
Exploiting Implicit Parallelism in
Dynamic Array Programming Languages

Shams Imam Vivek Sarkar
Rice University

{shams/vsarkar}@rice.edu

David Leibs Peter B. Kessler
Oracle Labs

{david.leibs/peter.b.kessler}@oracle.com

Abstract
We have built an interpreter for the array programming language J.
The interpreter exploits implicit data parallelism in the language to
achieve good parallel speedups on a variety of benchmark applica-
tions.

Many array programming languages operate on entire arrays
without the need to write loops. Writing without loops simplifies
the programs. Array programs without loops allow an interpreter to
parallelize the execution of the code without complex analysis or
input from the programmer.

The J programming language includes the usual idioms of op-
erations on arrays of the same size and shape, where the operations
can often be performed in parallel for each individual item of the
operands. Another opportunity comes from Js reduction operations,
where suitable operations can be performed in parallel for all the
items of an operand. J has a notion of verb rank, which allows pro-
grammers to simplify programs by declaring how operations are
applied to operands. The verb rank mechanism allows us to extract
further parallelism.

Our implementation of an implicitly parallelizing interpreter for
J is written entirely in Java. We have written the interpreter in
a framework that produces native code for the interpreter, giving
good scalar performance. The interpreter itself is responsible for
exploiting the parallelism available in the applications. Our results
show we attain good parallel speed-up on a variety of benchmarks,
including near perfect linear speed-up on inherently parallel bench-
marks.

We believe that the lessons learned from our approach to ex-
ploiting data parallelism in an interpreter can be applied to other
interpreted languages as well.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming

General Terms Languages, Performance

Keywords Array Programming, Implicit Parallelism, Data Paral-
lelism, AST Interpreter, APL, J, Truffle

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARRAY’14, June 13, 2014, Edinburgh, UK..
Copyright c� 2014 ACM 978-1-4503-2937-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2627373.2627374

1. Introduction
Exploiting parallelism is important to improve the performance of
applications, as more hardware becomes available to more pro-
grammers. A number of software constructs are used to allow pro-
grammers to specify explicit parallelism, either on shared-memory
multi-processors, or across clusters of separate machines [18, 19,
21, 22].

Experience has shown that writing explicitly parallel programs
is inherently more difficult than writing sequential programs. Array
programs offer an alternative: implicit parallelism. With implicit
parallelism, the language implementer is responsible for discover-
ing and exploiting parallelism. Implicit parallelism relieves the pro-
grammer of the need to code the details of the parallelization. It also
denies them the opportunity to write incorrect parallelizations, or
to hamper the language implementation, or to neglect to parallelize
some parts of their code. As a result, implicit parallelism results
in a substantial improvement of programmer productivity by en-
abling writing of correct code quickly. Another benefit of implicit
parallelization is that legacy code can be run on parallel hardware
without rewriting the programs.

The thesis of this paper is that array programming languages
with adequate richness expose opportunities for implicit data par-
allelism and simplify the problem of writing array-oriented parallel
programs. As we describe in Section 3, we achieve implicit paral-
lelism of array programs by exploiting the data parallel property
around the notions of function rank [1], vector operations based
on scalar operations, and reduction operations involving associa-
tive operators.

We use J, a member of the APL family, as an example of a high-
level array programming language [8, 10]. Our implementation is
an Abstract Syntax Tree (AST) interpreter for J written using the
Truffle framework [23] in pure JavaTM1, and our parallel runtime
uses Java’s ExecutorService. Our implementation is sound in that
it does not alter the semantics of existing J constructs.

The main contributions of this paper are:

• Identification of data parallel opportunities in array program-
ming languages such as J based on rank agreement on function
application, vector operations based on scalar operations, re-
duction operations involving associative operators, etc. In con-
trast, previous work in other array languages has focused on
parallelizing variants of for loops in array programs such as
Matlab [4] and Single Assignment C [6].

• A new implicitly parallelizing interpreter for the J programming
language written entirely in Java. This in stark contrast to inter-
preters for dynamic languages, like Python and Ruby, that are
not multithreading-friendly due to the use of global locks.

1 Oracle and Java are registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.

1

• Empirical evaluation of the performance of our interpreter on
various programs. Our results show we can attain near per-
fect linear speed-up with increasing number of processors on
some benchmarks, while other programs which are inherently
sequential (i.e. do not expose implicitly parallel constructs for
us to exploit) run without a major performance penalty.

2. Background
2.1 J
J is an array-oriented language developed in the early 1990s by
Kenneth Iverson and Roger Hui [8, 10]; it has an active community
of users and is used for teaching and in projects at various com-
panies. J’s strength is in the mathematical, statistical, and logical
analysis of arrays of data. J uses terms from English grammar to
describe the elements of the language: data are called nouns, oper-
ators are called verbs. Higher level operations include adverbs and
conjunctions. Adverbs take a verb as an operand and produce a new
verb: for example, one can take the verb for addition and apply an
adjective to produce a verb for summation. Conjunctions take two
verbs as operands and produce a new verb by various kinds of com-
position. J has automatic allocation and deallocation for storage. J
is a functional language: operations take operands and produce re-
sults, but do not modify their operands.

All nouns in J have rank, which is the number of dimensions
needed to define their shape. Scalar values have rank 0. Vectors
have rank 1. Matrixes have rank 2. And so on. All verbs in J have
ranks, which describe the ranks of the operands on which they
operate. Verbs which operate on scalars have rank 0, those that
operate on vectors have rank 1, and so on. A dyadic verb has a rank
with two elements: one for its left operand and one for its right
operand. All the built-in verbs have defined ranks. All user-defined
verbs have infinite rank so that they can treat their operands as they
will. There is a conjunction to define a verb with a specified rank
from an existing verb.

J codifies the idea of rank agreement which sets out a simple,
consistent rule for how to a verb uses its operands. Application of
a rank-k verb to an operand of rank greater than k is defined as
the independent application of the verb to each rank-k fragment
of the operand, with the final result being formed by merging the
individual results. The rank of the final result need not be the same
as the rank of an input operand.

Rank agreement can be defined to be the following three step
model [15]:
• Operand slicing, and pairing: Breaking up the actual operands

into nouns with smaller rank so that they agree with the ad-
vertised verb rank. For dyadic verbs, corresponding fragments
from the input nouns are then paired up.

• Evaluation on fragment pairs: The verb is then repeatedly ap-
plied on each of the fragments to produce intermediate results.

• Coalescing of intermediates: The intermediate results are then
merged to form a single noun with a larger rank. Merging needs
to account for the case where the fragments are of different
ranks, shapes, and types.

For example, multiplication is a rank 0 verb, so when evaluating
2 * 3 5 7 the right hand operand has rank 1 and so is sliced
into rank 0 elements (the scalar values 3, 5, and 7), and each
slice is paired with the scalar 2 that is the left-hand operand. The
evaluations of the application of the rank 0 verb to the rank 0
operands produces intermediate results (which happen to be of rank
0): 2*3, 2*5, and 2*7. The intermediate results are assembled into
the final result, a rank 1 vector 6 10 14.

Slicing and coalescing of nouns and intermediates, respectively,
are considered to be part of the fundamental J mechanics and are

outside the scope of any specific verb. The rank agreement logic
and use of slicing and coalescing is a means of implicit looping
in J. We will see in Section 3 that the concept of function rank is
fundamental to array parallelism in J.

2.2 Truffle
Truffle is a novel framework for implementing managed dynamic
languages in Java [23] by writing AST interpreters. With the Truffle
framework, the AST can be modified during runtime to incorporate
type feedback to specialize the AST nodes. The ability to replace
one node with another, at runtime, enables type specialization of
nodes and improves the execution speed of the AST interpretation.
Node replacement is based upon assumptions, if the assumption
becomes invalid, a node replaces itself with a more general imple-
mentation using the newly-found information. As a result the AST
keeps modifying itself with dynamic runtime information and this
helps in increasing the performance of the interpreter. The Truffle
JIT compiler relies on the assumptions and node types to resolve
the virtual dispatch overheads from polymorphic call sites open-
ing up opportunities for improved runtime compilation of the inter-
preter, leading to better performance of the language implementa-
tion. Truffle uses the static typing and primitive data types of Java
elegantly to avoid the cost of boxed representations of primitive
values in dynamic programming languages.

3. Parallelization Opportunities
We believe that an array language like J can help in the writing
of efficient implicitly parallel programs. The semantics of J gives
the meanings of expressions, but does not dictate how those ex-
pressions are to be evaluated. Array programming principles and
higher-order constructs in J programs expose copious opportuni-
ties for parallelism. In this section, we discuss our techniques to
take advantage of three implicit parallelism opportunities: function
rank; vector operations on scalar values; and reduction operations
that use associative operators.

3.1 Rank Agreement
The concept of function rank is fundamental to array parallelism in
J. As mentioned in Section 2.1, when the rank of an operand does
not agree with the rank of a verb, the operand needs to be sliced
into fragments before applying the verb to each individual slice.
For example, rank agreement allows a programmer to apply a verb
to slices of a multidimensional array. In J semantics, the order in
which the verb is applied to each slice is undefined and there are
no side effects a programmer should depend on. This means that
computations of intermediate results are inherently non-interfering
and can be exploited by traditional data parallelism techniques.
With verbs formed by composition, rank agreement logic may be
triggered while evaluating the verb on the different slices. This
gives rise to opportunities for nested parallelism as in divide-and-
conquer style algorithms.

To fully exploit these properties, we have to maximize useful
parallel computation and minimize the serial bottlenecks in slicing
the operands and in coalescing intermediate results. We minimize
slicing overheads by avoiding any copying while creating slices.
Coalescing the results often involves copying data from interme-
diate results into the final result. In scenarios where the shape of
the resulting noun can be computed in advance (i.e., before any of
the intermediate results become available), we attenuate the serial
bottlenecks by a) performing the copy in parallel, or b) completely
eliminating copying overhead by directly targeting the intermedi-
ates to their slice location in the result . As a result we can combine
steps two and three from the three step model of rank agreement.

2

3.2 Scalar Verbs
Scalar verbs are verbs with a rank of zero. These verbs operate on
individual elements of their operand nouns. The calculation of ev-
ery individual result element is independent of the others. In other
words, application of a scalar verb to array operands represents a
vector operation and all scalar verbs present instances of fine-grain
parallelism. These can be easily supported on multicore processors
by chunking the workload evenly among the available processors.
The result array can be preallocated and the result filled in place.
Most scalar verbs in J produce a scalar value when applied to scalar
operands. In such scenarios the rank agreement logic is simplified
and the three step model can be replaced by a simpler scheme where
the shape of the result is known in advance. This allows us to di-
rectly populate the result array and avoid all copying overheads dur-
ing the coalescing stage. The specialization of the different stages
also reduces effects of the serial stages that can limit parallel per-
formance due to Amdahl’s law [7].

3.3 Operand Promotion
When an operand to a verb must be paired with more than one
slice of the other operand, the rank of the operand is increased
by replicating it to have the number of elements required for the
pairings. By recognizing this case we can apply the parallelization
techniques described above without replicating the shorter operand.

3.4 Reduction Operations
Reduction operations are formed using the insert adverb in J.
The insert adverb modifies a dyadic verb and uses this verb to
operate on cells of a higher-rank noun in right-to-left order to
reduce the cells to a single value. Reduction operations can be
parallelized only when the verb being applied is associative. We do
not require the dyadic verb to be commutative to extract parallelism
in the computation since we respect J’s right-to-left ordering while
evaluating the partial results.

4. Truffle-J Interpreter and Optimizations
Interpreters are a popular choice for execution engines in many vir-
tual machine (VM) architectures because they are simple to imple-
ment. We use tree-based representations of the program constructs
and the interpreter walks these trees to execute instructions. The
Truffle-J interpreter is written in pure Java using the Truffle frame-
work [23]. In this section, we describe some of our optimizations
that enable us to execute J programs on our interpreter efficiently
in terms of execution time performance. These optimizations in-
clude our choice of data structures, tree-rewriting specializations,
minimization of temporary array creation, and an efficient parallel
runtime.

4.1 Array Data Structure
The choice of data structure to represent arrays dramatically affects
the performance of the interpreter. Our choice, called StructA, rep-
resents a multidimensional array as a flattened, contiguously al-
located one dimensional array of values - we call this the data
ravel. This representation is similar to the representation used in
the JSoftware interpreter [9] and we claim no novelty in this repre-
sentation. A StructA provides a read-only view into the data ravel
it encapsulates. This choice is facilitated by the fact that arrays in J
are immutable. Arrays in J are always rectangular and accesses to
arrays are performed by slices. Using the flattened representation,
elements of array slices are contiguous in memory and can bene-
fit from caching. This representation comes at the cost of explicit
computation of the unidimensional index from multidimensional

indices. However in J, such accesses to elements almost always2

occur on entire arrays. Modern compilers, during just-in-time com-
pilation of the interpreter code, can extract loop invariant code snip-
pets and thereby reduce the overhead of index computation.

In addition to a pointer to the data ravel, a StructA also con-
tains metadata for the array. This metadata includes the shape of
the array which gives the dimensions for each rank; an offset index
into the data ravel; and the stride length. This representation allows
the sharing of the same data ravel by multiple array instances, the
constant time creation of slices of arrays, and a constant time pro-
motion of smaller rank arrays into larger rank arrays, for example
during operand promotion.

4.2 Truffle-based Node Specialization
Truffle relies on incorporating type information to speed up execu-
tions of programs in dynamic languages. Truffle allows an AST to
incorporate type information during execution and rewrite itself by
introducing guards. Thus, the new AST is more specialized for its
input arguments and can execute faster by avoiding boxing and un-
boxing costs for example. When the types for input arguments do
not match, the guards fail and further specialization or generaliza-
tion of the AST is triggered. When the rewrite orderings do not have
cycles, the AST reaches stability. This stable AST can then be opti-
mized by JIT-compiling the interpreter to improve the performance
of the interpreter. Our node specializations in Truffle-J include the
following: a) type specializations for scalar ints, scalar doubles, ar-
rays of ints, or arrays of doubles; b) macro expansions for many J
constructs such as forks, hooks, conjunctions; and c) verb special-
izations for scalar verbs.

4.3 Verb Fusion and Minimizing Temporary Array Creation
In the traditional J interpreter (and most existing APL implemen-
tations), a verb is applied only after its operands have been fully
evaluated. This technique can lead to creation of spurious interme-
diate arrays and affects performance due to increased allocation and
garbage collection overhead. In Truffle-J, we dynamically discover
new scalar verbs after macro expansion of different language con-
structs. Figure 1 illustrates the use of this technique more clearly
where a J expression (the body of termFunc is fused into a larger
scalar verb. By fusing multiple verbs in the AST sub-trees, we min-
imize the number of temporary arrays created and improve perfor-
mance of the interpreter. This technique has been used successfully
in the past in statically compiling APL programs [2]; our approach
differs in that we discover such opportunities dynamically in addi-
tion to the opportunities present in tacit forms of J expressions. Cre-
ation of the new fused scalar verbs increases the amount of work
done in a unit of computation thereby improving parallel perfor-
mance by reducing the ratio of overhead introduced during scalar
verb parallelization.

NB. Compute sum of k^(-0.5) for k from 1 to 10000001
sum =: 3 : ‘(+/) y’
termFunc =: 3 : ‘((_0.5&(^~))@>:) y’
sum (termFunc i. 10000000) NB. 6323.1

Figure 1. The body of termFunc is effectively a scalar verb which
performs the following operations on each element of its input noun
y: firstly it increments the value to say y1 (verb >:), secondly it
flips the operands to the power function (adverb ~), and finally it
actually computes the value y1�0.5 (verb ^). Without the scalar
verb fusion, each of the verbs would need to be applied individually
with temporary array creations at each step.

2 The exception being when the from verb is used to select individual
elements from a noun

3

4.4 Parallel Runtime
The key to exploiting parallelism is finding independent subprob-
lems to be solved. We discussed such opportunities in Section 3.
We use a task parallel runtime to provide support for parallelism
in our interpreter. Since we advocate implicit parallelism, it is the
responsibility of the runtime to express our computation in terms
of tasks, to create the tasks, to schedule their execution, and to syn-
chronize at the completion of their execution.

Nested Fork-Join Parallelism We use a task parallel runtime to
provide support for parallelism in our interpreter since all forms
of parallel expression can be broken down into task parallelism.
Exploiting parallelism in rank agreement of verb application, vec-
torization in scalar verb application, etc. all naturally fit into the
fork-join model. Each spawned task can transitively discover more
opportunities for parallelism and spawn more tasks thus giving rise
to nested fork-join parallelism. The parallel runtime in Truffle-J
supports task parallelism via the ExecutorService framework
and creating handles to futures to track task completions at join
points. There are two main problems with this scheme: excessive
parallelism can lead to the creation of large numbers of tasks, and
join points introduce thread-blocking operations and limit scalabil-
ity and performance.

We limit the excessive creation of tasks by tracking the number
of available worker threads at each possible parallelization opportu-
nity. If no worker threads are idle, then the fragment is executed se-
quentially without creating parallel tasks. On the other hand, when
worker threads are available, the amount of work is split as evenly
as possible across the number of available workers. Thus, we can
dynamically load balance the work at any point across the number
of available workers.

Thread-blocking operations at join points block a thread and
limit the number of available threads that can participate in execut-
ing tasks in parallel. In the parallel runtime, the thread submitting
the tasks into the work queue also attempts to execute tasks. As a
result, any given task is either executed by the thread that created
it (without pushing it onto the queue) or is executed by an inde-
pendent worker thread that pops the task from the work queue -
but not both by guarding its execution around an atomic flag. This
scheme ensures when a join point is reached, either all tasks have
completed execution or are being actively executed by some other
worker thread thus minimizing the wait time at the join point. In
addition, the above scheme to avoid excessive task creation en-
sures there can be no starvation due to all worker threads becoming
blocked.

Parallelization of Truffle ASTs in the Interpreter The Truffle
framework by itself does not support parallelization and defers
the responsibility of introducing parallelism and any necessary
synchronization while mutating the ASTs to the guest language
implementers. Cloning of ASTs is a common operation in Truffle-
based languages, we exploit this feature and rely on creating clones
of an AST node per thread to execute a given fragment of a program
in parallel. This avoids the need for synchronization while tree
rewrites are triggered as any given AST is only being manipulated
by a single thread and there can be no data races.

4.5 Truffle-J - Language Completeness
Our implementation effort was mainly driven by the constructs
used in the benchmarks we chose to run on the interpreter, as such
we only support the int and double datatypes. The J specification
defines a list of primitive operations; the Truffle-J interpreter com-
pleteness with respect to these primitives is as follows: a) Verbs
(80 out of 132), b) Adverbs (8 out of 18), c) Conjunctions (11 out
of 30). There are no technical challenges restricting our support

Name Source, Computational Feature JSoftware Truffle-J Speed-Up
BlasLevel1a-100M Ourselves, Linear Algebra 23308.10 1096.51 21.257
BlasLevel2a-5K Ourselves, Linear Algebra 495.57 827.07 0.599
BlasLevel3a-1K Ourselves, Linear Algebra 1247.41 3322.80 0.375
BlasLevel3b-1K Ourselves, Linear Algebra 1110.88 3343.50 0.332
BlasLevel3c-1K Ourselves, Linear Algebra 1132.88 3485.81 0.325
CodeGolfDigit-25 Ourselves, Scalar arithmetic 18100.50 9888.97 1.830
GameOfLife-2K C. Jenkins, Stencil Computation 14661.50 10456.06 1.402
Josephus-8M JSoftware, Scalar arithmetic 18052.80 11368.65 1.588
MatrixInverse-11 JSoftware, Linear Algebra 498176.50 10752.70 46.330
MatrixMult-1000 JSoftware, Linear Algebra 1100.00 3308.89 0.332
MatrixPower-500x16 JSoftware, Linear Algebra 2694.53 7030.81 0.383
MaximalClique-1K JSoftware, Graph Algorithm 270.98 10280.86 0.026
MaxInfixSum-100K JSoftware, J adverbs 46.21 16402.84 0.002
MergeSort-16K C. Jenkins, Array indexing 393.27 2986.02 0.132
PartialSums1-100M JSoftware, Arithmetic Series Sum 7961.71 34060.59 0.234
PartialSums2-100M JSoftware, Geometric Series Sum 37975.50 8178.64 4.643
PartialSums3-100M JSoftware, Inverse quadratic series 66471.60 2860.54 23.237
PartialSums4-50M JSoftware, Flint Hills series 59824.30 23941.89 2.499
PartialSums5-50M JSoftware, Cookson Hills series 58577.40 24164.61 2.424
PartialSums6-100M JSoftware, Harmonic series 26421.60 1453.80 18.174
PartialSums7-100M JSoftware, Riemann Zeta series 38830.90 1582.42 24.539
PartialSums8-100M JSoftware, Alternating series 65426.40 9799.50 6.677
PartialSums9-100M JSoftware, Gregory series 82651.80 10567.65 7.821
PiComputation-20M C. Jenkins, Pi Series Sum 10688.50 1675.49 6.379
PrimePoly-200 JSoftware, Scalar arithmetic 28294.90 32849.58 0.861
ProjectEuler1-100M JSoftware, Scalar arithmetic 77211.30 5981.71 12.908
Rank0Verb-100K Ourselves, Scalar Arithmetic 13900.00 370.75 37.492
SumReduceInt-250M Ourselves, Series Sum (int) 300.00 838.88 0.358
SumReduceDbl-250M Ourselves, Series Sum (double) 36604.60 856.79 42.723

Table 1. List of benchmarks used with their sources and the type
of computations they represent. The table is sorted alphabetically
by the name of the benchmark. Sequential results for benchmarks
when run on our interpreter (Truffle-J) and the JSoftware inter-
preter. Both interpreters are running the same programs. Execution
times are reported in milliseconds. A speed-up of greater than 1
indicates that the Truffle-J version performed better than the JSoft-
ware version. In the benchmark names, the suffix represents the
input data size. E.g. 20M represents an input of 20 million, 2B for
2 billion, 100K for 100 Kilobytes, etc.

for missing language constructs, other data types, or missing prim-
itives.

5. Experimental Results
We compare the performance of the Truffle-J interpreter with the J
interpreter available from JSoftware [12] (version J801). The JSoft-
ware interpreter is implemented in C and has been in development
since 1989 by smart and dedicated people [9]. It uses pattern match-
ing techniques to find phrases in J, often called idioms, and inter-
prets them with code tuned to handle such special cases efficiently.
Perlis refers to these idioms as mini-operations and provides a com-
prehensive list in [17]. Our implementation, currently, does no pat-
tern matching on idioms and executes all operations using the same
consistent rules.

5.1 Benchmarks
Most of the J programs we use to test the performance of our inter-
preter are from real J programmers, the code for these are available
from the JSoftware website which contains extensive documenta-
tion and tutorials on J. As shown in Table 1, these benchmarks per-
form a wide variety of computations. While analyzing the results,
it is important to remember that these programs were written as
purely sequential code on the JSoftware interpreter with no explicit
intent to make them parallelization-friendly.

5.2 Results: Sequential Performance
Methodology The sequential results for the benchmarks were
obtained by running on a 4-core Intel Core i7 2.4 GHz system
with 8 GB memory. Each core had a 32 kB L1 cache, a 256 kB L2
cache, and a 6 MB L3 cache. The software stack includes Mac OS
X 10.7.5, JSoftware interpreter 8.01, Java Hotspot JDK 1.7.0 17,

4

and our Truffle-J interpreter. Each benchmark used the same JVM
configuration flags (-XX:+UseBoundThreads -Xmx48G -Xms48G
-Xmn32G -XX:+PrintGC -XX:+UseParallelGC) and was run for
six iterations, the arithmetic mean of the last five execution times
(because the first run triggers tree rewriting specializations and
primes the code for JIT compilation) are reported.

We present the sequential results in Table 1 to show that our in-
terpreter has competitive serial performance with respect to the
JSoftware interpreter available from JSoftware. Since our data
structures use Java primitive arrays, we never allocate more space
than is required by the array, we minimize intermediate temporary
array creations, and we do not have large garbage collection pauses
either. Our interpreter performs poorly on a few benchmarks where
the pattern matching techniques from the JSoftware interpreter
handles idioms efficiently by implementing special logic. A thor-
ough list of idioms supporting such special logic in the JSoftware
interpreter is available at [13].

5.3 Results: Parallel Performance
Methodology The parallelization results for the benchmarks were
obtained by running on a SPARC T5-8 Server [16]. The machine
consists of 8 processors at 3.6GHz, 16 cores per processor, 8
threads per core, for a total of 1024 threads; and 4TB of physi-
cal memory. Each processor has 4 memory controllers, a 16KB
instruction cache, a 16KB L1 data cache, a 128KB L2 cache,
and an 8MB L3 cache. The software stack includes Java Hotspot
JDK 1.7 and our Truffle-J interpreter. Each benchmark used the
same JVM configuration flags (-Xmx384G -Xms384G -Xmn320G
-XX:+UseParallelGC -d64) and was run for six iterations, the arith-
metic mean of the last five execution times (first run triggers tree
rewriting specializations and primes the code for “JIT” compila-
tion) are reported. Table 2 summarizes the results of running the
benchmarks on 1, 2, 4, 8, 16, 32, 64, and 128 worker threads. Note
that the machine used tests scalability and is different from the one
used to compute the sequential results as we were unable to install
the JSoftware interpreter on this machine. The numbers numbers
from this table should not be compared to the Sequential Perfor-
mance table (Table 1).

The benchmarks vary in the amount of parallelism that is ac-
tually available. Quite a few of the benchmarks show over 14⇥
speedup on 16 cores, over 20⇥ speedup on 32 threads, over 40⇥
speedup on 64 threads, and over 50⇥ speedup on 128 threads. We
believe these are impressive results given the wide variety of bench-
marks and the variance in the amount of parallelism available from
the benchmarks. The results also show that our implementation
scales as we increase the number of worker threads while working
in the managed JVM runtime. The set of benchmarks can be split
into three tiers: speedup less than 20⇥, speedup between 20⇥ and
50⇥, and speedup greater than 50⇥ while running on 128 worker
threads.

The MaximalClique benchmark is effectively a sequential ap-
plication (does not expose any parallelization opportunities that
our interpreter exploits) since the speedup hovers around 1, adding
worker threads doesn’t change the execution times much. In the
CodeGolfDigit benchmark, our interpreter is extracting all avail-
able parallelism from the benchmark which shows a speedup of 6⇥,
increasing the number of worker threads from 16 to 128 doesn’t
show further speedup. Some benchmarks involve rearranging or
merging arrays (e.g. CodeGolfDigit, GameOfLife, and Mergesort)
are memory-bound and show limited improvement after paral-
lelization. Some other benchmarks (e.g. BlasLevel, CodeGolfDigit)
flatline at specific values meaning we are exploiting all available
parallelism using our techniques. In some of the other benchmarks,
creation of temporaries introduces extra GC overhead and limits
parallel performance.

Benchmarks in the middle tier of the table (e.g. MatrixPower,
MaxInfixSum, SumReduceInt, etc.) have small running times on
128 worker threads. Most of these benchmarks start out with
speedup similar to benchmarks from the third tier before the
speedup tails off. We believe these benchmarks are affected by
having the low computation to parallelization overhead ratio and
this negatively affects their scalability.

Benchmarks in the third tier, such as MatrixMult, SumRe-
duceDbl, BlasLevel3 (Matrix), show excellent parallel speed-up.
The series sum benchmarks (PartialSums*) also show good paral-
lel speed-up. The best of the benchmarks reach a limit of over 60⇥
speedup relative to sequential on 128 workers, this is equivalent
to having 0.6% serial computation using Amdahl’s Law. It seems,
even this tiny fraction is limiting our parallelism. One serial part of
our computation happens at the barriers (where we wait for each
parallel iteration to complete) at the end of each loop either during
rank agreement, parallel execution of scalar verbs, or the second
phase in a reduction. We feel, this is a very small fraction of the
computation that is serial given all the language rules we have to
follow.

6. Related Work
The work most closely related to our attempt at parallelizing J is
by Christopher Jenkins [11]. Jenkins introduces explicitly paral-
lel constructs for the rank conjunction and the reduction adverb
around user-specified associative verbs to statically define paral-
lelism opportunities in a given program. In contrast, we implicitly
parallelize existing J programs without introducing new constructs.
Our approach subsumes parallelism that comes from rank agree-
ment while also automatically deciding whether a reduction oper-
ation can run in parallel by determining whether the verb is as-
sociative. Jenkins’ Scala interpreter had “underwhelming results”,
showed very little speedup and often showed slowdowns, especially
with large data sizes. Hence, we do not include these comparison
numbers in our experimental results (Section 5).

Automatic parallelization to exploit control and data parallelism
of APL programs during compile time has been previously at-
tempted by Wai-Mee Ching [5]. Like our approach they do not
achieve parallel speed-up when programs are inherently sequen-
tial. Unlike in our approach however, the compile time strategies
cannot dynamically load balance the available work and minimize
creation of spurious parallel tasks. We also address various opti-
mization opportunities to exploit scalar verb inlining and minimiz-
ing temporary array creation.

Bernecky also addresses static compilation and automatic par-
allelization of APL programs in APEX [3]. APEX is an APL-to-
SISAL compiler that generates high-performance, portable, paral-
lel code. APEX uses data flow analysis to statically deduce facts
regarding the type and rank of each array created in the APL pro-
gram to exploit the SISAL compiler’s capabilities for loop fusion
and copy elimination. We discover our opportunities for fusion,
copy elimination, and temporary avoidance at runtime. In addition,
the APEX compiler represents arrays as vectors of vectors and its
storage entails substantial run-time overhead. Our representation
of arrays uses contiguous memory blocks and avoids array copying
during coordinate mapping operations such as transpose and rever-
sal.

Chunked arrays have been used in ZPL [20], designed from
scratch as an implicitly parallel programming language. ZPL’s fun-
damental concept is that of the region - an index set of a spec-
ified shape and size. Regions are used to declare parallel arrays
and provide index sets for looping mechanisms. In contrast, our ap-
proach of parallelizing J relies on regular multi-dimensional arrays
which are chunked dynamically at runtime efficiently to exploit par-
allelism.

5

Table 2. Parallel results for bench-
marks when run on our interpreter
(Truffle-J) categorized by the scal-
ing of their speedup as numbers of
cores increases. The three categories
can be interpreted as benchmarks
that show poor (or no) speedup, little
speedup, and good speedup. The Se-
rial column represents the execution
time while running the interpreter in
sequential mode, while the Parallel-
K columns represent the execution
times while running the Truffle-J in-
terpreter with parallel mode enabled
and with K worker threads. Execu-
tion times are reported in seconds
with one decimal place accuracy, the
speed-ups compared to the sequen-
tial execution time as the baseline
are reported with two decimal places
accuracy.

Benchmark Serial Parallel-1 Parallel-2 Parallel-4 Parallel-8 Parallel-16 Parallel-32 Parallel-64 Parallel-128

MaximalClique-1K 19.3 19.3 1.00 19.8 0.97 20.9 0.92 21.5 0.90 19.5 0.99 18.9 1.02 18.9 1.02 19.4 0.99
CodeGolfDigit-25 26.3 26.3 1.00 16.5 1.60 9.1 2.91 5.4 4.91 4.3 6.13 4.7 5.63 4.2 6.24 4.5 5.82
GameOfLife-3K 75.4 76.3 0.99 47.3 1.59 24.4 3.09 14.6 5.16 11.5 6.55 10.5 7.21 12.9 5.85 10.8 7.00
MergeSort-32K 25.8 25.8 1.00 13.4 1.93 8.1 3.17 5.1 5.10 4.2 6.18 4.0 6.52 3.1 8.24 3.1 8.43
BlasLevel2a-25K 40.3 40.3 1.00 22.0 1.83 12.2 3.30 7.3 5.49 4.4 9.05 3.4 11.88 3.0 13.56 2.9 13.67
BlasLevel1a-2B 36.2 36.2 1.00 26.9 1.35 13.4 2.70 6.0 6.06 3.9 9.41 2.7 13.61 2.1 16.86 2.3 15.88
Josephus-8M 26.1 26.1 1.00 18.3 1.43 8.7 3.01 4.8 5.38 2.7 9.70 2.0 13.04 1.6 16.49 1.3 19.43
PiComputation-200M 16.6 16.6 1.00 8.5 1.95 4.4 3.73 2.4 6.91 1.4 12.06 1.2 14.38 0.7 22.88 0.8 19.68
PartialSums7-400M 13.8 13.8 1.00 7.1 1.94 3.7 3.72 2.0 6.85 1.2 11.62 0.8 17.95 0.6 23.76 0.5 25.33
PartialSums6-400M 12.9 12.9 1.00 6.6 1.95 3.5 3.69 1.9 6.80 1.1 11.55 0.8 16.82 0.6 20.80 0.5 25.40
PartialSums3-400M 14.6 14.6 1.00 7.5 1.94 3.9 3.72 2.1 6.85 1.2 11.77 0.8 17.75 0.6 22.55 0.5 26.73
MatrixInverse-12 259.8 260.4 1.00 140.1 1.85 71.1 3.65 47.4 5.48 24.6 10.58 27.0 9.61 24.9 10.45 7.8 33.52
ProjectEuler1-100M 15.7 15.7 1.00 8.0 1.96 4.7 3.35 2.2 7.12 1.3 11.95 0.8 20.51 0.5 31.69 0.4 36.75
MatrixPower-500x16 14.6 14.6 1.00 7.3 1.99 3.7 3.96 1.9 7.55 1.0 14.96 0.6 23.00 0.4 40.64 0.4 37.26
SumReduceInt-2B 15.0 15.0 1.00 7.6 1.98 3.8 3.98 1.9 7.91 1.0 15.54 0.8 18.67 0.5 29.80 0.4 42.16
Rank0Verb-10M 37.3 37.3 1.00 11.7 3.19 6.0 6.20 5.7 6.53 3.1 12.09 1.8 21.12 1.0 39.05 0.8 46.72
MaxInfixSum-100K 37.2 37.2 1.00 37.2 1.00 20.7 1.80 9.9 3.77 4.8 7.75 2.4 15.71 1.2 31.44 0.8 47.03
PrimePoly-200 64.5 64.5 1.00 59.2 1.09 23.0 2.81 10.9 5.92 6.1 10.61 3.5 18.57 2.0 31.78 1.3 51.13
BlasLevel3c-3K 211.8 219.0 0.97 106.5 1.99 53.4 3.97 28.1 7.55 14.2 14.90 10.7 19.88 4.3 49.36 4.1 51.99
MatrixMult-2500 119.4 119.4 1.00 59.7 2.00 29.9 4.00 15.0 7.98 7.6 15.66 3.8 31.42 2.9 41.49 2.2 54.23
BlasLevel3b-3K 210.8 210.7 1.00 105.6 2.00 53.0 3.98 26.8 7.88 13.7 15.38 10.3 20.45 5.7 37.07 3.8 55.53
SumReduceDbl-2B 15.1 15.1 1.00 7.7 1.97 3.8 3.94 1.9 7.84 1.0 15.46 0.5 30.09 0.3 56.36 0.3 57.14
PartialSums9-300M 42.2 42.2 1.00 21.9 1.93 11.2 3.78 5.7 7.35 3.0 14.02 1.6 25.82 1.0 41.82 0.7 58.56
PartialSums8-300M 38.8 38.8 1.00 20.0 1.93 10.2 3.80 5.3 7.34 2.8 13.97 1.5 25.44 1.0 38.56 0.7 58.80
BlasLevel3a-3K 206.7 206.8 1.00 103.4 2.00 51.6 4.00 25.9 7.97 13.1 15.78 10.2 20.34 5.1 40.42 3.4 61.00
PartialSums1-250M 35.3 35.3 1.00 18.2 1.94 9.5 3.73 4.9 7.26 2.6 13.54 1.4 24.68 0.8 41.97 0.6 61.75
PartialSums4-75M 50.2 50.2 1.00 25.8 1.94 13.0 3.87 6.5 7.68 3.3 15.11 1.8 28.48 1.0 48.69 0.8 66.02
PartialSums5-75M 50.7 50.7 1.00 26.2 1.93 13.2 3.84 6.7 7.61 3.4 14.96 1.8 27.78 1.1 47.62 0.8 66.09
PartialSums2-250M 55.8 55.8 1.00 29.3 1.90 14.8 3.77 7.5 7.43 3.9 14.41 2.1 27.17 1.3 44.41 0.8 68.39

Single Assignment C (SAC) [6] is a statically-typed strict,
purely functional language whose syntax, in large parts, is iden-
tical to that of C. An array in SAC is represented by a shape vector
which specifies the number of elements per axis, and by a data vec-
tor of the array’s ravel. This representation of arrays is similar to
how we represent arrays via the StructA data structure. SAC uses
a statically compiled approach and there is only only one level of
parallelism (via the with-loop construct), either a master thread ex-
ecutes or workers are executing fragments of the same task. In our
approach all worker threads can be executing independent pieces
of work and acting as a master threads among a subgroup of worker
threads (nested fork-join style parallelism).

Repa [14] introduces regular, multi-dimensional arrays in Haskell.
It is purely functional and supports reuse through shape polymor-
phism. Like our approach, it avoids unnecessary intermediate struc-
tures rather than relying on subsequent loop fusion, and also sup-
ports transparent parallelization. Repa reports similar scaling as our
work for the matrix multiplication benchmark up to 64 threads.

7. Summary
Array programming languages with adequate richness expose op-
portunities for implicit parallelism. Effectively exploiting these op-
portunities simplifies the task of writing parallel programs. In this
paper, we have presented our efforts to implement an implicitly par-
allel interpreter for J. Our implementation, Truffle-J, is an abstract
syntax tree interpreter based on the Truffle framework and is writ-
ten in pure Java. Our results show we attain good parallel speed-up
on a variety of benchmarks, including near perfect linear speed-up
on inherently parallel benchmarks until the constraints of Amdahl’s
law start to dominate. We believe that the lessons learned from our
approach of exploiting parallelism in an interpreter can be applied
to other interpreted array languages as well.

References
[1] R. Bernecky. An Introduction to Function Rank. In Proceedings of the

International Conference on APL, APL ’88, pages 39–43, New York,
NY, USA, 1988. ACM.

[2] R. Bernecky. The Role of APL and J in High-performance Compu-
tation. In Proceedings of the international conference on APL, APL
’93, pages 17–32, New York, NY, USA, 1993. ACM. ISBN 0-89791-
612-3. . URL http://doi.acm.org/10.1145/166197.166201.

[3] R. Bernecky. APEX – The APL Parallel Executor. Master’s thesis,
University of Toronto, 1997.

[4] A. Chauhan and K. Kennedy. Optimizing Strategies for Telescoping
Languages: Procedure Strength Reduction and Procedure Vectoriza-
tion. In In ACM Intl. Conf. on Supercomputing (ICS04), pages 92–101,
2001.

[5] W.-M. Ching. Automatic Parallelization of APL-style Programs. In
Conference Proceedings on APL 90: For the Future, APL ’90, pages
76–80, New York, NY, USA, 1990. ACM. ISBN 0-89791-371-X.

[6] C. Grelck and S.-B. Scholz. SAC: off-the-shelf support for data-
parallelism on multicores. In Proceedings of the 2007 Workshop
on Declarative Aspects of Multicore Programming, DAMP ’07, New
York, NY, USA, 2007. ACM.

[7] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era.
Computer, 41(7):33–38, July 2008. ISSN 0018-9162. . URL http:
//dx.doi.org/10.1109/MC.2008.209.

[8] R. K. W. Hui, K. E. Iverson, E. E. McDonnell, and A. T. Whitney.
APL\? In Conference Proceedings on APL 90: For the Future, APL
’90, pages 192–200, New York, NY, USA, 1990. ACM. ISBN 0-
89791-371-X.

[9] Hui, Roger. An Implementation of J. Iverson Software
Inc., 1992. URL http://www.jsoftware.com/jwiki/Doc/An%
20Implementation%20of%20J.

[10] K. E. Iverson. The Dictionary of J. Journal of the British APL
Association, 7(2):99–117, October 1990.

[11] C. Jenkins. Toward a Parallel Implementation of J: Data Parallelism
in Functional, Array-Oriented Languages with Function Rank. Com-
puter Science Honors Theses, Paper 30, Trinity University, April 2013.
http://digitalcommons.trinity.edu/compsci_honors/30.

[12] Jsoftware Inc. Jsoftware High-performance development platform, .
URL http://www.jsoftware.com/.

[13] Jsoftware Inc. Appendix B. Special Code, . URL http://www.
jsoftware.com/help/dictionary/special.htm.

[14] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones,
and B. Lippmeier. Regular, Shape-polymorphic, Parallel Arrays in
Haskell. In Proceedings of the 15th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’10, New York, NY,
USA, 2010. ACM. ISBN 978-1-60558-794-3.

[15] M. Neitzel. Untying the Gordian Knot: Agreement in J. In Proceed-
ings of the International Conference on Applied Programming Lan-
guages, APL ’95, pages 145–153, New York, NY, USA, 1995. ACM.

6

[16] Oracle. SPARC T5-8 Server. URL http://www.oracle.com/us/
products/servers-storage/servers/sparc/oracle-sparc/
t5-8/overview/index.html.

[17] A. J. Perlis and S. Rugaber. Programming with Idioms in APL.
SIGAPL APL Quote Quad, 9(4):232–235, May 1979. ISSN 0163-
6006.

[18] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, first edition, 2007. ISBN 9780596514808.

[19] N. Shavit and D. Touitou. Software Transactional Memory. In
Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’95, pages 204–213, New York, NY,
USA, 1995. ACM. ISBN 0-89791-710-3. . URL http://doi.acm.
org/10.1145/224964.224987.

[20] L. Snyder. The Design and Development of ZPL. In Proceedings
of the Third ACM SIGPLAN Conference on History of Programming
Languages, HOPL III, New York, NY, USA, 2007. ACM. ISBN 978-
1-59593-766-7.

[21] The MathWorks Inc. Parallel Computing Toolbox - MAT-
LAB. URL http://www.mathworks.com/products/
parallel-computing/.

[22] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st
edition, 2009. ISBN 0596521979, 9780596521974.

[23] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and
C. Wimmer. Self-optimizing AST Interpreters. In Proceedings of the
8th symposium on Dynamic languages, DLS ’12, pages 73–82, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1564-7.

7

