
init: STATEMENT 
cond: EXPRESSION 
reinit: STATEMENT 
body: STATEMENT 

( Passive equations 
for loop statement. 

run --> 
propagates run G 

I 

init 

(: The "run on init, reinit" 
notation% simply short-hand 
for writing each of the two 
events separately with the 
equations attached to each. ) 

run gR init, reinit --> 
propagates run &g cond 

( When the run event is received 
by the cond component, its result 
attribute is set by a constraint 
such as 
"result : = cscmantic function>” 
that is associated with the particular 
expression. If the new value of 
result is false, then the 
propagation does not occur. 1 

run s cond --> 
propaaates run & 

if cond.result then body 

run on body --> 
T;;opaoates run Q reinit 

Figure 3-1: Loop Statement Syntax and Semantics 

sent to the body component of the loop statement. 

The run event continues propagating around the loop, through the 
body, the re-initialization and the condition until evaluation of the 
condition expression returns false. When this happens, the run event of 
the “prouaaates run @ if condmsult then body” equation is not sent at 
all. Control returns to the source of the original run event that started 
the loop execution. 

4. Run-Time Support for Program Execution 
An interpreter or a run-time environment for compiled code must 

implement the memory management required for subroutine invocation 
and data manipulation. Tbis is supported by (1) extending attribute 
grammars further to permit any objects, not just attributes. to take part 
in equations and (2) augmenting the resulting action equations with the 
view defmition notation described by Garlan [12]. The fmt change 
permits action equations to modify the source program as well as the 
values of attributes, introducing a potentially dangerous source of side- 

effects. However, this ability is used not to modify the source program 
constructed by the user but to modify alternative views of the source 
program that represent the internal state of the run-time envimnment 

A sfafic view consists of a collection of rules that deft an abstract 
syntax. Figure 4-l gives two static views for a procedure: Source and 
Execution. The Source view describes the standard abstract syntax for 

a procedure, while the Execution view defines an activation record for 

a procedure. During program execution, an activation record is pushed 

onto the run-time stack to represent a procedure invocation. 

Notice that both views define a name component as an instance of 

the identifier definition (identdef) terminal. Consequently, this 
component has exactly the same value in both views. Because of the 
‘ReadOnly’ qualification given in the Execution view, the name 

component can be created (and deleted) with respect to the Source view 
but not with respect to the Execution view. This stands to reason, since 

it is (generally) not appropriate to change the name of a procedure 
during execution. 

Both views also define parameters and locals components, but in 
each case with different types. In the Source view, both parameters and 

locals are vardefs. A vardef (not shown) consists of a name and a type. 
In the Execution view, both parameters and locals am blocks: 
terminals that represent a block of memory. The name and type of a 

view Source 

procedure => 
name: identdef 
parameters: seq of vardef 
locals: seq of vardef 
body: sea of STATEMENT 

view Execution 

( The default qualification 
is 'ReadWrite'. ) 

procedure => 
name: identdef 

qualified 'ReadOnly' 
parameters: ses of block 
locals: seu of block 

I "ref to" indicates a 
symbolic reference to an 
object elsewhere in the 
same or another syntax tree. 
The reference terminal can 
be used to extend a rigid 
syntax tree to an 
arbitrary graph structure. 1 

pc: ref to STATEMENT 
body: s of STATEMENT 

oual??ied 'ReadOnly' 

Figure 4-l: Two Static Views of Prccedum Syntax 

parameter or local variable are not accessible in the Execution view and 
the block of memory is not accessible in the Source view. The block of 
memory is used for storing the value of the actual parameter or the 
local variable during program execution. 

Figure 4-2 gives the Execution view for the enclosing program: a 

stack of activation records, an expression stack and a heap for dynamic 
storage allocation. The entire internal state of an interpreter or a run- 
time environment can be described by a static view in this manner. 

view Execution 

program => 
stack: sea of procedure 
estack: sea of block 
heap: block 

Figure 4-2: Execution View of Program 
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So far, only pieces of abstract syntax have been associated with a 

particular static view. However, each action equation must also be 
explicitly associated with a particular view. Figure 4-3 shows part of 
both the syntax and semantics of a procedure call statement. Actual 

parameter evaluation and parameter passing are not illustrated. In this 
example, the run event and the action equations attached to the run 
event are associated with the Execution view. 

view Execution 

(An "identuse" is 
an identifier use. J 

call => 
name: identuse 
actuals: sea of EXPRESSION 

( Defsite points to 
the definition of 
the called procedure. ) 

defsite: ref to procedure 
oualified ‘ReadOnly' 

run --> 
"program->stack :- 

( The "@" operator 
dereferences a reference 
and the "#" operator 
indicates concatenation. ) 

copy @defsite t 
*program->stack 

propasate run u @defsite 

Figure 4-3: Execution View of Call Statement 

The equation attached to the run event in Figure 4-3 has the effect of 
pushing a copy of the called procedure. Since this is the Execution 
view rather than the Source view, it is an activation record rather than 
the source for the procedure that is actually pushed. The propagate 
equation initiates execution of the invoked procedure. 

Notice how simple it is to describe procedure invocation. This is 
why Garlan’s view mechanism was adopted for the action equations 
paradigm. It would be more difficult to express the same semantics 

processing using attributes rather than views. It would be relatively 
easy to declare the stack and heap as attributes rather than components, 
but the manipulation of activation records would be more complex. 
Without views, the implementor would have to explicitly construct the 
appropriate activation record on each procedure invocation and 
explicitly maintain references to the shared information. 

5. Interactive Execution and Debugging 
The only requirements of interactive execution and debugging that 

cannot be satisfied by the facilities previously described are those that 
involve direct interaction with the user of the programming 
environment. These requirementsare met using the &lay equation and 
Garlan’s display views Ill]. 

A disptay view describes how a static view is displayed on a terminal 
or workstation screen. It also supports editing commands such as 

create an object and exit the current object with the cursor. These 
editing commands are always applied to the underlying attributed 
syntax tree in terms of the displayed representation. Display views are 
sufficient to support both display and modification of the internal state 
of the programming environment. During debugging, the user can 

display the Source and Eexecution views of her program in different 
windows. 

The same mechanism can be used for stream input/output, where the 
stream is described in the IO view of the program. Implementation of 
the write statement is extremely easy. The value to be written is 
concatenated to the end of the I/O stream, which is automatically 
displayed on the screen. The read statement is slightly mom difficult 
and requires the addition of the delay equation. The function of the 
&lay equation is to request a particular event and delay the other active 

equations until the user sends the event. The user does this by selecting 
the command that corresponds to the event. The delay equation 

implements the read statement by suspending program execution until 
the user has entered another line of input. 

The delay equation has the form illustrated in Figure 5-1, where 
<object> is an address expression and cevenfz= is any standard or 
implementor-defined event that can be selected by the user as a 
command. The evaluation of a delay equation means that the currently 
active equations cannot be evaluated until <evenr, has been received 

by <object>. The active equations are suspended when the &lay 
equation is evaluated and awakened when the event occurs at the 

object. This happens when the user performs some activity that has the 
effect of sending the standard or implementor-defmed event to the 
appropriate object. 

I A delay equation is always 
attached to some event with 
respect to some rule. ) 

delay until ccvenl> & <object> 

Figure S-1: The Delay Equation 

The delay equation is the means for implementing debugging 
facilities such as breakpoints and singlestepping. Program execution 
would be suspended at a marked statement or after every statement, 
respectively. until the user invokes the continue command Figure 5-2 

illustrates the description of breakpoints. The user of the programming 
environment would insert a break statement into the body of a 
prccedure (in the execution view) to indicate a breakpoint. 

view Execution 

I The break statement 
has no components. t 

break =+ nil 

run --> 
delav until continue 

Figure 5-2: Break Statement Syntax and Semantics 

6. Implementation 
The implementation of the action equations paradigm is explained in 

[17]. The basic idea is that action equations are translated to (1) 
dependency graphs and (2) procedures written in a special free-oriented 
programming language. The dependency graphs are used by the 
structure editor kernel to determine the order in which to invoke the 
procedures corresponding to active equations. Each procedure 

implements a single action equation. The algorithm is an extension of 
Reps’ incremental attribute evaluation algorithm for attribute grammars 

WI. 
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Two versions of the tree-oriented programming language and 
corresponding kernels have been implemented, one in Pascal for the 
DOSE generic structure editor (on the Perq workstation) [16,7] and 
one in C for the ALOE structure editor generator (on UnixTM) [l. 191. 
The translator has not yet been completed Only toy environments 
have as yet been described using action equations, but several real 
environments have been implemented using the tree-oriented 
programming language directly. 

7. Conclusions 
The primary result of the research described in this paper is the 

development of a new paradigm within which implementors can easily 
develop the run-time components of structure editor-based 
programming environments. The action equations paradigm represents 
a significant improvement over previously proposed paradigms. The 
major improvement over action routines is the declarative style of 

notation. This raises the level of abstraction at which implementors can 
describe semantics processing and drastically eases the debugging and 
enhancement of their programming environments. The major 
improvement over attribute grammars is the simple means for 
expressing dynamic as well as static properties of the programming 
environment. This allows the implementor to specify both code 
generation and the run-time support for program execution. 

Action equations can also be used for generation of compilers and 
run-time environment as separate tools, apart Born programming 
environments, in the same manner that attribute grammars are currently 
used for compiler generation. The implementation in this case is much 
easier, since the action equations am evaluated once, until quiescence, 
with respect to the whole program rather than incrementally as the 
program is modified. 
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