
A Generator for Language-Specific Debugging System s

Rolf Rahlk e
Bernhard Morit z
Gregor Sneltin g

Fachgebiet Programmiersprachen and Ubersetzer I I
Fachbereich Informati k

Technische Hochschule Darmstad t
Magdalenenstr . 1 1 c

D-61 Darmstadt, West German y

Abstract

We present a system which generates interactiv e

high-level debugging systems from forma l

language definitions . The language definer ha s

to specify a denotational semantics augmente d

with a formal description of the language -

specific debugging facilities . The generate d

debugger offers the traditional features such a s

tracing programs, setting breakpoints, displayin g

variables etc ; interaction with the user is alway s

on language level rather than on machine level .

The concept has been implemented as part o f

the PSG-Programming System Generator, an d

has successfully been used to generat e

debuggers for Pascal and Modula-2 . The core of

the implementation consists of an interpreter fo r

a functional language, which has been extende d

with the language-independent mechanism s

needed in order to allow interaction with th e

user during program execution .

1 . Introductio n

It is generally accepted that program testing an d

debugging is an important phase durin g

software development, and that therefore a

Permission to copy without fee all or part of this material is granted provide d

that the copies are not made or distributed for direct commercial advantage ,
the .ACM copyright notice and the title of the publication and its date appear ,
and notice is given that copying is by permission of the Association fo r

Computing Machinery . To copy otherwise, or to republish, requires a fee and /
or specific permission .

©1987 ACM 0-89791-235-7/87/0006/0092 	 751

programming environment should supply a

debugging tool which helps users to detect an d

correct programming errors . Typical features of

debugging systems include

e the possibility to display program statu s

information like the values of progra m

variables, the current position in a program ,

the current procedure/function nesting or a

protocol of control flo w

® the possibility to influence control flow, e .g .

setting and resetting of breakpoints, tracin g

parts of a program , single-stepping progra m

statements or triggering certain actions b y

certain conditions on the program status .

Several general requirements for debuggin g

systems have also been formulated, including th e

following ((9]) :

® The debugger must be interactive and shoul d

make use of full-screen or even bitmappe d

user interfaces

o It must be possible to debug on sourc e

language level, rather than on machine leve l

(no hex dumps)

® For use with several different sourc e

languages, the debugger should on the othe r

hand offer a common user interface across

languages .

92

It is the aim of this paper to show how such a

debugging system can be generated

automatically from an extended specification o f

a language ' s semantics . The work described

below has been done within the PSG project

([2]) . PSG stands for Programming System

Generator and produces interactive language -

specific programming environments from forma l

language definitions . PSG environments ar e

designed for programming-in-the-small . One o f

the subsystems generated by PSG is a context -

sensitive hybrid editor, which is generated fro m

the language's syntax and context conditions . A

description of PSG editors can be found in ([3]) .

Another component is an interpreter which i s

generated from the denotational semantics of a

language . It is characteristic for PSG languag e

definitions that they are written in an entirel y

nonprocedural, formal specification language ;

there are no user-coded attribute evaluatio n

functions or interfaces to standard programmin g

languages .

When PSG evolved, we felt the need to exten d

the interpreter (which has been part of PS G

environments ever since) with interactive, high -

level debugging facilities. The aim o f

undertaking this effort has been threefold : First ,

as stated above, it is important to have a

debugger available within an interactive

programming environment. Second, we wante d
to see whether it is really possible to generate al l

language-specific parts of an environment ,

starting with the scanner and ending up with th e

debugger, from an entirely formal description of

a language . Third, we wanted to have a too l

which allows rapid generation of debuggers an d

can therefore be used for investigations on th e

ergonomic aspects of debugging within a

language design lab .

The rest of this paper is organized as follows :

First of all, a description of PSG debuggers i s
given . Next, we explain what the specificatio n

language looks like and what the language

definer has to do . Third, we discuss severa l

implementation details, especially th e
interaction between the interpreter kernel, th e

debugger and the rest of the environment .

Finally we present some experiences we hav e
made so far, this includes a discussion of th e
limitations of the current implementation .

2. Overview of the generated debuggers

The figure on the next page shows a typica l
screen within the Pascal debugger on a PER Q

workstation . The screen is divided into thre e
areas: the upmost window contains the so-calle d
system menu (including a description of th e

current mouse button assignments, as well as a

prompt and message area) . The second window
is the editor window and contains program text ;

the third window is used for program and tes t
system output . The two large windows bot h

have a scroll bar as well as a thumb bar attache d

which can be used for positioning . Within th e
program area, underlined text lines represen t
breakpoints ; the inverted line represents th e

program piece which is executed at the moment .
The system menu as well as the pop-up men u

associated with the inverted program text offe r

the available debugging functions, as specifie d
by the language definer .

Within the Pascal debugger, several trac e
options are available (execute [i .e . no trace] ,
single step, n-step, simple trace, trac e

statements, trace procedures), which differ i n

the granularity of the tracing process : ' Single -
step' will, during execution, invert the textua l

representation of all those nodes of the
program's abstract syntax tree which ar e
touched, whereas 'trace procedures' will invert
only the procedure call statements . The trac e

functions also differ in their interactio n

behaviour : After a 'Single Step' or ' n-step' ,
execution will be interrupted ; 'Trace statements '
and 'Trace procedures' will not interrup t

93

PSG

	

Vora- PERO-84 Midipas-Testsystem - Copyright TH Darmstadt 198 6
Halt

	

_

	

I

	

Execute Restart Statu s
Single-Step

	

n-Step Simple Trace Trace Stat
Select

Q Q

Trace Pr-c c

Enter

	

Variable Names :

	

key,

	

i .

	

d

PROCEDURE quicksor-t ;

;PROCEDURE sort

	

(1,r

	

:

	

INTEGER)

VAR
i,j

	

:

	

INTEGER ;
x

	

:

	

INTEGER ;
w

	

:

	

eltyp ;
BEGI N

i

	

.=

	

1 ;

x

	

:=

	

a

	

[

	

(1

	

+

	

r)

	

DIV

	

2]

	

.key ;
REPEAT

WHILE

	

a

	

[i]

	

.key

	

<

	

x DO
i

	

.=

	

i

	

+

	

1 ;
WHILE x < a

	

Hi

	

.key DO
j

	

:=

	

j

	

-

	

1 ;
IF

	

(i

	

<

	

j)

	

OR

	

(i

	

=
WITH

	

a

	

[i]

	

D O
BEGI N

w .key

	

:= ke ;

j)

	

THE N

.key ;reS_t
Testfunction s

Set Breakpoint s
Reset Breakpoint s

Variabaes
Link

	

Testfunctio n

w .rest

	

:= rest ;
key

	

:=

	

a

	

[j]
rest

:

	

---.

a

	

[j]

	

.key
a

	

[j]

	

.rest

	

:
i

	

:=

	

i

	

+

	

1 ;
j

	

•=

	

j

	

-

	

1
END

UNTIL

	

i
IF

	

1

	

<

	

.i

	

THEN
sort

	

(1,,i)

	

; Delete Testfunctio n
.

	

Star t
Continu e

IF

	

i

	

< r

	

THEN
sort

	

(i,r)
END ;

BEGIN
Testsystem Output

Display

3
j

	

=

	

5
key =

	

23

Statu s
sor t
sor t
quicksor t
q

q

9 4

execution . Trace speed can be adjusted by th e
user. It is possible to display additiona l

information during tracing within the secon d

window .

Execution is also interrupted if flow of contro l

reaches a breakpoint or if the user presses a

special function key. When execution i s

interrupted, the user may select among th e

available debugging functions which have bee n

generated . He may change breakpoints, selec t

functions which display information about th e

program status, he may link test functions to

special places of the source program which wil l

be executed when control reaches (or leaves) th e

selected part of the program, or he may initiat e

more complex test functions. The display

functions available within the Pascal debugge r

can be used to display the values of the variable s

which are visible at the current breakpoint (th e

user will be prompted for the names of th e

variables to be displayed) . Other debuggin g

functions include counters for statements an d

procedure calls as well as a traceback of th e

dynamic procedure chain . It is even possibl e

(though not part of the Pascal debugger

specification) to trigger arbitrary complicate d

functions by user-defined conditions on the

program status (Example : "if the value of a

specific variable changes, then force a n

interrupt ") .

Since program and test system output are

displayed in a second window, the user ha s

always a complete overview of the executio n

history : he simply may scroll backwards withi n

the second window . This feature (as well a s

scrolling within the program text) is always

available if execution is interrupted . It depends

on the definition of the debugging function s

whether they will interrupt execution or not .

It is possible to execute incomplete programs : I f

flow of control touches incomplete part s

(placeholders) within a program, the user will be

asked to enter these parts using the editor . For

reasons explained later, it is however not

possible to change program text, flow of contro l

or values of variables during execution .

3. What the language definer has to d o

A debugging system is based on two concepts
already used in PSG systems : the representatio n

of programs as abstract syntax trees and th e

denotational definition of semantics . Therefore ,
the first step towards a debugging system is th e

specification of the denotational semantics o f
the language in question . [2] describes in som e

depth how this can be done within PSG .

The mechanism to set or reset breakpoints i s

language independent, thus there is no need to

describe it in debugger definitions . All nodes o f

the program's abstract tree may have a
breakpoint attached .

In order to describe how to implement counter s
for e .g . statements or procedure calls, nestin g

functions may be used . It is enough to

enumerate the nodes of the abstract synta x

which influence these counters in order to assig n
language-independent algorithms to thes e

nodes and to organize a stack of e .g . procedur e

calls during program execution . Such a stack ca n

also be used for a traceback .

During execution, the relevant program statu s

information (actual symbol table, values o f

variables etc .) is hidden within variables within

the semantic equations . It is therefore necessar y

to describe how to access the actual values o f

these variables . This can be done by specifyin g

the names of these semantic variables togethe r

with the names of the abstract tree nodes wher e

their values change or a new instance of such a

variable is created . In the definition of the Pasca l

debugger these select functions look like :

95

SELECT

env : STACK block;

UPDATE procdecllist, vardecllist ,

typedecllist, constdecllist ;

state : UPDATE statement ;

END SELECT

In Pascal, the meaning of a statement is a

function which maps environments onto stat e

transformations, whereas the meaning of a

declaration is a function which change s

environments (we deliberately omitted th e

GOTO statement and therefore could use a direct

semantics without continuations) . Therefore, th e

above specification says that a declaration wil l

change the environment (for variables, this is a

mapping from variable names to locations) ,

whereas the execution of statements will chang e

the state (which is a mapping from locations t o

values) . Select functions are a mechanism to

make variables from the semantics definitio n

visible in the debugging specification, thes e

selected variables can be used in the rest of th e

debugger specification .

In order to describe what the user actually can d o

during debugging, the language definer ha s

several classes of build-in debugging concept s

available, which are called basic functions an d

differ in generality and complexity . Two simpl e

cases of basic functions are display functions and

trace functions . The task of a display function i s

to analyze the selected program statu s

information (as specified above) and write th e

result onto the screen . It will be invoked b y

selecting its corresponding menu item . Trace

functions will be evaluated when the debugge r

is in trace mode . They are linked to nodes of th e

abstract syntax tree . For each trace function, th e

language definer has to specify their granularity ,

whether they will interrupt execution or not, an d

which information should be displayed durin g

tracing .

Each basic function must be specified as an

auxiliary function written in the semantic s

definition language, which is an extended type -

free lambda calculus . The application part of th e

debugger definition contains the informatio n

about the parameters which should be passed t o

the auxiliary functions . Example :

APPLICATION S

DISPLAY FUNCTION S

display :

	

(vardisplay env, state, INPUT) ;

END DISPLAY FUNCTION S

TRACE FUNCTIONS

tracestat:

	

statement - > (trace SOURCE) ;

traceassign : assign

	

- >(changedvar env ,

state, RESULT, SOURCE) ;

END TRACE FUNCTION S

END APPLICATION S

In the example, vardisplay, trace, an d

changedvar are auxiliary functions followed b y

their parameters . Parameters may be names o f

selected semantic variables (env and state) ,

build-in standards which provide communicatio n

with the environment (INPUT, SOURCE ,

RESULT) or the results of other basic functions .

The latter possibility is necessary in order t o

provide communication within comple x

debugging functions which are implemented b y

a combination of several basic functions . Fo r

each of the three debugging functions specifie d

above, a corresponding menu item will b e

generated which may be selected by the user an d

will trigger its execution . The display function i s

directly executed by calling vardisplay with th e

actual environment and state and the user' s

input. vardisplay first analyses the input to

obtain the variables to display, then retrieves th e

current value of the variables form th e

environment/state mappings and writes th e

resulting information in condensed form in th e

second window. Selecting one of the trac e

functions has no immediate effect . Th e

corresponding functions are called whenever th e

execution of a statement or an assignment i s

completed The changedvar function is used t o

96

print the old and new value of the variabl e

changed by the assignment (here, state is the

state before execution of the assignment ,

whereas RESULT contains the result of th e

statement execution, i .e . the state after

execution of the assignment .

A language definer may use the simple stand -

alone display and trace functions to implement a

quite powerful debugging system followin g

predefined strategies . If more complex function s

are desired he may combine basic functions bu t

then there will be no predefined coordination o f

these functions .

In order to initiate more complex functions or t o

ask a user for special debug parameter s

(conditions, number of steps etc .), so-called

continue functions may be specified . Interrupt

functions can be used to terminate such a

function . Furthermore, several actions at

different nodes may be specified : Entry functions

will be executed when control reaches a nod e

and result functions when control leaves it . Th e

following example introduces a complex test -

function, which specifies a n-step-function fo r

statements . (The complete definition can b e

found in the appendix) .

DISPLAY FUNCTION S

initstep : (askstep initstep) ;

END DISPLAY FUNCTION S

INTERRUPT FUNCTION S
itrstep : statement -> (breakstep nstep) ;

END INTERRUPT FUNCTION S

ENTRY FUNCTIONS

nstep :

	

prog ,

statement -> (countstep initstep ,

itrstep, nstep) ;

END ENTRY FUNCTIONS

When control flow reaches the meaning functio n

of any statement three actions will be performe d

by the debugger in general : First, interrupt

functions are evaluated, second, when an

interrupt occurs or a breakpoint has been set th e
user is asked to select one or more of th e

displayed menu items, and third, entry function s

are evaluated .

In order to implement the n-step, three basi c

functions have to be combined . One functio n

will initiate the n-step, one will terminate it an d

at least one is necessary in order to organize th e

work. For coordination purposes the results o f

the basic functions are available for other basi c

functions : if a function name is specified in th e

parameterlist of an application, a pair of a

system information and the result of the last

evaluation of this function will be assigned t o

that name . The system information is a boolea n

value which becomes true for :

® interrupt functions : when an interrupt occurs

® display or continue functions : when th e

associated menu item has been selecte d

• all other functions : when they are evaluated

at the first time so that they are in a define d

state .

Interrupts and selections will be reset

automatically by the debugger after th e

evaluation of the entry functions. The n-step-

function is build of initstep, a display function t o

start the testfunction ; nstep, an entry function to

initialize the test and to count the steps; and

itrstep, an interrupt function to terminate th e

test . The work is done by countstep which get s

the initial value of the stepcounter from th e

result of initstep and decrements it at eac h

statement. The result of countstep is a tuple ,

whose first element is a boolean value whic h

signals, that the n-step-function is active and th e
second component is the current value of th e

stepcounter .

nstep becomes active, when the n-step item wa s

selected, and inactive, when an interrupt occurs ,

especially, when itrstep has forced it . Th e

97

following diagram shows the state-transition o f

the function nstep .

4. Implementation issue s

Executing a program within the PSG system i s

performed in the following way . First, the
abstract syntax tree of the fragment to b e

executed is transformed to a corresponding ter m

of a functional language . This functiona l

language is the basis of the denotationa l

semantics definition and is an extension of type-

free lambda calculus. The semantics definition i s

used to generate a language-specific compile r

performing the transformation mentione d

above. Second, the compiled fragment i s

executed by the standard PSG interpreter (not e

that the interpreter itself is language-

independent) . The interpreter uses a call-by-

need reduction strategy for evaluation of th e

compiled fragment (see [2] for details) .

During

	

compilation

	

of

	

a

	

fragment

correspondences between the abstract syntax

tree and the terms of the functional languag e
are established in both directions . To all term s

belonging to the meaning function of a certai n

tree node, a pointer to that tree node will b e

assigned . From the tree node, another pointe r

refers to one distinguished term of the meanin g

function . The editor kernel maintains link s

between the abstract syntax tree and scree n

positions . The connection between scree n

positions, abstract syntax tree and terms is used

to implement (among others) the breakpoin t

and trace mechanisms of the debugger in a

language-independent manner . No tree pointe r

is assigned to terms belonging to auxiliary
functions .

The interpreter and the debugger are distinc t

program parts running as coroutines . Afte r

compilation of the fragment, execution is started

by calling the interpreter . Prior to the evaluatio n

of any term, the interpreter looks at the tre e

pointer attached to the term . If this tree pointe r
is defined and if it is different from the last tre e

pointer encountered by the interpreter i n

previous evaluation steps, the debugger is called

by the interpreter . Thus, the debugger is called
whenever evaluation changes from a ter m

belonging to the meaning function of one tre e

node to a term belonging to the meanin g

function of another tree node . (The only othe r
possibility to calf the debugger is when a n

asynchroneous interrupt, such as pressing a

special function key, occurs) .

However, the main activities of the debugger ar e

only activated when evaluation reaches one o f

the above mentioned distinguished terms of a

meaning function . These terms, called entry

terms, serve as a representation of the complet e

meaning function derived from a tree node . Thi s

distinction is necessary, since most debuggin g

activities should only once be activated for on e

tree node . Entry terms are identified b y

comparing their tree pointer with its attached

term pointer . Entering the debugger whe n

menu item " n-Steps " selected

n >0 { Result of initstep)

count = number of step s

<TRUE ,

<TRUE, count> >

(next statement)

♦ 	

98

evaluation reaches a non-entry term, gives th e

debugger the possibility to change the curren t

selection (by redrawing the inverted line on th e

screen) . If evaluation encounters an entry term,

the debugger is called twice : once before th e

evaluation of the entry term (i .e . the meanin g

function), and once after the evaluation of th e

entry term is completed . The debugger processe s

entry terms in the following way :

e Before evaluation of a meaning functio n

- push nesting stack s

- push selected semantic variable s

- evaluate interrupt function s

- enter interrupt state when a breakpoint i s

reached or an interrupt-function yields 'true '

- evaluate entry function s

After evaluation of a meaning functio n

- evaluate result function s

- evaluate trace function s

- pop nesting stack s

- pop selected semantic variable s

- update selected semantic variable s

Basic functions (which are terms of th e

functional language) are evaluated by calling th e

interpreter from the debugger . Since term s

which belong to basic functions have no tre e

pointers attached, calling the debugge r

recursively is avoided . A data structure called th e

global environment is used by the debugger, i t

contains copies of the current values of al l

selected semantic variables, the current values o f

the built-in variables like INPUT, RESULT an d

SOURCE, as well as the result values of the las t

call of all debugging functions .

5 . Experiences with the syste m

Several approaches have been published whic h

describe how to generate compilers fro m

denotational semantics (e .g . SIS [5], PSP [8]) o r

how to integrate execution tools based on

denotational semantics into generators fo r

interactive environments (e .g . GANDALF [1] ,

PoeGen [7]) . Until now, however, nobody seem s

to have implemented a generator for interactiv e

debugging facilities within such a system . We

feel that doing so is possible within the scope o f

systems like GANDALF and the Synthesize r

Generator (in fact, the Synthesizer Generator ha s

been used to produce an interpreter an d

debugger based on attribute grammars for a

Pascal subset [6]) . However, knowing th e

specification languages of these systems, it is ou r

impression that an implementation effort i s

quite cumbersome. Contrarily, we think that th e
PSG debugger specification language is mor e

compact and more easy to use .

Until now, we have generated debuggers fo r

Pascal and Modula-2 . It turned out that the

specifications are not very long : the specificatio n

of the Pascal debugger needs less than 300 line s
of specification language (where most of th e

specification deals with processing the user' s

input and the production of readable output) .

We also believe that the generated debugger s
are powerful and easy-to-use tools; this i s

especially true if a personal workstation wit h

bitmap display and mouse is used .

There are, however, some limitations within th e

current implementation . First of all, the run-tim e

performance of the generated interpreters an d

debuggers is not overwhelming . This problem i s

however not mainly due to the debuggin g

system, but due to the interpreter kernel an d

especially the complexity of denotationa l

semantics definitions. Compiling the terms into

(perhaps abstract) machine code make s

execution much more faster . In this case ,

however, the interaction between the machin e

code (which represents the interpreter) and th e
debugger has to be redesigned .

Our experiences with the generation o f

debuggers for Modula-2, Pascal (using differen t

99

semantics definitions) as well as Lisp has show n

that the usability of the specification mechanis m

depends largely on the structure of the semantic s

definition . For example, our Lisp semantic s

defines a translation of Lisp programs into som e

intermediate code, which is then evaluated by a n
auxiliary function . Because the execution of a

Lisp program is primarily done within th e

auxiliary functions, debugging functions are only

active for a short time during the translation par t

of the execution . This problem is due to the

automatic selection of entry terms (done by th e

generator) ; similar problems occur with th e

Modula-2 continuation semantics . To overcome

these problems we are currently extending th e

specification mechanisms, so that the languag e

definer may explicitly select the entry ter m

within the meaning functions .

The current system allows neither modification s

of programs during execution nor features like

reverse execution . This is due to the fact tha t

interpretation within PSG is actually a reduction

process : functional terms are reduced to produc e

smaller (result) terms; the original terms ca n

never be reconstructed and there is no possibilit y

for backtracking .

6. Final remarks

We think that is possible to generate powerfu l

debuggers from compact specifications . Th e

system is in operation on SIEMENS machine s

since June 1986 ; portation to UNIX-base d

personal workstations with bit-map and mouse i s

in progress. Although there is still work to b e

done, we think that we have demonstrated th e

feasibility of our approach and that the idea o f

generating all language-specific aspects of a n

environment has again turned out to be a

fruitful paradigm .

This work is supported by the Deutsch e

Forschungsgemeinschaft, grant He1170/3-1, and

by the Bundesministerium fur Forschung an d

Technologie, grant ITR8502C/8 .

7. References

[1] Ambriola, V . and C . Montangero : Automati c
Generation of Execution Tools in a GANDAL F
Environment . The Journal of Systems an d
Software 5,2 (May 1985), pp . 155-17 1

[2] Bahlke, R . and G . Snelting : The PSG System :
From Formal Language Definitions t o
Interactive Programming Environments .
ACM TOPLAS 8,4 (October 1986), pp . 547 -
576

[3] Bahlke, R . and G . Snelting : Context Sensitiv e
Editing with PSG Environments . Proc . of th e
International Workshop on Advance d
Programming Environments, Trondheim ,
Norway, June 1986. Springer, LNCS , t o
appea r

[4] Moritz, B . : Entwicklung and Einrichtun g
eines Testsystems innerhalb eine s
Programmiersystemgenerators (PSG) : Zu r
Definition sprachspezifischer Testum-
gebungen . Diploma Thesis, Technisch e
Hochschule Darmstadt, Fachbereic h
Informatik, June 1986 .

[5] Mosses, P . : SIS - Semantics Implementatio n
System . Reference Manual and Use r ' s Guide .
Report DAIMI MD-30, Aarhus Universit y
(August 1979) .

[6] Mughal, K .A . : Control Flow Aspects of
Generating Runtime Facilities for Language -
Based Programming Environments . Proc .
IEEE Computer Society Conference o n
Software Tools . New York, 1985 .

[7] Pal, A .A. and C . Fischer : EDS : Executabl e
Denotational Specifications for Integrate d
Programming Environ-ments . University o f
Wisconsin-Madison, 1986 .

[8] Paulson, L . : A Semantics-directed Compile r
Generator. Proc. 9th ACM POPL,
Albuquerque (Januar 1982), pp . 224-239 .

[9] Seidner, R. and N. Tindall : Interactive Debu g
Requirements. Proc . of the ACM Softwar e
Engineering Symposium on High-Leve l
Debugging . ACM SIGPLAN Notices 18, 8
(August 1983), pp . 9-22 .

100

Appendi x
Definition of the n-steps function :

DISPLAY FUNCTION S
initstep :(askstep initstep) ;

END DISPLAY FUNCTION S

INTERRUPT FUNCTION S
itrstep : stat - > (breakstep nstep) ;

END INTERRUPT FUNCTION S

ENTRY FUNCTION S
nstep : prog, scat - >

	

(countstep initstep, itrstep, nstep) ;
END ENTRY FUNCTION S

GLOBALS
askstep = LAM dummy. ANSWER 'number of steps? ' ; ASK ENT ;
countstep

	

LAM srq, itr, act .
{ srq = last result of initstep }
{ itr = last result of itrstep }
{ act = last result of nstep }
IF SELECT srq, 1

	

{ corresponding menu-item selected ? }
THE N

LET init = SELECT srq, 2 IN { initial stepcount }
IF INTEQU init, 0
THE N

< FALSE >

	

{ stepcount = 0 = > inactive }
ELS E

<TRUE, init >

	

{ activate nstep }
ELS E

IF SELECT itr, 2
THE N

< FALSE >

	

{ interrupt occured = > deactivate nstep }
ELS E

IF SELECT act, 1 { function ever evaluated ? }
THE N

LET state= SELECT act, 2I N
IF SELECT state, 1

	

{ nstep active ? }
THE N

< TRUE, INTSUB SELECT state, 2, 1 >
{ decrement stepcount }

ELS E
< FALSE >

ELS E
< FALSE > ;

breakstep=

	

LAM act .
{ returns true if interrupt should occur }
IF SELECT act, 1 { nstep evar evaluated ? }
THE N

LET state = SELECT act, 2 I N
IF SELECT state, 1

	

{ nstep active ? }
THE N

INTEQU SELECT state, 2, 1 {final stepcount? }
ELS E

FALS E
ELSE

FALSE ;
END GI,OBALS

TITLES
initstep -> ' n-Steps'

END TITLES

101

