
Semantic Analysis in a Concurrent Compiler 

V. Seshadri, D.B. Wortman, M.D. Junkin 
S. Weber, C.P. Yu, I. Small 

Computer Systems Research Institute 
University of Toronto 

Toronto, Ontario, Canada 

Abstract 

Traditional compilers are usually sequential programs that 
serially process source programs through lexical analysis, 
syntax analysis, semantic analysis and code generation. The 
availability of multiprocessor computers has made it feasible to 
consider alternatives to this serial compilation process. The 
authors are currently engaged in a project to devise ways of 
structuring compilers so that they can take advantage of 
modem multiprocessor hardware. This paper is about the most 
difficult aspect of concurrent compilation: concurrent semantic 
analysis. 

1. Introduction 

We begin by describing the structure of our concurrent 
compiler. Section 3 describes the compiler table management 
issues that arise during concurrent semantic analysis. It 
includes a novel algorithm for optimizing table search. In 
Section 4 we describe the Doesn’t Know Yet problem which 
arises when one process searches a compiler table that is being 
concurrently constructed by some other process. We describe 
several strategies for dealing with this problem. 

1.1 Compiler Model 

The canonical sequential compiler [1,22] is shown in 
Figure 1. It is organized into a number of phases each of 
which accepts an input stream from the previous phase and 
produces an output stream for the following phase. Lexical 
analysis converts a stream of characters into a stream of 
language-specific lexical tokens. Syntax analysis converts the 
stream of lexical tokens into a data structure (parse tree or 
equivalent linear stream) that describes the structure of the 
source program. The semantic analysis phase performs context 
checking to verify that the source program obeys all the non- 
syntactic constraints imposed by the programming language. 
Semantic analysis processes declarations and records 
information from these declarations in symbol and type tables 
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that are used by subsequent phases. The storage allocation 
phase assigns addresses to variables and lays out the run-time 
storage for procedures and functions. The optimization and 
code generation phases transform the source program into 
instructions for the target computer. 

An important characteristic of the sequential compiler is 
that the processing has been designed to work well for 
programming languages which have nested scopes of 
declaration and require. declaration before use. The natural 
processing order of the sequential compiler is exactly the right 
one for such languages. A hidden invariant in such compilers 
is that the compiler tables for outer scopes are completely built 
before inner scopes are processed. This invariant is false in the 
concurrent compilers that we are considering. 
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Figure 1: Canonical Compiler Structure 
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2. Concurrent Compiler Structure 

2.1 Concurrent Compiler Development Project 

The Concurrent Compiler Development Project at the 
University of Toronto is an effort to aggressively utilize 
multiprocessing hardware in order to accelerate compilation. 
An overview of the project appears in [4]. Initially, we are 
concentrating on well-behaved source languages which: 
0 are block structured 
0 follow scope rules similar to those of Algol-60 
l require identifiers to be declared before they are used 
0 can allow declarations to be syntactically intermixed with 

statements 
l have reserved words, rather than keywords, that 

determine program structure. 

Modern, block structured languages such as Pascal, C, 
Modula-2 and Ada in general satisfy our criteria. Although 
less disciplined languages such as Fortran and PL/I do not meet 
some of these requirements, our compilation techniques can, 
with some adaptation, be applied to them as well. To evaluate 
our ideas on concurrent compilation we are presently building 
a concurrent compiler for Modula-2 to run on an MIMD 
multiprocessor [ 171. 

The approach we are following is based on three general 
principles. 
l redistribution of effort. We are diverging from traditional 

compiler structure by moving some tasks from one 
compiler phase to another in cases where doing so will 
allow us to process source programs more concurrently. 
For example, we have moved a small amount of 
rudimentary parsing functionality into the lexical 
analyzer so that it can recognize major structural 
boundaries in the source program. 

l sensible subdivision. Unlike some of the early work on 
concurrent compilation, we are dividing the program 
being processed only at boundaries that make sense in 
terms of the compiler processing that needs to be 
performed. For example, our lexical analyzer deals with 
include files concurrently. We divide the source program 
at the scope (module, procedure, function) level because 
doing so yields convenient segments for further 
processing. 

l accelerated initiation. We attempt to start processing 
program segments at the earliest possible time. In section 
4 of this paper we discuss several variations on this 
strategy in the context of semantic analysis. 

2.2 Previous Work 

The earliest attempts at concurrent compilation date back 
to the early 1970’s ([S], [9], [12], 1131, 1191). Most of these 
efforts were restricted to making a specific phase of 
compilation concurrent for a specific language (i.e., 
FORTRAN, APL) on vector or array processors. Other work 
on concurrent compilation (121, [S], 1111, [15], [21]) has dealt 
with the use of pipelining to speed compilation. More recent 
work by Lipkie [ 141, Schell [ 161 and Vandevoorde [ 181 is 
more general, dealing with modem, block structured languages 
and architectures of the MIMD model. These works are more 
relevant to the material presented here. 

Most of the theoretical work on concurrent compilation has 
concentrated on parsing. Fischer [lo] was the first to 
extensively study concurrent parsing. His thesis dealt 
primarily with proving the correctness of various concurrent 
parsing schemes. Cohen et al. ([6], [7]) extended Fischer’s 
work by attempting to determine the speedup offered by 
concurrent parsing. The theoretical work on concurrent 
parsing generally assumed that the token stream for the source 
program was arbitrarily divided into some number of 
segments. A complicated algorithm was then required to 
merge the states of adjacent parsers when they ran out of 
tokens. 

2.3 Making Compilation Concurrent 

The easiest way to make the canonical sequential compiler 
into a concurrent compiler is to pipeline the execution of the 
compiler phases over a number of processors. This approach is 
limited in two ways. First, the degree of concurrency is limited 
by the number of stages in the pipeline, which results in the 
utilization of only a fixed number of processors. Second, the 
overall speed of compilation is constrained by the speed of the 
slowest pipeline stage. 

A more effective way to utilize multiprocessing resources 
is to split the source program into segments which are then 
compiled concurrently. This is the approach taken in [14], [16] 
and [18], and forms the basis of the model presented here. In 
our concurrent compiler, a sequential lexical analyzer splits the 
source code into many segments, which are concurrently 
processed through the various phases of compilation before a 
final, merging pass recombines the object code produced into a 
single program. At any given point in time, there exist many 
compiler processes, each performing some phase of 
compilation on some program segment. A diagram of our 
compiler structure is given in Appendix A. 

To avoid introducing unnecessary processing, the source 
program is not split into arbitrary segments. The lexical 
analyzer breaks the code into segments which correspond to 
the source language’s scope constructs. Typically, these are 
balanced structures such as procedure and function bodies and 
modules, which can be easily recognized and separated during 
lexical analysis, The lexical analyzer constructs a tree out of 
these segments, reflecting the nesting structure of the program. 
Thus, many token streams are created, with nested scopes in a 
stream replaced by pointers to other token streams (Figure 2). 
The subsequent phases of the concurrent compiler then operate 
on individual nodes of this tree. 

Concurrent parsing schemes such as those suggested in [6], 
[7] and [lo] assume that the source program is divided into 
arbitrary segments. One result of this assumption is that the 
location of syntax errors is difficult to pinpoint correctly. By 
splitting the program into pieces corresponding to major 
syntactic constructs, we hope to achieve good error recovery 
without significant overhead. We also avoid the high overhead 
reported by Cohen [7] of merging parsers operating on 
arbitrary program segments. We do have to guarantee that the 
splitting performed by the lexical analyzer neither introduces 
nor obscures syntax errors. 
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Scope-level code division also leads to a reduction in the 
communication required between processes in the various 
phases of compilation. Syntactic analysis of a code segment 
can be performed independently of the parsing of any other 
code segment. Storage can be allocated for variables declared 
in a scope independently of other scopes. Code generation can 
be performed concurrently at the procedure and function body 
level, with the object code segments merged using traditional 
linking technology. 

This reduction in communication overhead does not extend 
to semantic analysis. Performing semantic analysis 
concurrently at the scope level of granularity requires 
extensive interprocess communication due to the flow of 
semantic information between scopes. Identifiers declared in 
one scope may be legally referenced in another, subject to the 
specific visibility rules of the language. Since the process 
which is semantically analyzing the scope of reference is not 
necessarily the same process which is processing the scope of 
declaration, information must be exchanged between the two 
processes. 

3. Table Management for Concurrent Compilation 

In traditional procedural languages (e.g., Pascal, Modula-2) 
a program consists of some number of scopes (e.g., begin-end 
blocks, the bodies of procedures and functions) where new 
identifiers can be declared. There is a concept of scope 
parentage; the main program is the ultimate parent and all 
other scopes are children of the scopes in which they are 
nested. We assume that scope parentage is a static property of 
the program text that can be mechanically inferred. For 
example, in Figure 2, module A is the parent scope of 

module A 

declarations-A 

statements-1A 

procedure B 

declarations-B 

function C 

declarations-C 

statements-C 

end C 

statements-B 

end B 

procedure D 

declarations-D 

statements-D 

end D 

statements-2A 

end A 

B 

procedures B and D. Function C has procedure B as its parent 
and module A as its grandparent. In the languages we are 
considering there is a name inheritance mechanism which 
controls the visibility of names in nested scopes. The 
mechanism may be automatic inheritance as in Pascal or 
controlled inheritance via explicit imports as in Modula-2 
modules. The important point for this discussion is that a child 
scope may make reference to names declared in its parents’ 
scopes. In sequential compilers scopes are naturally processed 
from outermost to innermost (i.e., parents before children). 

3.1 Table Management Issues 

We assume that information about declared identifiers is 
stored in a symbol table [1,20,22]. We also assume that 
information about built-in and declared types is stored in a 
separate type table and that there is a scope table which is used 
to record information about each scope including pointers to 
the symbol and type tables for the scope. These tables are only 
written during declaration processing and storage allocation. 
Semantic analysis can be viewed as being composed of two 
major sub-phases: 
0 Declaration Processing. In this sub-phase the 

declarations present in the scope are analyzed. The main 
function of this phase is to validate declarations, enter 
newly declared identifiers into the symbol table, enter 
new types into the type table, and create the necessary 
links between these tables. 

dcl stmt stmt 
A 

Vproc Vproc 

A 1A B D 2A 

dcl Vfunc stmt dcl stmt 
D 

B C B D D 

C 

Figure 2: Sample Code Skeleton and Program Tree 
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l Statement Processing. In this sub-phase the executable 
statements in the scope arc analyzed. The main function 
of this phase is the validation of the semantic constraints 
imposed by the progr amming language. We assume that 
this sub-phase reads the compiler tables but does not 
modify them. 

Concurrent compilation places several constraints on the 
management of the compiler’s tables that are not present in a 
sequential compiler. 
l Access to the tables must be protected by mutual 

exclusion mechanisms which prevent the tables from 
being corrupted by overlapping writes. Reads from the 
tables must behave atomically (i.e., each read must return 
a complete and consistent table entry). 

l Symbol table search mechanisms must be designed to 
deal with tables that are being modified asynchronously. 

0 Symbol table search mechanisms must be designed to 
deal with tables that are incomplete (see Section 4). 

The choice of solutions to these problems will have a 
significant effect on compiler performance. Our goal is to find 
solutions that will maximize the amount of concurrent table 
access that can be performed while simultaneously 
guaranteeing correctness of the symbol table mechanisms. 
Solutions that cause deadlocks are unacceptable. Solutions 
that cause excessive delay or redundant processing should be 
avoided. Because the compiler tables are the means by which 
concurrently executing compiler phases communicate, the 
amount of time during which the table is being used 
exclusively by one process must be minimized. 

There are several possible solutions for providing mutually 
exclusive access to the compiler tables. We describe several of 
these solutions for one table with the understanding that they 
can be applied to all tables. 

3.1.1 Global Table Locking 

One solution is to associate a semaphore with the entire 
table and use it to lock the table before performing an addition 
or modification. This solution is very simple to implement but 
it provides very poor concurrent performance. Any process 
that wants to write! the table may be delayed for a considerable 
period of time waiting for reads in progress to complete. 

3.1.2 Scope Level Locking 

A more attractive solution in our model for a concurrent 
compiler is to divide the tables at scope boundaries and to 
provide a lock for each scope. This moves the contention 
between readers and writers from the global level to the scope 
level and allows the table for other scopes to be searched while 
the table for one scope is being modified. 

3.1.3 Separate Scoie and Entry Locking 

An optimization of scope level locking is to provide a 
scope level lock to control additions to the table and table entry 
level locks to control access to each table entry. The scope 
level lock would be used when a new entry is being added to 
the table but only the entry lock would be used when an 
individual table entry is being modified. The table search 
mechanism is then designed so that it will wait to process a 
scope if the scope level lock is set. It must also deal with entry 
leirel locks either by waiting for the lock to clear or by 
skipping around locked entries and retrying them later. 

3.2 Optimizing Symbol Table Search 

We have developed a strategy for optimizing the symbol 
table search that avoids unnecessary table searches. This 
strategy involves developing inforination about where 
identifiers are declared earlier in the compilation process than 
is normally done and then using this information to speed up 
the search process. 

As is done in many compilers, our lexical analysis pass 
creates an identifier table which contains (uniquely) each 
identifier used in the program. Each identifier occurring in the 
program text is replaced with an identifier token which 
contains an index for the identifier in the identifier table. This 
technique is used to reduce the bulk of the program text being 
processed and to simplify later compiler processing. Usually 
the identifier table contains only the text for the identifier. We 
augment each entry with a bit vector containing one bit per 
scope in the source program. This bit vector is used to record 
the occurrence of a declaration for the identifier in the scopes. 
We modify the syntax analysis phase to keep track of current 
scope and to recognize the de&ration of names. Whenever a 
declaration involving some identifier is recognized, the bit 
corresponding to the scope of the declaration is turned on in 
the identifier’s bit vector in the identifier table. 

When the semantic analysis phase encounters an identifier 
in some scope it now has two pieces of information that it can 
use to efficiently locate the scope in which the visible 
declaration of the identifier is located. The scope parentage of 
the scope being processed is a list of possible scopes where the 
identifier could have been declared. The bit-vector associated 
with the identifier in the identifier table is a list of scopes 
where the identifier is declared. By intersecting these two lists 
we can efficiently discover the relevant scope in which the 
identifier’s declaration occurs or the absence of a visible 
declaration for the identifier. With this strategy we never need 
to search more than the symbol table for a single scope. We 
also avoid the expensive global search usually required to 
discover that an identifier has not been declared. The 
disadvantage of this strategy is that syntactic analysis of all of 
a scope’s parent’s declarations must be completed before 
semantic analysis of the scope begins in order to guarantee that 
the bit vectors are complete. 

4. Table Search and the Doesn’t Know Yet (DKY) Problem 

When a semantic analysis process encounters an identifier 
referenced in the scope which it is analyzing, it must first 
search for a declaration of the identifier in the scope. This 
necessitates a search through the symbol table for that scope. 
If the desired information is found there processing can 
continue. However, if it is not found, the process must look for 
information regarding this identifier in the symbol tables of 
other scopes in its scope parentage. If semantic analysis of the 
other scopes is not yet complete when this process searches the 
tables of those scopes, then it is possible that a visible 
declaration of the identifier exists in one of those scopes, but 
has not yet been processed and entered into the appropriate 
tables. In this case, the process doesn’t know yet @KY) 
whether or not a valid declaration of the identifier exists in the 
incomplete scope. This is what we term the DKY problem. 

The DKY problem creates a bottleneck to the speedup 
attainable by performing semantic analysis concurrently. This 
bottleneck manifests itself in three ways: 



. me semantic attributes of the identifier in question are 
not known until the declaration in the appropriate scope 
has been processed. 

l It is not immediately known which scope contains the 
appropriate declaration. 

0 In the event that no visible declaration of the identifier 
exists, all scopes which may contain a visible declaration 
of the identifier must be processed before this is known 
and an error message is issued. 

We view a solution to the DKY problem as a critical issue 
for achieving good concurrent compiler performance. It is 
important to minimize delays introduced by DKYs and to 
guarantee that all DKY situations are eventually resolved. 
Although the amount of table searching can be reduced 
considerably by the strategy described in Section 3.2, the 
strategy does not completely eliminate the DKY problem. We 
may know that the identifier we are searching for is declared in 
a particular scope, but it may not yet have been entered in the 
tables for that scope. 

We have developed two complementary strategies for 
dealing with the DKY problem. The first strategy is to either 
control the processing of scopes so that DKYs do not occur 
@KY avoidance) or to design the semantic processing 
algorithms so that DKYs which occur can be dealt with on the 
flv (DKY handling). The second strategy is to control sub- 
division of the program so as to minimize DKY related delays. 
One possibility is to process the declarations and statements in 
a scope serially (l-part processing). This guarantees that 
declarations are processed before statements which refer to 
them but it may delay processing of other scopes. The other 
possibility is to process the declarations and statements in a 
scope separately (Zpart processing). One advantage of 2-part 
processing is that DKYs do not occur during statement 
processing. It also allows storage allocation to proceed 
concurrently with the processing of statements in the scope. 
We discuss these strategies in more detail below. A more 
detailed presentation of this material will appear in [23]. 

4.1 DKY Avoidance 

One solution to the DKY problem is to schedule semantic 
analysis of scopes so that DKYs can never arise. Scopes are 
processed from the outermost to the innermost with the 
scheduling constraint that a scope at nesting level N is not 
processed until all of its parent scopes at levels less than N 
have been processed. There is a restriction that before a child 
scope can be processed concurrently with its parent, any 
information exported from the child must be processed. 
Therefore a typical procedure’s parameter list must be 
subjected to semantic analysis before the body of the procedure. 
can be processed concurrently with its parent. Similarly the 
attributes of names exported from nested modules must be 
known before the module body can be processed concurrently 
with its parent. Figures 3 and 4 illustrate scheduling for DKY 
avoidance with 1 and 2 part processing. For DKY avoidance 
we assume that processing of statements-X is not started until 
processing of the corresponding declarations-X has been 
completed. Although this strategy allows sibling scopes (e.g., 
B and D) to be processed concurrently, it does not achieve as 
much concurrency as is possible. 

4.2 DKY Handling 

An alternative solution is to increase the amount of 
concurrent processing but provide a mechanism to handle 
DKYs dynamically when they occur [3]. DKYs arise when the 
search through a scope parentage chain encounters a scope in 
which declarations have not been completely processed. The 
identifier being searched for may exist in this scope but this 
cannot yet be determined. For the search to behave correctly, 
it must wait for processing of this scope to be completed before 
it can search further along the parentage chain. If we use the 
search optimization described in Section 3.2 then at most one 
scope will be searched and DKYs arise only if the identifier 
being searched for has not yet been processed in its scope of 
declaration. 

dcl 1 statement- 1 stmt-2 

I dcl I statement I 
: 

dcl statement 

dcl statement I 

TIME 

Figure 3: DKY Avoidance with l-Part processing 
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Figure 4: DKY Avoidance with 2-Part Processing 
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We have identified several possibilities for handling 
individual DKYs. 

l The search process can simply wait for the scope in 
question to be completely processed and then resume 
searching. 

. Processing of the statement or declaration that caused the 
search can be suspended, but processing of other 
statements or declarations can proceed. The partially 
processed statement is queued for later processing. 

0 The search process can insert a dummy entry in the table 
for the incomplete scope. The searching process then 
either waits for the desired symbol table entry to become 
available or it continues processing other statements and 
declarations. Any other process searching for the same 
table entry will also wait or switch to alternate processing 
if it encounters a dummy entry. When the process doing 
semantic analysis encounters this dummy entry when 
attempting to insert the desired identifier it will first 
replace the dummy entry with a real entry and then signal 
the searching process that the desired entry is now 
available. 

Figure 5 illustrates DKY handling with 2 part processing. The 
difference between Figures 4 and 5 is that DKY handling 
allows declaration processing to start earlier.. 

5. Analysis and Conclusions 

The proper choice of a strategy for dealing with DKYs 
depends to some extent on the amount of cross usage of 
identifiers declared in different scopes. If child scopes make 
very little use of identifiers declared in their parents then the 
best way to maximize concurrency is to process as many 
scopes as possible concurrently and have an efficient way of 
handling those DKYs which arise. If child scopes tend to 
make heavy use of identifiers declared in outer scopes then 
manv DKYs will arise and the benefit derived from nrocessing 
parent and child scopes concurrently would be overwhelmed 
by the overhead induced by DKY handling. The amount of 
cross usage is dependent on the programming style of the 
individuals writing the program. We are gathering statistics on 
the average characteristics of programs that will let us 
realistically evaluate the alternative strategies for dealing with 
DKYs. 

It is fairly evident that 2-part processing is superior to l- 
part processing. This is because l-part processing may cause 
the declaration processing in child scopes to wait for statement 
processing in the parent to complete when it is not necessary 
(see Figure 3). This is especially the case when the source 
program contains nested modules OT when the programming 
language allows declarations and statements to be intermixed 
(see Figure 4). Based on some preliminary analysis, we are 
adopting a mixed strategy to cope with the DKY problem. We 
are using DKY handling at the scope level during declaration 
analysis while delaying the analysis of statements in a scope 
until all the relevant declarations have been processed. 
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Appendix A: Structure of the Concurrent Compiler 
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