
Semantic Analysis in a Concurrent Compiler

V. Seshadri, D.B. Wortman, M.D. Junkin
S. Weber, C.P. Yu, I. Small

Computer Systems Research Institute
University of Toronto

Toronto, Ontario, Canada

Abstract

Traditional compilers are usually sequential programs that
serially process source programs through lexical analysis,
syntax analysis, semantic analysis and code generation. The
availability of multiprocessor computers has made it feasible to
consider alternatives to this serial compilation process. The
authors are currently engaged in a project to devise ways of
structuring compilers so that they can take advantage of
modem multiprocessor hardware. This paper is about the most
difficult aspect of concurrent compilation: concurrent semantic
analysis.

1. Introduction

We begin by describing the structure of our concurrent
compiler. Section 3 describes the compiler table management
issues that arise during concurrent semantic analysis. It
includes a novel algorithm for optimizing table search. In
Section 4 we describe the Doesn’t Know Yet problem which
arises when one process searches a compiler table that is being
concurrently constructed by some other process. We describe
several strategies for dealing with this problem.

1.1 Compiler Model

The canonical sequential compiler [1,22] is shown in
Figure 1. It is organized into a number of phases each of
which accepts an input stream from the previous phase and
produces an output stream for the following phase. Lexical
analysis converts a stream of characters into a stream of
language-specific lexical tokens. Syntax analysis converts the
stream of lexical tokens into a data structure (parse tree or
equivalent linear stream) that describes the structure of the
source program. The semantic analysis phase performs context
checking to verify that the source program obeys all the non-
syntactic constraints imposed by the programming language.
Semantic analysis processes declarations and records
information from these declarations in symbol and type tables

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

o 1988 ACM O-8979 1-269-l/88/0006/0233 $1.50

Proceedings of the SIGPLAN ‘88

Atlanta, Georgia, June 22-24, 1988

that are used by subsequent phases. The storage allocation
phase assigns addresses to variables and lays out the run-time
storage for procedures and functions. The optimization and
code generation phases transform the source program into
instructions for the target computer.

An important characteristic of the sequential compiler is
that the processing has been designed to work well for
programming languages which have nested scopes of
declaration and require. declaration before use. The natural
processing order of the sequential compiler is exactly the right
one for such languages. A hidden invariant in such compilers
is that the compiler tables for outer scopes are completely built
before inner scopes are processed. This invariant is false in the
concurrent compilers that we are considering.

source code

I
semantic analysis

7

I

tables B

object code

Figure 1: Canonical Compiler Structure

233

2. Concurrent Compiler Structure

2.1 Concurrent Compiler Development Project

The Concurrent Compiler Development Project at the
University of Toronto is an effort to aggressively utilize
multiprocessing hardware in order to accelerate compilation.
An overview of the project appears in [4]. Initially, we are
concentrating on well-behaved source languages which:
0 are block structured
0 follow scope rules similar to those of Algol-60
l require identifiers to be declared before they are used
0 can allow declarations to be syntactically intermixed with

statements
l have reserved words, rather than keywords, that

determine program structure.

Modern, block structured languages such as Pascal, C,
Modula-2 and Ada in general satisfy our criteria. Although
less disciplined languages such as Fortran and PL/I do not meet
some of these requirements, our compilation techniques can,
with some adaptation, be applied to them as well. To evaluate
our ideas on concurrent compilation we are presently building
a concurrent compiler for Modula-2 to run on an MIMD
multiprocessor [171.

The approach we are following is based on three general
principles.
l redistribution of effort. We are diverging from traditional

compiler structure by moving some tasks from one
compiler phase to another in cases where doing so will
allow us to process source programs more concurrently.
For example, we have moved a small amount of
rudimentary parsing functionality into the lexical
analyzer so that it can recognize major structural
boundaries in the source program.

l sensible subdivision. Unlike some of the early work on
concurrent compilation, we are dividing the program
being processed only at boundaries that make sense in
terms of the compiler processing that needs to be
performed. For example, our lexical analyzer deals with
include files concurrently. We divide the source program
at the scope (module, procedure, function) level because
doing so yields convenient segments for further
processing.

l accelerated initiation. We attempt to start processing
program segments at the earliest possible time. In section
4 of this paper we discuss several variations on this
strategy in the context of semantic analysis.

2.2 Previous Work

The earliest attempts at concurrent compilation date back
to the early 1970’s ([S], [9], [12], 1131, 1191). Most of these
efforts were restricted to making a specific phase of
compilation concurrent for a specific language (i.e.,
FORTRAN, APL) on vector or array processors. Other work
on concurrent compilation (121, [S], 1111, [15], [21]) has dealt
with the use of pipelining to speed compilation. More recent
work by Lipkie [141, Schell [161 and Vandevoorde [181 is
more general, dealing with modem, block structured languages
and architectures of the MIMD model. These works are more
relevant to the material presented here.

Most of the theoretical work on concurrent compilation has
concentrated on parsing. Fischer [lo] was the first to
extensively study concurrent parsing. His thesis dealt
primarily with proving the correctness of various concurrent
parsing schemes. Cohen et al. ([6], [7]) extended Fischer’s
work by attempting to determine the speedup offered by
concurrent parsing. The theoretical work on concurrent
parsing generally assumed that the token stream for the source
program was arbitrarily divided into some number of
segments. A complicated algorithm was then required to
merge the states of adjacent parsers when they ran out of
tokens.

2.3 Making Compilation Concurrent

The easiest way to make the canonical sequential compiler
into a concurrent compiler is to pipeline the execution of the
compiler phases over a number of processors. This approach is
limited in two ways. First, the degree of concurrency is limited
by the number of stages in the pipeline, which results in the
utilization of only a fixed number of processors. Second, the
overall speed of compilation is constrained by the speed of the
slowest pipeline stage.

A more effective way to utilize multiprocessing resources
is to split the source program into segments which are then
compiled concurrently. This is the approach taken in [14], [16]
and [18], and forms the basis of the model presented here. In
our concurrent compiler, a sequential lexical analyzer splits the
source code into many segments, which are concurrently
processed through the various phases of compilation before a
final, merging pass recombines the object code produced into a
single program. At any given point in time, there exist many
compiler processes, each performing some phase of
compilation on some program segment. A diagram of our
compiler structure is given in Appendix A.

To avoid introducing unnecessary processing, the source
program is not split into arbitrary segments. The lexical
analyzer breaks the code into segments which correspond to
the source language’s scope constructs. Typically, these are
balanced structures such as procedure and function bodies and
modules, which can be easily recognized and separated during
lexical analysis, The lexical analyzer constructs a tree out of
these segments, reflecting the nesting structure of the program.
Thus, many token streams are created, with nested scopes in a
stream replaced by pointers to other token streams (Figure 2).
The subsequent phases of the concurrent compiler then operate
on individual nodes of this tree.

Concurrent parsing schemes such as those suggested in [6],
[7] and [lo] assume that the source program is divided into
arbitrary segments. One result of this assumption is that the
location of syntax errors is difficult to pinpoint correctly. By
splitting the program into pieces corresponding to major
syntactic constructs, we hope to achieve good error recovery
without significant overhead. We also avoid the high overhead
reported by Cohen [7] of merging parsers operating on
arbitrary program segments. We do have to guarantee that the
splitting performed by the lexical analyzer neither introduces
nor obscures syntax errors.

234

Scope-level code division also leads to a reduction in the
communication required between processes in the various
phases of compilation. Syntactic analysis of a code segment
can be performed independently of the parsing of any other
code segment. Storage can be allocated for variables declared
in a scope independently of other scopes. Code generation can
be performed concurrently at the procedure and function body
level, with the object code segments merged using traditional
linking technology.

This reduction in communication overhead does not extend
to semantic analysis. Performing semantic analysis
concurrently at the scope level of granularity requires
extensive interprocess communication due to the flow of
semantic information between scopes. Identifiers declared in
one scope may be legally referenced in another, subject to the
specific visibility rules of the language. Since the process
which is semantically analyzing the scope of reference is not
necessarily the same process which is processing the scope of
declaration, information must be exchanged between the two
processes.

3. Table Management for Concurrent Compilation

In traditional procedural languages (e.g., Pascal, Modula-2)
a program consists of some number of scopes (e.g., begin-end
blocks, the bodies of procedures and functions) where new
identifiers can be declared. There is a concept of scope
parentage; the main program is the ultimate parent and all
other scopes are children of the scopes in which they are
nested. We assume that scope parentage is a static property of
the program text that can be mechanically inferred. For
example, in Figure 2, module A is the parent scope of

module A

declarations-A

statements-1A

procedure B

declarations-B

function C

declarations-C

statements-C

end C

statements-B

end B

procedure D

declarations-D

statements-D

end D

statements-2A

end A

B

procedures B and D. Function C has procedure B as its parent
and module A as its grandparent. In the languages we are
considering there is a name inheritance mechanism which
controls the visibility of names in nested scopes. The
mechanism may be automatic inheritance as in Pascal or
controlled inheritance via explicit imports as in Modula-2
modules. The important point for this discussion is that a child
scope may make reference to names declared in its parents’
scopes. In sequential compilers scopes are naturally processed
from outermost to innermost (i.e., parents before children).

3.1 Table Management Issues

We assume that information about declared identifiers is
stored in a symbol table [1,20,22]. We also assume that
information about built-in and declared types is stored in a
separate type table and that there is a scope table which is used
to record information about each scope including pointers to
the symbol and type tables for the scope. These tables are only
written during declaration processing and storage allocation.
Semantic analysis can be viewed as being composed of two
major sub-phases:
0 Declaration Processing. In this sub-phase the

declarations present in the scope are analyzed. The main
function of this phase is to validate declarations, enter
newly declared identifiers into the symbol table, enter
new types into the type table, and create the necessary
links between these tables.

dcl stmt stmt
A

Vproc Vproc

A 1A B D 2A

dcl Vfunc stmt dcl stmt
D

B C B D D

C

Figure 2: Sample Code Skeleton and Program Tree

235

l Statement Processing. In this sub-phase the executable
statements in the scope arc analyzed. The main function
of this phase is the validation of the semantic constraints
imposed by the progr amming language. We assume that
this sub-phase reads the compiler tables but does not
modify them.

Concurrent compilation places several constraints on the
management of the compiler’s tables that are not present in a
sequential compiler.
l Access to the tables must be protected by mutual

exclusion mechanisms which prevent the tables from
being corrupted by overlapping writes. Reads from the
tables must behave atomically (i.e., each read must return
a complete and consistent table entry).

l Symbol table search mechanisms must be designed to
deal with tables that are being modified asynchronously.

0 Symbol table search mechanisms must be designed to
deal with tables that are incomplete (see Section 4).

The choice of solutions to these problems will have a
significant effect on compiler performance. Our goal is to find
solutions that will maximize the amount of concurrent table
access that can be performed while simultaneously
guaranteeing correctness of the symbol table mechanisms.
Solutions that cause deadlocks are unacceptable. Solutions
that cause excessive delay or redundant processing should be
avoided. Because the compiler tables are the means by which
concurrently executing compiler phases communicate, the
amount of time during which the table is being used
exclusively by one process must be minimized.

There are several possible solutions for providing mutually
exclusive access to the compiler tables. We describe several of
these solutions for one table with the understanding that they
can be applied to all tables.

3.1.1 Global Table Locking

One solution is to associate a semaphore with the entire
table and use it to lock the table before performing an addition
or modification. This solution is very simple to implement but
it provides very poor concurrent performance. Any process
that wants to write! the table may be delayed for a considerable
period of time waiting for reads in progress to complete.

3.1.2 Scope Level Locking

A more attractive solution in our model for a concurrent
compiler is to divide the tables at scope boundaries and to
provide a lock for each scope. This moves the contention
between readers and writers from the global level to the scope
level and allows the table for other scopes to be searched while
the table for one scope is being modified.

3.1.3 Separate Scoie and Entry Locking

An optimization of scope level locking is to provide a
scope level lock to control additions to the table and table entry
level locks to control access to each table entry. The scope
level lock would be used when a new entry is being added to
the table but only the entry lock would be used when an
individual table entry is being modified. The table search
mechanism is then designed so that it will wait to process a
scope if the scope level lock is set. It must also deal with entry
leirel locks either by waiting for the lock to clear or by
skipping around locked entries and retrying them later.

3.2 Optimizing Symbol Table Search

We have developed a strategy for optimizing the symbol
table search that avoids unnecessary table searches. This
strategy involves developing inforination about where
identifiers are declared earlier in the compilation process than
is normally done and then using this information to speed up
the search process.

As is done in many compilers, our lexical analysis pass
creates an identifier table which contains (uniquely) each
identifier used in the program. Each identifier occurring in the
program text is replaced with an identifier token which
contains an index for the identifier in the identifier table. This
technique is used to reduce the bulk of the program text being
processed and to simplify later compiler processing. Usually
the identifier table contains only the text for the identifier. We
augment each entry with a bit vector containing one bit per
scope in the source program. This bit vector is used to record
the occurrence of a declaration for the identifier in the scopes.
We modify the syntax analysis phase to keep track of current
scope and to recognize the de&ration of names. Whenever a
declaration involving some identifier is recognized, the bit
corresponding to the scope of the declaration is turned on in
the identifier’s bit vector in the identifier table.

When the semantic analysis phase encounters an identifier
in some scope it now has two pieces of information that it can
use to efficiently locate the scope in which the visible
declaration of the identifier is located. The scope parentage of
the scope being processed is a list of possible scopes where the
identifier could have been declared. The bit-vector associated
with the identifier in the identifier table is a list of scopes
where the identifier is declared. By intersecting these two lists
we can efficiently discover the relevant scope in which the
identifier’s declaration occurs or the absence of a visible
declaration for the identifier. With this strategy we never need
to search more than the symbol table for a single scope. We
also avoid the expensive global search usually required to
discover that an identifier has not been declared. The
disadvantage of this strategy is that syntactic analysis of all of
a scope’s parent’s declarations must be completed before
semantic analysis of the scope begins in order to guarantee that
the bit vectors are complete.

4. Table Search and the Doesn’t Know Yet (DKY) Problem

When a semantic analysis process encounters an identifier
referenced in the scope which it is analyzing, it must first
search for a declaration of the identifier in the scope. This
necessitates a search through the symbol table for that scope.
If the desired information is found there processing can
continue. However, if it is not found, the process must look for
information regarding this identifier in the symbol tables of
other scopes in its scope parentage. If semantic analysis of the
other scopes is not yet complete when this process searches the
tables of those scopes, then it is possible that a visible
declaration of the identifier exists in one of those scopes, but
has not yet been processed and entered into the appropriate
tables. In this case, the process doesn’t know yet @KY)
whether or not a valid declaration of the identifier exists in the
incomplete scope. This is what we term the DKY problem.

The DKY problem creates a bottleneck to the speedup
attainable by performing semantic analysis concurrently. This
bottleneck manifests itself in three ways:

. me semantic attributes of the identifier in question are
not known until the declaration in the appropriate scope
has been processed.

l It is not immediately known which scope contains the
appropriate declaration.

0 In the event that no visible declaration of the identifier
exists, all scopes which may contain a visible declaration
of the identifier must be processed before this is known
and an error message is issued.

We view a solution to the DKY problem as a critical issue
for achieving good concurrent compiler performance. It is
important to minimize delays introduced by DKYs and to
guarantee that all DKY situations are eventually resolved.
Although the amount of table searching can be reduced
considerably by the strategy described in Section 3.2, the
strategy does not completely eliminate the DKY problem. We
may know that the identifier we are searching for is declared in
a particular scope, but it may not yet have been entered in the
tables for that scope.

We have developed two complementary strategies for
dealing with the DKY problem. The first strategy is to either
control the processing of scopes so that DKYs do not occur
@KY avoidance) or to design the semantic processing
algorithms so that DKYs which occur can be dealt with on the
flv (DKY handling). The second strategy is to control sub-
division of the program so as to minimize DKY related delays.
One possibility is to process the declarations and statements in
a scope serially (l-part processing). This guarantees that
declarations are processed before statements which refer to
them but it may delay processing of other scopes. The other
possibility is to process the declarations and statements in a
scope separately (Zpart processing). One advantage of 2-part
processing is that DKYs do not occur during statement
processing. It also allows storage allocation to proceed
concurrently with the processing of statements in the scope.
We discuss these strategies in more detail below. A more
detailed presentation of this material will appear in [23].

4.1 DKY Avoidance

One solution to the DKY problem is to schedule semantic
analysis of scopes so that DKYs can never arise. Scopes are
processed from the outermost to the innermost with the
scheduling constraint that a scope at nesting level N is not
processed until all of its parent scopes at levels less than N
have been processed. There is a restriction that before a child
scope can be processed concurrently with its parent, any
information exported from the child must be processed.
Therefore a typical procedure’s parameter list must be
subjected to semantic analysis before the body of the procedure.
can be processed concurrently with its parent. Similarly the
attributes of names exported from nested modules must be
known before the module body can be processed concurrently
with its parent. Figures 3 and 4 illustrate scheduling for DKY
avoidance with 1 and 2 part processing. For DKY avoidance
we assume that processing of statements-X is not started until
processing of the corresponding declarations-X has been
completed. Although this strategy allows sibling scopes (e.g.,
B and D) to be processed concurrently, it does not achieve as
much concurrency as is possible.

4.2 DKY Handling

An alternative solution is to increase the amount of
concurrent processing but provide a mechanism to handle
DKYs dynamically when they occur [3]. DKYs arise when the
search through a scope parentage chain encounters a scope in
which declarations have not been completely processed. The
identifier being searched for may exist in this scope but this
cannot yet be determined. For the search to behave correctly,
it must wait for processing of this scope to be completed before
it can search further along the parentage chain. If we use the
search optimization described in Section 3.2 then at most one
scope will be searched and DKYs arise only if the identifier
being searched for has not yet been processed in its scope of
declaration.

dcl 1 statement- 1 stmt-2

I dcl I statement I
:

dcl statement

dcl statement I

TIME

Figure 3: DKY Avoidance with l-Part processing

b
A dcl

: : : . . .
katekent- stmt-2 .

:statement

istatement

statement

I *

TIME

Figure 4: DKY Avoidance with 2-Part Processing

237

We have identified several possibilities for handling
individual DKYs.

l The search process can simply wait for the scope in
question to be completely processed and then resume
searching.

. Processing of the statement or declaration that caused the
search can be suspended, but processing of other
statements or declarations can proceed. The partially
processed statement is queued for later processing.

0 The search process can insert a dummy entry in the table
for the incomplete scope. The searching process then
either waits for the desired symbol table entry to become
available or it continues processing other statements and
declarations. Any other process searching for the same
table entry will also wait or switch to alternate processing
if it encounters a dummy entry. When the process doing
semantic analysis encounters this dummy entry when
attempting to insert the desired identifier it will first
replace the dummy entry with a real entry and then signal
the searching process that the desired entry is now
available.

Figure 5 illustrates DKY handling with 2 part processing. The
difference between Figures 4 and 5 is that DKY handling
allows declaration processing to start earlier..

5. Analysis and Conclusions

The proper choice of a strategy for dealing with DKYs
depends to some extent on the amount of cross usage of
identifiers declared in different scopes. If child scopes make
very little use of identifiers declared in their parents then the
best way to maximize concurrency is to process as many
scopes as possible concurrently and have an efficient way of
handling those DKYs which arise. If child scopes tend to
make heavy use of identifiers declared in outer scopes then
manv DKYs will arise and the benefit derived from nrocessing
parent and child scopes concurrently would be overwhelmed
by the overhead induced by DKY handling. The amount of
cross usage is dependent on the programming style of the
individuals writing the program. We are gathering statistics on
the average characteristics of programs that will let us
realistically evaluate the alternative strategies for dealing with
DKYs.

It is fairly evident that 2-part processing is superior to l-
part processing. This is because l-part processing may cause
the declaration processing in child scopes to wait for statement
processing in the parent to complete when it is not necessary
(see Figure 3). This is especially the case when the source
program contains nested modules OT when the programming
language allows declarations and statements to be intermixed
(see Figure 4). Based on some preliminary analysis, we are
adopting a mixed strategy to cope with the DKY problem. We
are using DKY handling at the scope level during declaration
analysis while delaying the analysis of statements in a scope
until all the relevant declarations have been processed.

Acknowledgement

The research described in this paper has been supported by
the Digital Equipment Corporation though its External
Research Program and by the Ontario University Research
Incentive Fund.

I
A dcl

I
-- DKY Occurrence

. .
A : statement- 1 stmt-2

B ! statement

C

D

statement

statement

I w

TIME

Figure 5: DKY Handling with 2-Part Processing

References
[II

r21

[31

[41

El

[61

[71

PI

PI

Aho, A.V., R. Sethi, and J.D. Ullman, Compilers,
Principles, Techniques, and Tools, Reading,
Massachusetts: Addison-Wesley, 1986.
Baer, J-L. and C.S. Ellis, “Model, Design and Evaluation
of a Compiler for a Parallel Processing Environment,”
IEEE Transactions on Software Engineering, vol. 3, no.
6, pp. 394-405, November 1977.
Banatre, J.P., J.P. Routeau, and L. Trilling, “An Event
Driven Compiling Technique,” Communications of the
ACM, vol. 22, no. 1, pp. 64-75, January 1979.
Seshadri V., I.S. Small and D.B. Wortman, “Concurrent
Compilation”, Proceedings of the IFIP Conference on
Distributed Processing, Amsterdam, Ckt 1987.
Christopher, T., 0. El-Dessouki, M. Evens, H. Harr, H.
Klawans, P. Krystosek, R. Mirchandani, and Y. Tarhan,
“SALAD - A Distributed Compiler for Distributed
Systems,” Proceedings of the International Conference
on Parallel Processing, pp. 50-57, August 1981.
Cohen, J., T. I&key, and J. Katcoff, “Upper Bounds for
Speedup in Parallel Parsing,” Journal of the ACM, pp.
408-428, April 1982.
Cohen, J. and S. Kolodner, “Estimating the Speedup in
Parallel Parsing,” IEEE Transactions on Software
Engineering, vol. 11, no. 1, pp. 114-124, January 1985.
Donegan, M.K. and S.W. Katzke, “Lexical Analysis and
Parsing Techniques for a Vector Machine,” Proceedings
of the ACM Conference on Programming Languages and
Compilers for Parallel ana’ Vector Machines,” vol. 10,
no. 3, pp. 138-145, Sigplan Notices, March 1975.

Ellis, C.A., “Parallel Compiling Techniques,”
Proceedings of the ACM National Conference, pp. 508-
519, August 1971.

238

IlO] Fischer, C.N., “On Parsing Context Free Languages in
Parallel Environments,” Ph.D. thesis, Cornell University,
1975.

[ll] Huen, W., 0. El-Dessouki, E. Huske, and M. Evens, “A
Pipelined DYNAMO Compiler,” Proceedings of the
International Conference on Parallel Processing, pp.
57-66, August 1977.

[12] Krohn, H.E., “A Parallel Approach to Code Generation
for Fortran Like Compilers,” Proceedings of the ACM
Conference on Programming Languages and Compilers
for Parallel and Vector Machines, vol. 10, no. 3, pp.
146-152, Sigplan Notices, March 1975.

[13] Lincoln, N., “Parallel Compiling Techniques for
Compilers,” ACM Sigplan Notices, vol. 5, no. 10, pp. 18-
3 1, October 1970.

[14] Lipkie, D.E., “A Compiler Design for Multiple
Independent Processor Computers,” Ph.D. thesis,
University of Washington, 1979.

[15] Miller, J.A. and J.J. LeBlanc, “Distributed Compilation: A
Case Study,” Proceedings of the 3rd International
Conference on Distributed Computing Systems (IEEE),
pp. 548-553, October 1982.

[16] Schell, R.M., “Methods for Constructing Parallel
Compilers for Use in a Multiprocessor Environment,”
Ph.D. thesis, University of Illinois, 1979.

[17] Thacker, C.P. and L.C. Stewart, “Firefly: A
Multiprocessor Workstation,” Proceedings of the Second
International Conference on Architectural Support for
Programming Languages and Operating Systems,
pp.164-172, October 1987.

[181 Vandevoorde, M.T., “Parallel Compilation on a Tightly-
Coupled Multiprocessor,” M.Sc. thesis, Massachusetts
Institute of Technology, 1987.

[19] Zosel, M., “A Parallel Approach to Compilation,”
Conference Record of the ACM Symposium on Principles
of Programming Languages, pp. 59-70, October 1973.

[20] Graham, S.L., W.N. Joy and 0. Roubine, “Hashed
Symbol Tables for Languages with Explicit Scope
Control”, Proceedings of the Sigplan Symposium on
Compiler Construction, pp. 50-57, August 1979

[21] Frankel, J.L., “The Architecture of Closely-Coupled
Distributed Computers and Their Lanugage Processors”,
Ph.D. dissertation, Dept of Applied Mathematics,
Harvard University, May 1986.

[22] Fischer C.N. and R.J. LeBlanc Jr., Crafting a Compiler,
Menlo Park, Calif., Benjamin/Cummings Publishing Co.,
1988.

[23] V. Seshadri, “On Concurrent Semantic Analysis”, M.A.Sc.
thesis, Dept. of Electrical Engineering, University of
Toronto, expected 1988

239

Appendix A: Structure of the Concurrent Compiler

1
lexical

driver

1
syntactic

driver

I

w lexer

If
parsers

>
(yacc)

ID name
>

table mgr.

ID info
>

table mgr.

c

semantic

driver
-j-q-

symbol
and

we
table

manager

stream

manager

error

manager

240

