A Generator for Language-Specific Debugging Systems

Rolf Bahlke
Bernhard Moritz
Gregor Snelting

Fachgebiet Programmiersprachen und Ubersetzer Il
Fachbereich Informatik
Technische Hochschule Darmstadt
Magdalenenstr. 11¢
D-61 Darmstadt, West Germany

Abstract

We present a system which generates interactive
high-level debugging from formal
language definitions. The language definer has
to specify a denotational semantics augmented
with a formal description of the language-
specific debugging facilities. The generated
debugger offers the traditional features such as
tracing programs, setting breakpoints, displaying
variables etc; interaction with the user is always
on language level rather than on machine level.
The concept has been implemented as part of
the PSG-Programming System Generator, and
has been used to generate
debuggers for Pascal and Modula-2. The core of
the implementation consists of an interpreter for
a functional language, which has been extended
with the
needed in order to allow interaction with the

systems

successfully

language-independent mechanisms

user during program execution.

1. Introduction

It is generally accepted that program testing and
debugging is an important phase during
software development, and that therefore a

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish, requires a fee and/

or specific permission.

©1987 ACM 0-83791-235-7/87/0006/0092. ... ... 75¢

92

programming environment should supply a
debugging tool which helps users to detect and
correct programming errors. Typical features of
debugging systemsinclude

® the possibility to display program status
information like the values of program
variables, the current position in a program,
the current procedure/function nesting or a
protocol of control flow

e the possibility to influence control flow, e.qg.
setting and resetting of breakpoints, tracing
parts of a program , single-stepping program
statements or triggering certain actions by
certain conditions on the program status.

Several general requirements for debugging
systems have also been formulated, including the
following ({9]):

® The debugger must be interactive and should
make use of full-screen or even bitmapped
user interfaces

@ [t must be possible to debug on source
language level, rather than on machine level
(no hex dumps)

® For wuse with several different

languages, the debugger should on the other

hand offer a common user interface across

source

languages.



It is the aim of this paper to show how such a
debugging be
automatically from an extended specification of
a language's semantics. The work described
below has been done within the PSG project
([2]). PSG stands
Generator and produces interactive language-

system  can generated

for Programming System
specific programming environments from formal
language definitions. PSG environments are
designed for programming-in-the-small. One of
the subsystems generated by PSG is a context-
sensitive hybrid editor, which is generated from
the language's syntax and context conditions. A
description of PSG editors can be found in {[3]).
Another component is an interpreter which is
generated from the denotational semantics of a
fanguage. 1t is characteristic for PSG language
definitions that they are written in an entirely
nonprocedural, formal specification language;
there are no user-coded attribute evaluation
functions or interfaces to standard programming
tanguages.

When PSG evolved, we felt the need to extend
the interpreter (which has been part of PSG
environments ever since) with interactive, high-
debugging facilities. The aim of
undertaking this effort has been threefold: First,
as stated above, it is important to have a
available

level

debugger within an interactive
programming environment. Second, we wanted
to see whether it is really possible to generate all
language-specific parts of an environment,
starting with the scanner and ending up with the
debugger, from an entirely formal description of
a language. Third, we wanted to have a tool
which allows rapid generation of debuggers and
can therefore be used for investigations on the
ergonomic aspects of debugging within a

language design lab.

The rest of this paper is organized as follows:
First of all, a description of PSG debuggers is
given. Next, we explain what the specification
language fooks like and what the language

93

definer has to do. Third, we discuss several
details, aspecially the
interaction between the interpreter kernel, the
debugger and the rest of the environment.
Finally we present some experiences we have
made so far, this includes a discussion of the
limitations of the current implementation.

implementation

2. OQverview of the generated debuggers

The figure on the next page shows a typical
screen within the Pascal debugger on a PERQ
workstation. The screen is divided into three
areas: the upmost window contains the so-called
system menu (including a description of the
current mouse button assignments, as well as a
prompt and message area). The second window
is the editor window and contains program text;
the third window is used for program and test
system output. The two large windows both
have a scroll bar as well as a thumb bar attached
which can be used for positioning. Within the
program area, underlined text lines represent
breakpoints; the inverted line represents the
program piece which is executed at the moment.
The system menu as well as the pop-up menu
associated with the inverted program text offer
the available debugging functions, as specified
by the language definer.

Within the Pascal debugger, several trace
options are available (execute [i.e. no trace],
single n-step,
statements, trace procedures), which differ in

step, simple trace, trace
the granularity of the tracing process: 'Single-
step' will, during execution, invert the textual
representation of all those nodes of the
program's abstract tree  which
touched, whereas 'trace procedures’ will invert
only the procedure call statements. The trace
differ in their interaction

behaviour: After a 'Single Step' or 'n-step’,

syntax are

functions also

execution will be interrupted; 'Trace statements'

and 'Trace procedures’ will not interrupt



PS6 Vers. PE

R0-04 Midipas-Testsystem

Copyright TH Darmstadt 1986

Halt Execute Restart Stotus
Single-Step n=5tep Simple Trace Trace Stat
Select Trace Pros
Dé[:l Enter Variable Names: key, i, j4¢

PROCEDURE quicksort:;
PROCEDURE sort (1,

r+ INTEGER) ;

VAR
i»j + INTEGER;
x : INTEGER;
Wt oeltyps
BEGIN
i = 1;
L= r;
x t=a [ (1 +r) DIV 2] .key:
RERPEAT
WHILE 5 [i] .key < x BO
o= 0o+ 15
WHILE x < a [j] .key DO
b= g -1
IF (i < j)Y OR (i = j) THEN
WITH & [i] DO
BEGIN
W.key 1= key;
W.rest := rest;
key = a [j] .key;
2=t 1= 35 [ 1] .restH
a ) ~ Testfunctions
3 . Set Breakpoints
! i+ 1 Reset Breakpoints
ENé o
- . Var iabNes
?gT%L<li>TﬁéN Link Testfunction
sort (1,0) ; Delete Testfunction
IF i < THEN Start
sort (i,r) Continue

Testsystem Output

Display
i
J
key

N oUW

Wi

Status

sart

sort
quicksort
q

q

94




execution. Trace speed can be adjusted by the
user. 1t s to display additional
information during tracing within the second

possible
window.

Execution is also interrupted if flow of control
reaches a breakpoint or if the user presses a
special function key. When
interrupted, the user may select among the
available debugging functions which have been
generated. He may change breakpoints, select
functions which display information about the
program status, he may link test functions to
special places of the source program which will
be executed when control reaches (or leaves) the
selected part of the program, or he may initiate
more complex test functions. The display
functions available within the Pascal debugger
can be used to display the values of the variables
which are visible at the current breakpoint (the
user will be prompted for the names of the
variables to be displayed). Other debugging
functions include counters for statements and
procedure calls as well as a traceback of the

execution s

dynamic procedure chain. It is even possible
(though not part of the Pascal debugger
specification) to trigger arbitrary complicated
functions by user-defined conditions on the
program status (Example: "if the value of a
changes, then force an

specific variable

interrupt”).

Since program and test system output are
displayed in a second window, the user has
always a complete overview of the execution
history: he simply may scroll backwards within
the second window. This feature (as well as
scrolling within the program text) is always
available if execution is interrupted. It depends
on the definition of the debugging functions
whether they will interrupt execution or not.

It is possible to execute incomplete programs: if

flow of control touches incomplete parts

(placeholders) within a program, the user will be

95

asked to enter these parts using the editor. For

reasons explained later, it is however not
possible to change program text, flow of control

or values of variables during execution.

3. What the language definer has to do

A debugging system is based on two concepts
already used in PSG systems: the representation
of programs as abstract syntax trees and the
denotational definition of semantics. Therefore,
the first step towards a debugging system is the
specification of the denotational semantics of
the language in question. [2] describes in some
depth how this can be done within PSG.

The mechanism to set or reset breakpoints is
language independent, thus there is no need to
describe it in debugger definitions. All nodes of
abstract tree

the program's may have a

breakpoint attached.

In order to describe how to implement counters
for e.g. statements or procedure calls, nesting
functions may be used. It is enough to
enumerate the nodes of the abstract syntax
which influence these counters in order to assign
language-independent algorithms to these
nodes and to organize a stack of e.g. procedure
calls during program execution. Such a stack can
also be used for a traceback.

During execution, the relevant program status
information (actual symboi table, values of
variables etc)) is hidden within variables within
the semantic equations. It is therefore necessary
to describe how to access the actual values of
these variables. This can be done by specifying
the names of these semantic variables together
with the names of the abstract tree nodes where
their values change or a new instance of such a
variable is created. In the definition of the Pascal
debugger these select functionslook like:



SELECT
: STACK block;
UPDATE proedecllist, vardecllist,
typedecllist, constdecllist;
state: UPDATE statement;
END SELECT

env

In Pascal, the meaning of a statement is a
function which maps environments onto state
transformations, whereas the meaning of a
declaration is a function which changes
environments (we deliberately omitted the
GOTO statement and therefore could use a direct
semantics without continuations). Therefore, the
above specification says that a declaration will
change the environment (for variables, this is a
mapping from variable names to locations),
whereas the execution of statements will change
the state {(which is a mapping from locations to
values). Select functions are a mechanism to
make variables from the semantics definition
visible in the debugging specification, these
selected variables can be used in the rest of the
debugger specification.

In order to describe what the user actually can do
during debugging, the language definer has
several classes of build-in debugging concepts
available, which are called basic functions and
differ in generality and complexity. Two simple
cases of basic functions are display functions and
trace functions. The task of a display function is
to the selected program status
information (as specified above) and write the
result onto the screen. It will be invoked by
selecting its corresponding menu item. Trace
functions will be evaluated when the debugger
is in trace mode. They are linked to nodes of the
abstract syntax tree. For each trace function, the
language definer has to specify their granularity,
whether they will interrupt execution or not, and
which information should be displayed during
tracing.

analyze

Each basic function must be specified as an

96

auxiliary function written in the semantics
definition language, which is an extended type-
free lambda calculus. The application part of the
debugger definition contains the information
about the parameters which should be passed to

the auxiliary functions. Example:

APPLICATIONS
DISPLAY FUNCTIONS
display: (vardisplay env, state, INPUT);
END DISPLAY FUNCTIONS
TRACE FUNCTIONS
statement - > (trace SOURCE);
traceassign: assign ->(changedvar env,
state, RESULT, SOURCE);
END TRACE FUNCTIONS
END APPLICATIONS

tracestat:

In the example, wvardisplay, trace, and
changedvar are auxiliary functions followed by
their parameters. Parameters may be names of
salected semantic variables (env and state),
build-in standards which provide communication
with the environment (INPUT, SOURCE,
RESULT) or the results of other basic functions.
The latter possibility is necessary in order to
provide communication  within  complex
debugging functions which are implemented by
a combination of several basic functions. For
each of the three debugging functions specified
above, a corresponding menu be
generated which may be selected by the user and
will trigger its execution. The display function is
directly executed by calling vardisplay with the
actual environment and state and the user's
input. vardisplay first analyses the input to
obtain the variables to display, then retrieves the
current value of the variables form the
environment/state mappings and writes the

resulting information in condensed form in the

item will

second window. Selecting one of the trace
functions effect. The
corresponding functions are called whenever the

has no immediate
execution of a statement or an assignment is

completed. The changedvar function is used to



print the old and new value of the variable
changed by the assignment (here, state is the
state before execution of the assignment,
whereas RESULT contains the result of the
statement the state after
execution of the assignment.

execution, i.e.

A language definer may use the simple stand-
alone display and trace functions to implement a
quite powerful debugging system following
predefined strategies. If more complex functions
are desired he may combine basic functions but
then there will be no predefined coordination of
these functions.

In order to initiate more complex functions or to
ask a user for special debug parameters
(conditions, number of steps etc), so-called
continue functions may be specified. Interrupt
functions can be used to terminate such a
function. actions at
different nodes may be specified: Entry functions
will be executed when control reaches a node
and result functions when control leaves it. The
following example introduces a complex test-
function, which specifies a n-step-function for
statements. (The complete definition can be
found in the appendix).

Furthermore, several

DISPLAY FUNCTIONS
initstep: (askstep initstep);
END DISPLAY FUNCTIONS
INTERRUPT FUNCTIONS
itrstep: statement ->> (breakstep nstep);
END INTERRUPT FUNCTIONS
ENTRY FUNCTIONS
prog,
statement - > (countstep initstep,

nstep:

itrstep, nstep);
END ENTRY FUNCTIONS

When control flow reaches the meaning function
of any statement three actions will be performed
by the debugger in general: First, interrupt
second, when an

functions are evaluated,

97

interrupt occurs or a breakpoint has been set the
user is asked to select one or more of the
displayed menu items, and third, entry functions
are evaluated.

in order to implement the n-step, three basic
functions have to be combined. One function
will initiate the n-step, one will terminate it and
at least one is necessary in order to organize the
work. For coordination purposes the results of
the basic functions are available for other basic
functions: if a function name is specified in the
parameterlist of an application, a pair of a
system information and the result of the last
evaluation of this function wili be assigned to
that name. The system informatian is a boolean
value which becomes true for:

@ interrupt functions: when an interrupt occurs
display or continue functions: when the
associated menu item has been selected

¢ all other functions: when they are evaluated
at the first time so that they are in a defined
state.

Interrupts and selections will be reset
automatically by the debugger after the
evaluation of the entry functions. The n-step-
function is build of initstep, a display function to
start the testfunction; nstep, an entry function to
initialize the test and to count the steps; and
itrstep, an interrupt function to terminate the
test. The work is done by countstep which gets
the initial value of the stepcounter from the
result of initstep and decrements it at each
statement. The result of countstep is a tuple,
whase first element is a boolean value which
signals, that the n-step-function is active and the
second component is the current value of the
stepcounter.

nstep becomes active, when the n-step item was
selected, and inactive, when an interrupt occurs,

especially, when itrstep has forced it. The



following diagram shows the state-transition of
the function nstep.

menu item “n-Steps” selected
n >0 { Result of initstep}

count : = number of steps
<TRUE,
<TRUE, count>>

any
interrupt

{ Result of
itrstep}

no interrupt

4. Implementation issues

Executing a program within the PSG system is
performed in the following way. First, the
abstract syntax tree of the fragment to be
executed is transformed to a corresponding term
of a functional language. This functional
language is the basis of the denotational
semantics definition and is an extension of type-
free lambda calculus. The semantics definition is
used to generate a language-specific compiler
the
Second,

transformation mentioned
above. the compiled fragment is
executed by the standard PSG interpreter (note
that the interpreter itself is language-
independent). The interpreter uses a cali-by-
need reduction strategy for evaluation of the

compiled fragment (see [2] for details).

performing

During compilation of a fragment

correspondences between the abstract syntax

98

tree and the terms of the functional language
are established in both directions. To all terms
belonging to the meaning function of a certain
tree node, a pointer to that tree node will be
assigned. From the tree node, another pointer
refers to one distinguished term of the meaning

function. The editor kernel maintains links
between the abstract syntax tree and screen
positions. The connection between screen

positions, abstract syntax tree and terms is used
to implement (among others) the breakpoint
and trace mechanisms of the debugger in a
language-independent manner. No tree pointer
is assigned to terms belonging to auxiliary
functions.

The interpreter and the debugger are distinct
After
compilation of the fragment, execution is started
by calling the interpreter. Prior to the evaluation
of any term, the interpreter looks at the tree
pointer attached to the term. If this tree pointer
is defined and if it is different from the last tree
pointer encountered by the interpreter in
previous evaluation steps, the debugger is called
by the interpreter. Thus, the debugger is called
whenever evaluation changes from a term
belonging to the meaning function of one tree
node to a term belonging to the meaning
function of another tree node. (The only other
possibility to call the debugger is when an
asynchroneous interrupt, such as pressing a
special function key, occurs).

program parts running as coroutines.

However, the main activities of the debugger are
only activated when evaluation reaches one of
the above mentioned distinguished terms of a
meaning function. These terms, called entry
terms, serve as a representation of the compiete
meaning function derived from a tree node. This
distinction is necessary, since most debugging
activities should only once be activated for one
tree node. identified by
comparing their tree pointer with its attached

Entry terms are

term pointer. Entering the debugger when



evaluation reaches a non-entry term, gives the
debugger the possibility to change the current
selection (by redrawing the inverted line on the
screen). If evaluation encounters an entry term,
the debugger is called twice: once before the
evaluation of the entry term (i.e. the meaning
function), and once after the evaluation of the
entry term is completed. The debugger processes
entry terms in the following way:

e Before evaluation of a meaning function
- push nesting stacks
- push setected semantic variables
- evaluate interrupt functions
- enter interrupt state when a breakpoint is
reached or an interrupt-function yields 'true’
- evaluate entry functions

® After evaluation of a meaning function

- evaluate result functions

- evaluate trace functions

- pop nesting stacks

- pop selected semantic variables

- update selected semantic variables
Basic functions (which are terms of the
functional language) are evaluated by calling the
interpreter from the debugger. Since terms
which belong to basic functions have no tree
pointers attached, the debugger
recursively is avoided. A data structure called the
global environment is used by the debugger, it
contains copies of the current values of all
selected semantic variables, the current values of
the built-in variables fike INPUT, RESULT and
SOURCE, as well as the result values of the last
call of all debugging functions.

calling

5. Experiences with the system

Several approaches have been published which
describe from

denotational semantics {e.g. SIS [5], PSP [8]) or

how to generate compilers

how to integrate execution tools based on

99

denotational semantics
interactive environments (e.g. GANDALF [1],
PoeGen [7]). Until now, however, nobody seems
to have implemented a generator for interactive
debugging facilities within such a system. We
feel that doing so is possible within the scope of
systems like GANDALF and the Synthesizer
Generator (in fact, the Synthesizer Generator has
been used to produce an interpreter and
debugger based on attribute grammars for a
subset [6]).

specification languages of these systems, it is our

into generators for

Pascal However, knowing the
impression that an implementation effort is
quite cumbersome. Contrarily, we think that the
PSG debugger specification language is more

compact and more easy to use.

Until now, we have generated debuggers for
Pascal and Modula-2. it turned out that the
specifications are not very long: the spécification
of the Pascal debugger needs less than 300 lines
of specification language (where most of the
specification deals with processing the user's
inpJt and the production of readable output).
We also believe that the generated debuggers
this s
especially true if a personal workstation with

are powerful and easy-to-use tools;

bitmap display and mouse is used.

There are, however, some limitations within the
current implementation. First of all, the run-time
performance of the generated interpreters and
debuggers is not overwhelming. This problem is
however not mainly due to the debugging
system, but due to the interpreter kernel and
especially  the
semantics definitions. Compiling the terms into
abstract) code
much more faster. In this case,
however, the interaction between the machine
code (which represents the interpreter) and the
debugger hasto be redesigned.

complexity of denotational

(perhaps machine makes

execution

Our with  the
debuggers for Modula-2, Pascal (using different

experiences generation of



semantics definitions) as well as Lisp has shown
that the usability of the specification mechanism
dependsiargely on the structure of the semantics
definition. Lisp semantics
defines a translation of Lisp programs into some
intermediate code, which is then evaluated by an
auxiliary function. Because the execution of a
Lisp program is primarily done within the
auxiliary functions, debugging functions are only
active for a short time during the translation part
of the execution. This problem is due to the
automatic selection of entry terms (done by the
generator); similar problems occur with the

For example, our

Modula-2 continuation semantics. To overcome
these problems we are currently extending the
specification mechanisms, so that the language
definer may explicitly select the entry term
within the meaning functions.

The current system allows neither modifications
of programs during execution nor features like
reverse execution. This is due to the fact that
interpretation within PSG is actually a reduction
process: functional terms are reduced to produce
smaller (result) terms; the original terms can
never be reconstructed and there is no possibility
for backtracking.

6. Final remarks

We think that is possible to generate powerful
debuggers from compact specifications. The
system is in operation on SIEMENS machines
1986, portation to UNIX-based
personal workstations with bit-map and mouse is
in progress. Although there is still work to be
done, we think that we have demonstrated the
feasibility of our approach and that the idea of

since June

generating all language-specific aspects of an
environment has again turned out to be a
fruitful paradigm.

This the Deutsche
Forschungsgemeinschaft, grant He1170/3-1, and

work is supported by

100

by the Bundesministerium fur Forschung und
Technologie, grantITR8502C/8.

7. References

[1] Ambriola, V. and C. Montangero: Automatic
Generation of Execution Tools in a GANDALF
Environment. The Journal of Systems and
Software 5,2 (May 1985}, pp. 155-171

Bahlke, R. and G. Snelting: The PSG System:
From Formal Language Definitions to
Interactive Programming Environments.
ACM TOPLAS 8,4 (October 1986), pp. 547-
576

(2]

Bahlke, R. and G. Snelting: Context Sensitive
Editing with PSG Environments. Proc. of the
International Workshop on  Advanced
Programming Environments, Trondheim,
Norway, June 1986. Springer, LNCS , to
appear

3]

[4] Moritz, B. :
eines Testsystems
Programmiersystemgenerators

Definition sprachspezifischer
gebungen. Diploma Thesis,

Hochschule Darmstadt,

Informatik, June 1986.

Entwickiung und Einrichtung
innerhalb eines
(PSG): Zur

Testum-
Technische
Fachbereich

[5] Mosses, P.: SIS - Semantics Implementation
System. Reference Manual and User's Guide.
Report DAIMI MD-30, Aarhus University
(August 1979).

[6] Mughal, K.A.: Control Flow Aspects of
Generating Runtime Facilities for Language-
Based Programming Environments. Proc.
IEEE Computer Societl Conference on

1

Software Tools. New York, 1985.

Pal, A.A. and C. Fischer: EDS: Executable
Denotational Specifications for integrated
Programming Environ-ments. University of
Wisconsin-Madison, 1986.

(7]

[8] Paulson, L.: A Semantics-directed Compiler
Generator. Proc. 9th  ACM POPL,
Albuquerque (Januar 1982), pp. 224-239.

[9] Seidner, R. and N. Tindall: Interactive Debug
Requirements. Proc. of the ACM Software
Engineering Symposium on High-Level
Debugging. ACM SIGPLAN Notices 18,8
(August 1983), pp. 9-22.



Appendix
Definition of the n-steps function:

DISPLAY FUNCTIONS
initstep: (askstep initstep);

END DISPLAY FUNCTIONS

INTERRUPT FUNCTIONS

itrstep: stat - > (breakstep nstep);
END INTERRUPT FUNCTIONS

ENTRY FUNCTIONS
nstep: prog, stat->  (countstep initstep, itrstep, nstep);
END ENTRY FUNCTIONS

GLOBALS
askstep= LAM dummy. ANSWER 'number of steps ?'; ASK INT,;
countstep = LAM srq, itr, act.

{srq = lastresult of initstep }
{itr = last result of itrstep }
{act = last result of nstep }
IF SELECT srq, 1 { corresponding menu-item selected ? }
THEN
LET init = SELECT srq, 2 IN {initial stepcount }
[FINTEQU init, 0
THEN
< FALSE > {stepcount = 0 = > inactive }
ELSE
<TRUE, init > { activate nstep }
LLSE
[FSELECT itr, 2
THEN
< FALSE > {interrupt occured = > deactivate nstep}
ELSE
[F SELECT act, 1 { function ever evaluated 7}
THEN
LET state= SELECT act, 2 IN
[F SELECT state, 1 { nstep active ? }
THEN
< TRUE, INTSUB SELECT state, 2,1 >
{ decrement stepcount }
ELSE
< FALSE >
ELSE
< IFALSE >,
breakstep=  LAM act.
{ returns true if interrupt should occur }
IFSELECT act, 1 { nstep evar evaluated ? }

THEN
LET state = SELECT act, 2 IN
[F SELECT state, 1 { nstep active 7 }
THEN
INTEQU SELECT state, 2, 1 { final stepcount 7}
ELSE
FALSE
ELSE
FALSE;
END GLOBALS
TITLES
initstep -> 'n-Steps'
ENDTITLES

101



