
Soot Class Loading in the ROOTBEER GPU Compiler

Philip C. Pratt-Szeliga
Syracuse University
Syracuse, NY, USA
pcpratts@syr.edu

Marc-André Laverdière
TCS Innovation Labs,

Tata Consultancy Services, Ltd.
&

École Polytechnique de Montréal
Montréal, Canada

marc-andre.laverdiere-
papineau@polymtl.ca

Ettore Merlo
École Polytechnique de Montréal

Montréal, Canada
ettore.merlo@polymtl.ca

James W. Fawcett
Syracuse University
Syracuse, NY, USA

jfawcett@twcny.rr.com

Roy D. Welch
Syracuse University
Syracuse, NY, USA
rowelch@syr.edu

Abstract
One of the first activities of the Soot program analysis framework
is to load the classes for analysis. With the current class loader,
more classes are loaded than necessary. The overhead in memory
of these classes can make whole-program analysis of large binaries
infeasible on systems with limited memory. This paper describes
new algorithms and data structures to efficiently load Java Byte-
code classes for whole program analysis in Soot. Our method uses
a modified version of Rapid Type Analysis (RTA) to determine
what classes, methods and fields would be reachable during pro-
gram execution. This enables us to load significantly less informa-
tion in memory to enable program analyses. We implemented our
approach for loading Java bytecode in the Soot-based ROOTBEER
compiler. The new class loader loaded a Scene that had 58% to 64%
less classes, representing memory savings of 44% to 82%.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – code generation—compilers

General Terms Algorithms, Performance, Design

Keywords class loading; Soot; Java Bytecode

1. Introduction
Class loading in Soot [3, 10] can require significant time and mem-
ory when using whole-program mode. The current algorithm loads
all classes from the process path and any class transitively ref-
erenced from loaded classes. All methods in a class are loaded
whether or not they exist in any possible program traces. The num-
ber of loaded types starts out small, but as each class is loaded,
more and more unnecessary types are added to the Scene. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SOAP’13 June 20, 2013, Seattle, Washington, USA
Copyright c© 2013 ACM ISBN 978-1-4503-2201-0/13/06. . . $15.00

results in a large memory footprint for analyzing even small pro-
grams, making some analyses impossible on lower-end systems.

To illustrate this issue, we introduce a running example in List-
ing 1.

p u b l i c c l a s s A {
p u b l i c s t a t i c v o i d main(String [] args){

B b = new B();
b.foo();

}
}
p u b l i c c l a s s B {

p u b l i c v o i d foo(){
C c = new C();
c.abc();

}
p u b l i c v o i d bar(){

D d = new D();
d.abc();

}
}
p u b l i c c l a s s C {

p u b l i c v o i d abc(){
System.out.println("In class C");}

}
p u b l i c c l a s s D {

p u b l i c v o i d abc(){
System.out.println("In class D");}

}

Listing 1. Running example

When loading this program in Soot in whole-program mode,
without exclusions, the class loader fully loads 2031 SootClass
objects. With the ROOTBEER class loader it loads 712 SootClass
objects, representing an approximate reduction of 114 Mb in mem-
ory usage.

This paper describes a new class loading algorithm and the re-
quired data structures to only load the set of classes that would
be needed during program execution. Our strategy is to gather in-
formation from the Coffi bytecode representation without creating
the Soot internal objects, while we build an over-approximate call

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

19

Resolving Level Associated Information
Dangling Nothing is known about the class, except

its fully-qualified name.
Hierarchy The class, its superclass and interfaces are

loaded.
Signatures Hierarchy information, as well as types de-

clared in method signatures and fields.
Bodies Signatures information, as well as the

classes referenced in the method bodies.

Table 1. Resolving levels in Soot

graph. Once all of the reachable classes have been discovered, the
types are numbered according to the class hierarchy and we load a
minimal Scene.

We have implemented this scheme in the ROOTBEER GPU
Compiler [5].

The contents are organized as follows. In section 2, we will first
describe the current Soot class loading algorithm and why it has
problems with memory usage. Then, in section 3, we will describe
our methodology and describe the new class loading algorithm in
detail. In section 4, we describe the new API added to Soot. We then
compare the performance of our method with Soot’s class loading
in ROOTBEER in section 5. Finally, we conclude in section 6.

2. Soot Whole-Program Class Loading
The original Soot class loading algorithm has three basic resolving
levels: Hierarchy, Signatures and Bodies. As the level of a class
progresses from Hierarchy to Bodies, additional details are loaded
from the class files to memory. Table 1 summarizes the information
added at each resolving level.

We now describe the class loading algorithm with more details,
without including information related to phantom reference sup-
port1. The Soot resolver will work incrementally in the Scene, by
means of a worklist2, by loading each class and its dependencies,
one at a time.

Note that the steps below are repeated for every class in the
process path and every basic class. Please note also that every step
has an early termination feature if the class is determined to be at
the given level already.

The algorithm is initialized in the resolveClass method with
an empty SootClass container object at the Dangling level. This
empty container is then added to the desired resolving level.

In the first phase, Soot loads the class to the hierarchy level.
First, the class source (Coffi, Jimple, etc.) is loaded into the
SootClass object. The SootClass objects of the outer class,
the super class and the interfaces are added to the worklist. The
corresponding Type instances are created and stored for later use.

In the second phase, Soot loads the class to the signature level.
It does so by examining the method signatures and the fields. All
classes identified in the fields and signatures (including the return
type, the arguments and the declared exceptions) are added to the
worklist.

In the third phase, Soot resolves the class at the bodies level. All
types found in every method from all soot classes are loaded.

The weakness of this algorithm is its all-or-nothing nature. It
loads all the classes that are reachable from the basic classes and
the processable classes, irrespective of whether they would be used
in the program or not.

1 Phantom references are classes that are not resolved, either because they
are not found in the class path, or have been excluded.
2 There are four worklists, but their behavior is identical in whole-program
mode, so we merge them as one for simplicity

For our running example (c.f. Listing 1), this algorithm loads
the classes A,B,C and D, as well as a large amount of JDK classes.

3. Class Loading using RTA
Our class loading strategy is to keep class names, method bodies
as well as method and field signatures as strings for as long as
possible. The SootClass, SootMethod, SootField and Body
objects are only created once the types are numbered. Another
important part of our strategy is that we load classes that are found
on a depth first search walk from the entry points.

For our running example (c.f. Listing 1), this algorithm loads
the classes A,B and C, as well as a restricted set of JDK classes.

We explain the initial class loading step in section 3.1, followed
by the construction of the call graph in section 3.2. Then, we ex-
plain some special features of ROOTBEER and how we accommo-
date them in our class loading scheme in section 3.3. Afterwards,
we explain the class numbering algorithm in section 3.4 and how
the Scene object is populated in section 3.5.

3.1 Load and Wrap Classes
The first step of our algorithm uses the list of classes in the pro-
cess path and loads them in memory using Coffi. We convert the
constant pool indices for the current class, super class and inter-
faces into a string representation. We put all this information into
a wrapper class named HierarchyClass and store them in a map
(with the class name as key) for fast lookups.

3.2 Building a Call Graph
In order to know which classes are reachable in a normal pro-
gram execution, we build a call graph of the program using a bi-
directional variation of the optimistic Rapid Type Analysis (RTA)
algorithm [1, 7].

We chose RTA as our base because it is a very fast algorithm that
doesn’t require us to perform any flow analyses, making it suited
for the low-information phase we are in.

The original optimistic RTA algorithm uses Class Hierarchy
Analysis (CHA) [2] to bootstrap a traversal of the program from the
entry point. While the program is traversed, the class instantiations
detected are recorded, and only the call targets that correspond to
the found classes are preserved. This algorithm executes as a fixed
point over the number of new class invocations.

However, this algorithm needs to be modified to fit our needs.
First, RTA presumes a single entry point at the root of the program
execution. In our case, however, we allow multiple entry points,
which may not be at the start of the program execution.

Note that this traversal can be bounded, resulting in a truncated
call graph. While it is unsound, it is often useful in practice. The
mechanism for evaluating whether to visit a node is called the don’t
follow set, which is described in section 4.

3.2.1 Entry Points
The first step in building a call graph is to determine the entry
points. Our class loader provides a flexible entry point mecha-
nism. Soot users who analyze software that does not have a main
method need not generate one for the sake of analysis, but sim-
ply need to create an appropriate MethodTester class and regis-
ter it with the RootbeerClassLoader.addEntryMethodTester
method. All the details of this API is provided in section 4.

Our class loader submits all the methods found in the previous
steps to the registered method testers. If any of the testers return
true, then this method is considered as an entry point.

3.2.2 Forward Traversal
During the forward traversal, we start at the entry points and tra-
verse program using a breadth-first search. Along the way, we

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

20

record all constructor invocations. Since we do not load instructions
to Jimple, we use the HierarchyValueSwitch API described in
section 4. When a constructor call to a new class is found, its virtual
methods are placed on the call graph and the virtual method cache.

To make the backward traversal rapid, the forward traversal
maintains the reachable set, which is the set of all reachable meth-
ods. This set is seeded with the entry points and we add the signa-
ture of every method that is found reachable.

3.2.3 Backward Traversal
If an entry point is not a main function, all of the methods on a
depth first search walk from a main to the entry point need to be
loaded in order to accurately represent the runtime behavior.

This is handled by a backward traversal from the entry points.
When traversing the methods, we see if a method body makes a call
into the reachable set. If it does, the edge is added to the call graph
and the new method is added to the forward traversal queue.

3.2.4 Convergence
Since our algorithm is monotonic (only new virtual call targets are
added) and the number of classes loaded is finite, we are guaranteed
to converge. Note that we use the number of classes created with
new to determine the fixed point.

3.3 ROOTBEER-Specific Overrides
The ROOTBEER GPU Compiler needs additional information in
the loaded Scene that would not be present in the classes loaded
previously.

Firstly, ROOTBEER needs a mechanism to handle entry points
determined by reflection, which ROOTBEER uses. These are called
follow methods and follow classes. Note that follow methods could
also be used to model other non-explicit entry points, such as
Thread.run entry points. These are added to the set of entry points
when the call graph is constructed.

Secondly, ROOTBEER also needs its runtime classes to be
loaded to signatures (i.e. with no method bodies) so that the gen-
erated Jimple code can refer to the runtime methods. The set of
to-signature classes and methods allows this.

All the overrides mentioned are configured with MethodTesters
and ClassTesters. The follow testers and to-signature testers are
evaluated once to save time.

3.4 Numbering Types
After the call graph is created, the types are numbered as follows.
The number starts at one for the root Java Object. Afterwards,
we number the interfaces in reverse topological order. Then, we
number the remaining classes using a breadth-first traversal on the
hierarchy.

We use topological sorting for the interfaces because interfaces
can inherit from multiple interfaces, unlike objects. A pure breadth-
first numbering has problems where an interface appended to an
interface hierarchy can be numbered incorrectly.

3.5 Load Scene
The final stage of the algorithm is to load the Scene.

The loading happens in four steps: loading the hierarchy, load-
ing reachable fields, loading reachable methods, and finally the
method bodies are loaded from Coffi.

These steps are necessary because the SootClass, SootField
and SootMethod instances reachable from the bodies must exist
before the body can be resolved.

The last two steps are straight-forward, so we will only explain
the loading of the hierarchy and of the reachable fields.

To load the hierarchy of SootClasss, the numbered types are
visited from smallest to largest and empty SootClass objects are

created. At each empty SootClass object the super class and inter-
faces are filled in. The super class and interfaces are retrieved from
the Scene by calling Scene.getSootClass. Since the numbering
is according to the class hierarchy, the object classes are guaranteed
to already exist in the Scene.

To load the fields, we traverse the program to find all the field
references. We parse the string-based information with Field-
SignatureUtil and construct the appropriate SootField object.
This field object is then added to the declaring SootClass.

Note that this approach results in a subset of the classes loaded,
and a subset of the class details being converted to Jimple. Since
our call graph is sound, no information is missing that would be
required during program execution. However, if unknown library
classes are linked with our output at runtime, unknown method
exceptions can occur.

In the case of our running example, we would have a lighter
scene loaded, as illustrated in Listing 2. Please note that JDK
library classes were not added in. We notice that the class B does
not have the bar() method, nor is the class D loaded.

p u b l i c c l a s s A {
p u b l i c s t a t i c v o i d main(String [] args){

B b = new B();
b.foo();

}
}
p u b l i c c l a s s B {

p u b l i c v o i d foo(){
C c = new C();
c.abc();

}
}
p u b l i c c l a s s C {

p u b l i c v o i d abc(){
System.out.println("In class C");}

}

Listing 2. Loaded Scene for Running example

4. Implementation
To create the ROOTBEER class loader, new classes and data struc-
tures were needed that supported keeping the information as
strings. This section gives a summary of the classes included with
the ROOTBEER class loader.

Note that analyses in Soot will not need to refer to these APIs,
as the class loader eventually brings the Coffi data to the familiar
classes, and that the jb or sb phases will load the bodies in Jimple
[9] or Shimple [8], respectively.

The RootbeerClassLoader is a singleton with the entry point
to class loading (loadNecessaryClasses). You can configure the
entry points by adding a MethodTester. Please refer to Figure 1
for the details of the methods offered.

The ClassHierarchy (see Figure 2) is reachable from the
RootbeerClassLoader singleton. It allows a developer to retrieve
the virtual methods for a signature, get a HierarchyGraph for a
class name, get a HierarchyClass and get the NumberedTypes.

The MethodTester interface is designed to be implemented by
classes that can tell if a HierarchyMethod meets a criteria. It has
a single method, boolean test(HierarchyMethod sm), which
returns true if the criterion is met.

The ClassTester interface is similar to MethodTester, ex-
cept that it can be used to see if a HierarchyClass meets
a class or package criterion. It has a single method, boolean
test(HierarchyClass sm). The RootbeerClassLoader calls

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

21

Method Description
void loadNecessaryClasses() Load the Scene
ClassHierarchy getClassHierarchy() Get the class hierarchy data structure
List<SootMethod> getEntryPoints() Get the SootMethod entry points that were specified using the

MethodTesters
void addEntryMethodTester (MethodTester mt) Add a MethodTester that will be used to define entry points
void addFollowMethodTester (MethodTester mt) Add a MethodTester that will be used to include methods in the

reachable walk
void addFollowClassTester (ClassTester ct) Add a ClassTester that will be used to include classes in the reach-

able walk
void addDontFollowMethodTester (MethodTeter mt) Add a MethodTester that will stop a reachable walk
void addDontFollowClassTester (ClassTester ct) Add a ClassTester that will stop a reachable walk
void addToSignaturesMethodTester (MethodTester mt) Add a MethodTester that will define methods to be raised to signa-

tures
void addToSignaturesClassTester (ClassTester ct) Add a ClassTester that will define classes to be raised to signatures

Figure 1. RootbeerClassLoader API

Method Description
boolean containsClass(String name) Returns true if the class name is loaded
List<String> getAllVirtualMethods(String
signature)

Return the virtual method signatures with the same covariant sub-
signature for all classes where new has been invoked on the string
call graph

HierarchyGraph getHierarchyGraph(String className) Gets a HierarchyGraph for a class name
HierarchyClass getHierarchyClass(String className) Gets a HierarchyClass for a class name
List<NumberedType> getNumberedTypes() Get the numbered types in ascending order
Set<String> getAllClasses() Get all of the classes in the class hierarchy

Figure 2. ClassHierarchy API

the ClassTester once per class and the MethodTester once per
method.

The HierarchyClass keeps the class name, super class name
and interfaces as strings. It can return all of the HierarchyMethods
or find them by name or sub-signature. Its methods are described
in Figure 3.

The HierarchyMethod keeps the method name, return type,
parameter types and exception types as strings. It can return the
bytecode instructions of a method as HierarchyInstructions.
The HierarchyInstructions are string based representations
of the bytecode. The method signature and sub-signature can be
obtained. The class is described in Figure 4.

Method Description
List<String>
getExceptionTypes()

Returns the exceptions

HierarchyClass
getHierarchyClass()

Get the declaring Hierarchy-
Class

List
<HierarchyInstruction>
getInstructions()

Get the Instructions of the
method in a string based for-
mat

String getName() Get the name of the method
List<String>
getParameterTypes()

Get the types of the parame-
ters

String getReturnType() Get the return type
String getSignature() Get the signature of the

method
String
getSubSignature()

Get the subsignature of the
method

String
getCovarientSignature()

Get the covariant subsigna-
ture of the method

Figure 4. HierarchyMethod API

The HierarchyInstruction has two methods. The first is
String getName(), which keeps track of the name of the instruc-
tion (like “new”). The second is List<Operand> getOperands(),
representing the string-based Operand.

The Operand class keeps track of the instruction operand as
converted to a string using the class constant pool. It keeps track
of a string-based type that allows easy searching for class refs,
method refs and field refs. Its description is available in Figure 5.

Method Description
String getValue() Returns, as a string, the operand

parsed from the constant pool
String getType() Returns a type of the value. Can be

one of the following:

basic types byte, int, long, float, dou-
ble, string

descriptor types class ref,
method ref, field ref

Figure 5. Operand API

The HierarchyValueSwitch takes a method signature and
processes each HierarchyInstruction. It records types, method
and field references and new invokes. It is described in Figure 6

There is one HierarchyGraph instance per class name. It al-
lows the developer to retrieve all classes in the hierarchy, the direct
children of a parent class and the parents of a child class. It is de-
scribed in Figure 7.

The StringCallGraph (see Figure 8) keeps a mapping of
edges going out of a method signature and methods hitting a
method signature. It also can return all signatures and tell if a
signature is on the call graph.

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

22

Method Description
HierarchyMethod getMethodByName(String name) Searches for a method by name
HierarchyMethod getMethodBySubSignature(String
subSig)

Searches for a method by subsignature

List<String> getInterfaces() Get the interfaces as a string
List<HierarchyMethod> getMethods() Get the methods
HierarchyMethod getMethodCovarient(String css) Get the HierarchyMethod matching the input covariant subsigna-

ture
String getName() Get the name of the class
String getSuperClass() Get the name of the super class
boolean hasSuperClass() Returns true if the class has a super class

Figure 3. HierarchyClass API

Method Description
Set<String> getRefTypes() Get reference types
Set<String> getAllTypes() Get all types
Set<String> getArrayTypes() Get array types
Set<String> getMethodRefs() Get method refs
Set<String> getFieldRefs() Get field refs
Set<String> getNewInvokes() Get new invokes

Figure 6. HierarchyValueSwitch API

Method Description
List<String>
getAllClasses()

Get all the classes in the hier-
archy graph

List<String>
getChildren (String
parent)

Get the direct children of a
parent class or interface

List<String>
getParents (String
child)

Get the direct parents of a
child class or interface

Figure 7. HierarchyGraph API

Method Description
Set<String>
getAllSignatures()

Get all reachable method sig-
natures in the call graph

Set<String>
getForwardEdges(String
sourceSig)

Get the method signatures
that the sourceSig method
calls directly

Set<String>
getReverseEdges(String
destSig)

Get the method signatures
that call the destSig directly

boolean
isReachable(String
signature)

Returns true if the method sig-
nature is in the call graph

Figure 8. StringCallGraph API

There are two remaining useful classes in the soot.rbclass-
load package. MethodSignatureUtil can parse a method sig-
nature and return its name and types as strings. Any part of a
method signature can be modified and a SootMethod can be re-
turned. FieldSignatureUtil can parse a field signature and re-
turn its parts. Also any part of a field signature can be modified and
a SootField can be returned.

5. Evaluation
We have implemented our algorithm inside the ROOTBEER-specific
fork of Soot. We currently only load from Java bytecode. The code
is available online3 and we hope to integrate it in Soot in the near
future.

We have executed the test cases on a 4 core Intel Xeon Processor
(E5405) running at 2.00GHz with 16 Gb of RAM, running Linux
2.6.32-5-amd64 and JDK 1.6.0 45 64-bit.

Our test cases include our running example, and the SPECjvm2008
benchmark [6]. We measured the execution time with Soot’s built-
in feature, and used the Classmexer4 agent to measure the memory
used by the loaded SootClass objects. The overall memory usage
was calculated using the JVM’s global memory usage feature.

Note that we configured our program to run the SPARK [4]
points-to-analysis engine with default settings afterwards, in order
to validate that our method did not remove any necessary depen-
dency for analysis.

Test Case Classes
Loaded

Memory
Used
(Mb)

SootClass
Memory
(Mb)

Time (s)

Running
example
(Soot)

2031 885 139 91

Running
example
(RBC)

712 1357 25 105

SPEC jvm
2008 (Soot)

6539 3411 333 469

SPEC
jvm 2008
(RBC)

2737 3733 186 337

Table 2. Experimental results

We compare our implementation against the Soot class loader
by loading programs and taking measurements in the wjpp phase
in Table 2.

While we could have measured the overall memory used by the
Java virtual machine at any given point, we chose not to because
of the garbage collection’s impredictability as well as the fact that
newer garbage collectors typically work continuously in a separate
thread. These factors make it essentially impossible to know what
is the amount of memory really used in the program at a given
point. This is the reason why we measured the SootClass usage
separately.

3 https://github.com/pcpratts/soot/tree/feature/rbcl
4 http://www.javamex.com/classmexer/

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

23

A

B

java.lang.ObjectC

java.io.PrintStream

java.io.BufferedWriter

java.io.OutputStream

java.io.OutputStreamWriter

java.io.Closeable java.lang.Appendable

java.lang.Class

java.lang.StringBuilder

java.io.Writer

java.io.Flushable

java.lang.AbstractStringBuilder

java.lang.System

java.lang.Runtime java.lang.Stringjava.util.Properties

java.lang.StringBuffer

java.io.Serializable

java.lang.Comparablejava.util.Hashtable

java.io.PrintWriter

Figure 9. Subset of Class Dependencies for Listing 1

We notice a significant decrease in the number of classes loaded,
with a decrease in processing time for the large test case. Our
method requires significantly less information to be loaded from
the disk. This explains why the class loading performance improves
for larger test cases.

We include an illustration of a subset of the dependencies loaded
with the current class loader for our running example in Figure 9.
We show additional classes that would be loaded at the Signatures
level by Soot’s class loader with dashed edges. While significantly
truncated, it shows that even trivial programs require a significant
number of core Java classes to be loaded in memory.

6. Conclusion
We have shown data structures and algorithms to efficiently load a
Soot Scene. The new class loader loaded a Scene that had 58% to
64% less classes, representing memory savings of 44% to 82%.

Acknowledgments
Philip C. Pratt-Szeliga was supported by Syracuse University
and National Science Foundation grant number MCB-0746066 to
R.D.W.

References
[1] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual func-

tion calls. In Proceedings of the 11th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
OOPSLA ’96, pages 324–341. ACM, 1996. ISBN 0-89791-788-X.

[2] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In Proceedings of the
9th European Conference on Object-Oriented Programming, ECOOP
’95, pages 77–101. Springer-Verlag, 1995.

[3] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot framework
for Java program analysis: a retrospective. Presentation at the CETUS
Compiler Workshop, 2011.

[4] O. Lhoták. Spark: A flexible points-to analysis framework for Java.
Master’s thesis, McGill University, December 2002.

[5] P. Pratt-Szeliga, J. Fawcett, and R. Welch. Rootbeer: Seamlessly using
GPUs from Java. In High Performance Computing and Communica-
tion 2012 IEEE 9th International Conference on Embedded Software
and Systems (HPCC-ICESS), 2012 IEEE 14th International Confer-
ence on, pages 375–380, 2012.

[6] K. Shiv, K. Chow, Y. Wang, and D. Petrochenko. SPECjvm2008 per-
formance characterization. In Proceedings of the 2009 SPEC Bench-
mark Workshop on Computer Performance Evaluation and Bench-
marking, pages 17–35. Springer-Verlag, 2009. ISBN 978-3-540-
93798-2.

[7] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam,
E. Gagnon, and C. Godin. Practical virtual method call resolution for
Java. SIGPLAN Not., 35(10):264–280, Oct. 2000. ISSN 0362-1340.

[8] N. Umanee. Shimple: An investigation of static single assignment
form. Master’s thesis, McGill University, 2006.

[9] R. Vallée-Rai and L. J. Hendren. Jimple: Simplifying Java bytecode
for analyses and transformations. Technical report, McGill University,
1998.

[10] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot - a Java bytecode optimization framework. In Proceedings
of the 1999 conference of the Centre for Advanced Studies on Collab-
orative research, CASCON ’99, pages 13–. IBM Press, 1999.

Proc. 2nd International Workshop on State Of the Art in Java Program analysis (SOAP ’13)—Seattle, WA

24

