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ABSTRACT 
Side-effect analysis is a fundamental static analysis used to deter-
mine the memory locations modified or used by each program entity. 
For the programs with pointers, the analysis can be very imprecise. 
To improve the precision of side-effect analysis, many approaches 
design more elaborate background pointer analyses in order to 
obtain smaller side-effect sets, but very few approaches consider to 
achieve better precisions by refining the side-effect analysis algo-
rithms themselves. To address the problem, this paper presents a 
new side-effect analysis approach that uses Gay and Steensgaard’s 
fast escape analysis to filter superfluous side-effects. The approach 
does not need to modify the background pointer analysis and can 
filter side-effects in the intraprocedural level and the interprocedural 
level. The experimental results show that it can effectively improve 
the analysis precision within a short extra time. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – Compilers.  

General Terms 
Algorithms, Experimentation, Languages. 

Keywords 
Side-effect analysis, escape analysis, points-to analysis 

1. INTRODUCTION 
Side-effect analysis is a fundamental static analysis used by 

many software engineering tools to determine the memory loca-
tions modified or used by each program entity (e.g., method). For 
Java programs, it highly depends on pointer information in order 
to resolve the indirect memory accesses. The pointers also make the 
side-effect analysis difficult to be precise enough. To improve the 
precision of side-effect analysis, many approaches design more 
elaborate background pointer analyses [15] in order to obtain 
smaller side-effect sets [9, 16, 19, 24, 26, 30], but very few approaches 
consider to achieve better precisions by refining the side-effect 
analysis algorithms themselves. We believe improving the side-
effect analysis algorithms is also very important, because it can add 
extra precision to the analysis and focusing on the side-effect 
analysis algorithms themselves also can let the pointer analysis 
and side-effect analysis be evolved independently. 

For the improving of the side-effect analysis algorithms, in our 
previous work [23], we have used a lazy access path resolving tech-
nique to successfully improve the precision of side-effect analysis 
under an inclusion-based context-insensitive points-to analysis. 
Besides this approach, some other approaches [25, 27] also use escape 
analysis, a technique to determine whether an object can escape 
from its creation scopes, to improve the precision of side-effect 
analysis. However, they only use object-based escape analyses (e.g., 
[5, 6, 8]) which tag escape information to heap objects to refine side-
effect analysis. No research has considered to use the more efficient 
variable-based escape analyses (e.g., [3, 14]), which tag escape in-
formation to local variables instead of heap objects, in side-effect 
computation, and no research has presented any experimental data 
to show how much improvement can be achieved with escape anal-
ysis. To address these problems, this paper proposes an approach 
that incorporates Gay and Steensgaard’s fast variable-based escape 
analysis [14] in side-effect computation. The approach can use es-
cape information to filter superfluous side-effects during intraproce-
dural side-effect collection and interprocedural side-effect propaga-
tion and thereby improve the side-effect analysis precision. 

In the paper, we focus on the method level side-effect analysis 
problem. The approach firstly uses Spark inclusion-based context-
insensitive points-to analysis [18] to computer the pointer infor-
mation and uses Gay and Steensgaard’s escape analysis to deter-
mine whether the objects accessed by each reference variable are 
local to the enclosing method. Then, collecting the intraprocedural 
side-effects and propagating the side-effects from the callee 
methods to the caller methods can obtain the final side-effects for 
each method. During the collection of each method’s intraproce-
dural side-effects, all the object fields modified or used via the 
reference variables only accessing local objects will be filtered 
out from the side-effect sets. When propagating a callee’s side-
effects to a caller, a key issue is to filter out the modification or 
use effects on the objects that escape from the callee but do not 
escape from the caller. To filter out such superfluous side-effects, 
we represent a callee’s side-effects as access paths starting from 
formal parameters, if possible. Then, such access paths can be 
mapped to the ones starting from actual arguments in the caller, 
and we can use the variable-based escape information in the caller 
to filter out the superfluous parts of these side-effects.  

To validate the proposed approach, we conduct an experiment 
on several popular benchmark programs. The results show that the 
side-effect analysis with escape filter can effectively improve the 
analysis precision within a short extra time, especially when the 
class initialization calls and the finalize calls are ignored and the 
immutable types like java.lang.Integer, java.lang.Float, and 
java.lang.String are treated as build-in types. In the latter case, 
the newly proposed approach can achieve about 25.3% precision 
improvement for the total side-effects, in which the analysis pre-
cision for the modification effects can averagely be improved by 
34.3% and the analysis precision for the use effects can averagely 
be improved by 14.4%. 
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The rest of the paper is organized as follows. Section 2 pre-
sents a motivating example to show the problems in side-effect 
analysis. Section 3 introduces the newly proposed side-effect 
analysis method. Section 4 is the experimental study. Finally, we 
discuss the related work and conclude the paper. 

2. A MOTIVATING EXAMPLE 
This section presents a motivating example to show why we 

need escape information in side-effect analysis and how the es-
cape information can be used.  

 
class  C{   
    int  i ;  
} 
 

void  foo(C  a){      
1         C  b = new C( );   // O1 
2         b.i = 1; 
3         C  c = a; 
4         c.i = b.i; 

} 

void  bar( ){ 
5        C d = new C( );    // O2 
6        foo( d );   

} 
 
      void  zar( ){ 
          …… 
7        C e = new C( );    // O3 
8        foo( e );    
9        bar( ); 
          …… 

} 
Figure 1. A motivating example  

In Figure 1, suppose the objects created by statements 1, 5, and 
7 are modeled into abstract objects O1, O2, and O3, respectively. 
Then, with points-to analysis, we will find that the location accessed 
by access path b.i is O1.i, while the locations accessed by access 
path c.i could be O2.i or O3.i. Without knowing whether an object’s 
lifetime exceeds its creation method, it is very difficult to deter-
mine whether an object is visible outside a method. Therefore, in 
a normal side-effect analysis, all the reads or writes to O1, O2, and 
O3 will be considered having out-visible use or modification effects. 
For method foo, we will obtain a modification effect set {O1.i, 
O2.i, O3.i} and a use effect set {O1.i}. For method bar, its side-
effects include the ones in method foo. Because there is no intra-
procedural modification or use effect in bar, bar’s side-effects are 
just the same as that of method foo. According to such side-effect 
sets, we will find that there are define-use relationships between 
statements 8 and 9. Such relationships will forbid some complier 
optimizations that need to switch the order between these two 
statements. 

In fact, the above side-effect sets are safe but over-conservative. 
In the program of Figure 1, the lifetime of object O1 does not escape 
from method foo, and the lifetime of object O2 does not escape from 
method bar. For method foo, object O1 is not visible outside the 
method, and hence its modification or use effects do not contain O1.i. 
For method bar, since all the objects accessed inside it are not out-
visible, its side-effect sets are actually empty. With these side-effect 
sets, we can find that there is no real define-use relationship be-
tween statements 8 and 9. The two statements do not read or write 
the same locations, and hence their order can be safely switched. 

To avoid the superfluous side-effects due to non-out-visible 
locations, this paper firstly uses escape analysis to identify whether 
the objects accessed by each local variable are local to the enclosing 
method. Then, if a modification or use is performed via a local 
variable that only accesses local objects, the modification or use 
will be filtered out during side-effect collection. For example, in 
Figure 1, with an escape analysis, we can find that variable b in 
method foo only accesses local objects. Therefore, the modifica-
tions or uses via b.i will not be put into the side-effect sets of foo. 
No use effect will be put into the use set, and only a modification 
effect c.i will be put into the modification set. After resolving the 

access paths into locations, we can finally obtain two more precise 
side-effect sets {O2.i, O3.i} and ∅ for method foo. 

When propagating the side-effects from method foo into its 
caller bar, we shall note that object O2 is not visible outside bar, 
although it is visible outside foo. Therefore, O2.i in the side-effect 
sets of foo should not be put into the side-effect sets of bar, i.e., a 
callee’s side-effects should not directly be merged into its callers. 
To handle such cases, we firstly represent the side-effects with 
access paths on formal parameters as much as possible. For example, 
since c.i and a.i definitely access the same locations, the only out-
visible modification via c.i in foo can be represented as { a.i }. 
Then, the access paths in the callee’s side-effect sets will be mapped 
to the ones in the callers. a.i in method foo will be mapped to d.i 
in method bar. If the caller access paths access out-visible locations, 
these access paths will be put into the caller’s side-effect sets. 
Otherwise, they will be discarded. In method bar, with escape 
analysis, we can find that variable d only accesses local objects. 
Therefore, the caller access path d.i will not be put into the modi-
fication effect set of method bar, and bar’s side-effect sets are 
empty. By filtering the side-effects of the callees in the callers, we 
can obtain more precise side-effects for the caller methods.  

3. SIDE-EFFECT ANALYSIS WITH ESCAPE FILTER 
This section firstly introduces the escape analysis used in the 

paper. Then, we present the concept of interstatement must alias. 
With such alias, the modified or used access paths inside a method 
can be mapped to the access paths on formal parameters at the 
method entry. By representing the side-effects as entry access paths, 
we can filter a callee’s side-effects in the callers. Finally, we present 
the detail of the side-effect analysis algorithm which has an escape 
filter to avoid superfluous side-effects.  

3.1 Escape Analysis 
This paper uses Gay and Steensgaard’s fast algorithm [14] to 

do escape analysis. The algorithm establishes three predicates, i.e., 
fresh, escaped, and returned, which can be used in a combination 
to determine whether a local reference variable may access out-
visible objects. Each predicate is a map from local variables to 
Boolean values: 

fresh:        Local → Boolean, 
escaped:   Local → Boolean, 
returned:  Local →  Boolean. 

Here, fresh(v) = true indicates that variable v only accesses objects 
newly created by the enclosing method of v. escape(v) = true indi-
cates that variable v accesses an object possibly escaping from the 
enclosing method via static fields or instance fields. return(v) = 
true indicates that variable v accesses an object possibly escaping 
from the enclosing method via the method returns. 

Based on Gay and Steensgaard’s predicates, we define a pred-
icate isLocal(v) to determine whether a variable v can only access 
the objects whose lifetimes are limited to the enclosing method of v.  

isLocal(v) :=  fresh(v) ∧ ¬ escaped(v) ∧ ¬ returned(v) 
Predicate isLocal(v) is evaluated to true only when variable v just 
accesses newly created objects and the objects do not escape from 
the enclosing method of v via static fields, instance fields, or method 
returns. If isLocal(v) = true, then any modification or use to the fields 
of the objects accessed by v will not be put into the side-effect sets. 

In methods foo and bar of Figure 1, fresh(b) and fresh(d) are 
true, escaped(b) and escaped(d) are false, and no object escapes 
via method returns. Therefore, isLocal(b) and isLocal(d) are true. 
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While isLocal(a) and isLocal(c) are false because fresh(a) and 
fresh(c) are not true. According to the values of the isLocal predi-
cates, we can filter the modifications or uses via variables b or d 
out of the side-effect sets during the side-effect computation. 

3.2 Interstatement Must Alias Analysis 
In this paper, we use the forward interstatement must alias to 

map the inner access paths to the access paths on formal parame-
ters at the method entry. An interstatement must alias models the 
relation between access paths in different program sites [22]. The 
definition of the forward must alias is presented as following: 

Definition 1 (Forward Must Alias).  A forward must alias <m: 
α, n: β> indicates that when the program flow is from statement m 
to statement n, access path α in the latest occurrence of m always 
accesses the same physical location as access path β in the current 
occurrence of n. 

For example, in Figure 1, <Efoo: a.i, 4: c.i> is a forward must 
alias because from the view of statement 4, access path a.i in the 
latest occurrence of Efoo, method foo’s entry, always accesses the 
same memory location as access path c.i. According to this for-
ward must alias, we can represent the modification effects on c.i 
as access path a.i. These two representations have the same mean-
ing for side-effect computation. 

There can be different algorithms for interstatement must alias 
computation. This paper chooses the global value numbering [10] 
based algorithm presented in our previous work [23] to obtain the 
forward must aliases. The algorithm works on the SSA represen-
tation of a program. It is context-insensitive and can determine 
whether two instance field references or array element references 
definitely access the same locations in a very short time. 

3.3 The Side-Effect Analysis Algorithm 
As the computation of the modification effects and the computa-

tion of the use effects are almost the same, this section will only 
present the algorithm for modification effect computation. We focus 
on the method level side-effect analysis. During the analysis, the 
side-effects of a method m are represented with a pair <Am, Lm>, 
where Am is a set of access paths on m’s formal parameters and Lm is 
a set of abstract locations storing the side-effects that cannot be 
represented by set Am. After analysis, resolving the memory loca-
tions accessed by the access paths in Am and unify them with Lm can 
obtain the final location-based side-effects. 

The side-effect analysis of a method takes two steps: first, we 
collect the intraprocedural side-effects caused by the method itself; 
then, we merge the side-effects of the callee methods into the 
current method to obtain the total side-effects. Algorithm 1 pre-
sents the detailed algorithm. The first and the second outmost 
foreach loops correspond to the first and second steps, respectively. 
In the first step, for each assignment, we firstly check whether the 
modified access path can access an out-visible location with the 
isLocal predicate. Note that the side-effect analysis is performed 
on a three-address code like intermediate program representation. 
Each access path contains at most one field or array element ac-
cess. Therefore, if the base variable only refers to local objects, 
the modified location is definitely not out-visible and should be 
filtered out from the side-effect sets. Then, for an access path that 
accesses out-visible locations, we try to map the inner access path 
to an entry access path on some formal parameter with the inter-
statement must aliases. If an aliased map target is found, then the 
target access path will be added to set Am. Otherwise, the access 
path will be resolved to memory locations and put into Lm.  

In the second step, we merge the side-effects of the callee 

methods to the callers. Let m be the caller and Q be the callee. 
Then, LQ, the abstract location part of Q’s side-effects, will directly 
be merged into Lm, the modified abstract location set of method m. 
For the access path form side-effects in AQ, we firstly map them 
to the access paths on Q’s actual arguments. Then, these access 
paths can be treated as normal modified access paths. We can use 
the isLocal predicate to filter out the modifications to local objects, 
and put the remaining side-effects into either Am or Lm depending 
on whether the argument-based access paths can be mapped to 
some must aliased entry access paths. 

Since the side-effects of a caller depend on the side-effects of its 
callees, the methods in a program are analyzed in bottom-up manner. 
When there are recursions, we iteratively compute the side-effect 
sets until a fixed point is reached. To be efficient, the algorithm 
follows the strongly-connected-component (SCC) based computing 
order [11] and restricts the iterative computation to the SCCs in a 
call graph. In this way, unnecessary iterations can be avoided. 

In Figure 1, for method foo, there are two modified access paths: 
b.i and c.i. Because isLocal(b) is true, b.i will be filtered out during 
the first step of the intra-procedural side-effect collection, and it will 
not be added to the modification effect set of method foo. Since 
isLocal(c) is false, c.i will not be filtered out, and we will try to map 
c.i to an entry access path. According to a forward must alias <Efoo: 
a.i, 4: c.i>, c.i can be mapped to entry access path a.i. The access 
path a.i will then be put into Afoo, the access path part of method 
foo’s modification effect set. As all the access paths accessing out-
visible locations can be mapped to the entry access paths, Lfoo, the 
location part of method foo’s modification effect set will be empty.  

For method bar, since the method has no intraprocedural side-
effect, we only need to merge the side-effects of callee method foo 
into bar’s side-effect sets. The only side-effect of foo, namely a.i, 
             

Algorithm 1: Side-Effect Analysis 
Input:  m: method 
Output: <Am, Lm> 

let Em be the entry of m, and S be the set of all assignments in m; 
let Alias(m) be the interstatement must aliases in m; 
let C be the set of all method calls in m;  
let Loc(α) be the abstract locations accessed by access path α; 
let base(α) be the base variable of access path α; 
foreach “n : α = . . .” ∈ S do 

if  ¬ isLocal( base(α) )  then 
if  ∃β. <Em: β, n: α> ∈ Alias(m)  then 

Am := Am ∪ {β}; 
else 

Lm := Lm  ∪ Loc(α); 
end 

end 
end 
foreach  c ∈ C  do 

foreach callee Q of c do 
<AQ, LQ> := SideEffect(Q); 
Lm := Lm ∪ LQ; 
foreach  α∈ AQ  do 

γ := access path on actuals mapped from α in Q; 
if  ¬ isLocal( base(γ) )  then 

if  ∃β. <Em: β, c: γ> ∈ Alias(m)  then 
Am := Am ∪ {β}; 

else 
Lm := Lm  ∪ Loc(γ); 

end 
end 

end 
end 

end 
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will firstly be mapped to access path d.i at the callsite of foo, i.e., 
statement 6. Then, as isLocal(d) is true, the side-effect represented 
by d.i will be filtered out. No element will be put into method 
bar’s side-effect sets, and the method is side-effect free. 

In the algorithm, we use the isLocal predicate based escape 
filter to check the properties of local variables and thereby filter out 
the modification or use effects on local objects. As the number of 
local variables in a method is usually much smaller than the number 
of abstract objects possibly referred to by them, this filter is usually 
more efficient than an object-based filter that checks the property 
of each object to filter superfluous side-effects. The algorithm 
also incorporates the idea of lazy access path resolving [23] in side-
effect analysis, since the accessed locations of many access paths 
are resolved later in the caller methods instead of in the methods 
modifying or using the access paths. This also adds another source 
for the precision improvement of the side-effect analysis. 

4. EXPERIMENT 
To validate the proposed side-effect analysis method, we im-

plement Gay and Steensgaard’s fast escape analysis, the GVN-
based interstatement must alias analysis, and the new side-effect 
analysis algorithm on Soot 2.4.0 [28] with Spark [18] inclusion-
based context-insensitive points-to analysis as the base. The analysis 
is performed on Soot’s Shimple SSA intermediate representation. 
In the points-to analysis, we name objects according to their allo-
cation sites. Each instance field is counted as a memory location, 
and after analysis all the access path based side-effect representa-
tions are resolved to their accessed locations. As a prototype, the 
implementation does not consider the side-effects of native methods, 
but such methods do be simulated during pointer analysis. 

4.1 Experiment Settings 
Based on the implementation, the paper randomly selects several 

benchmark programs used in the previous researches on pointer 
analysis or side-effect analysis for experimental study. As presented 
in Table 1, the programs include soot-c from the Ashes suite [1], 
polyglot 1.3.5 [21], ps from DaCapo benchmark suite version 
beta-2006-08 [4], 213x_javac and 202_jess from SPECjvm2008 [2] 
(two programs used as the inputs of program compress), and an-
other 6 programs from DaCapo benchmark suite version 2006-10-
MR2-xdeps [4]. There are also other programs in the above bench-
mark suites. The experimental results for them are similar to the 
ones in Table 1. For space limitation, we will not list them here. In 
Table 1, column Classes counts the classes analyzed by Soot. Col-
umn Methods counts the reachable methods in Spark’s call graph. 
These methods are processed by size-effect analysis. Column Spark 
Time shows the time consumed by Spark points-to analysis. 

Table 1. Experiment subjects 

 
 
In the experiment, we compare the newly proposed side-effect 

analysis which has an escape filter (Esc) with a normal strongly-
connected-component based side-effect analysis (Norm) [11]. The 
normal analysis considers all the methods in a SCC of the call graph 
having the same side-effects. It firstly finds the SCCs of the call 
graph. Then, merging the side-effects of all the methods in a SCC 
and their callees can find the side-effects for each method in the 
SCC. In the paper, all the experiment results are collected on a PC 
with Intel Core i5 2.8 GHz CPU, 16G RAM, and JDK 1.5.0_09.  

4.2 Experimental Results and Discussions 
Table 2 presents the first experimental results. In the table, 

column Time lists the time spent in the whole side-effect analysis 
phase, including the time spent in the escape analysis and the 
must alias analysis, but not including the time spent in bytecode 
parsing and points-to analysis. Column Mod Locations and Use 
Locations count the sizes of modification sets and the sizes of 
use sets, respectively. From the table, we can see that for all 
benchmarks, the new analysis method averagely reduces about 
11.5% of a method’s side-effect sets. The analysis time is averagely 
5.8 times of the normal algorithm. Although much more than the 
old one, we shall note that the usual analysis time is still in 1 
minute, and the increased analysis time is not too much compared 
to the total time spent in both the side-effect analysis and the pre-
processing like bytecode parsing and points-to analysis before 
side-effect analysis. A major reason for that the new algorithm 
takes more time is because it needs fixed point iteration on the 
strongly-connected-components of the call graph, while the normal

Table 2. Experimental results for the normal and the newly proposed side-effect analysis methods 
Time (s) Mod Locations Use Locations Improvement (%) Subject 

Norm Esc Norm Esc Norm Esc Mod Use Total 
soot_c 15.2 58.3 10390 8975 8596 7602 13.6 11.6 12.7 

polyglot 2.6 20.2 10487 9393 8002 7124 10.4 11.0 10.7 
antlr 7.0 37.2 10930 9418 8845 7912 13.8 10.6 12.4 

jython 5.6 49.2 14670 13317 11560 10575 9.2 8.5 8.9 
bloat 23.8 97.4 13781 11657 10925 9809 15.4 10.2 13.1 
pmd 8.4 31.1 11465 10101 9505 8521 11.9 10.4 11.2 
ps 31.9 117.0 16185 14003 12468 11349 13.5 8.9 11.5 
fop 13.3 97.4 16328 14519 12164 10942 11.1 10.1 10.6 

213x_javac 8.6 36.9 11969 10312 9427 8425 13.8 10.6 12.4 
202_jess 12.4 113.0 16266 14627 12405 11131 12.3 10.3 11.4 
Average  ×5.8     12.5 10.2 11.5 

Name Description Classes Methods Spark 
Time(s) 

soot_c A bytecode analysis 
framework for Java 2754 10309 19.2 

polyglot A framework for Java 
language extensions 2327 8195 20.2 

antlr A parser and lexical ana-
lyzer generator 2213 8762 11.9 

jython A Python interpreter 2651 11645 16.1 

bloat A Java bytecode optimizer 2380 10737 18.4 

pmd A Java source code ana-
lyzer 2869 10038 11.8 

ps A postscript interpreter 5104 13378 52.8 

fop An output-independent 
print formatter 6625 12704 50.6 

213x_javac JDK Java compiler 2250 9162 14.8 

202_jess A Java expert shell system 5071 12606 44.8 
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Table 3. Experimental results for the side-effect analyses with special treatments to the class 
initialization calls, the finalize calls, and the immutable types 

Time (s) Mod Locations Use Locations Improvement (%) 
Subject 

Norm Esc Norm Esc Norm Esc Mod Use Total 
soot_c 7.3 28.6 4226 2567 3516 2931 39.3 16.6 29.0 

polyglot 2.0 16.1 3931 2520 3109 2586 35.9 16.8 27.5 
antlr 4.1 18.6 4333 2710 3712 3126 37.5 15.8 27.5 

jython 4.4 49.2 7265 5372 5932 5283 26.1 10.9 19.3 
bloat 9.4 47.7 6666 4455 5500 4704 33.2 14.5 24.7 
pmd 5.3 16.8 5416 3549 4822 4093 34.5 15.1 25.4 
ps 11.6 85.9 6012 3874 4900 4402 35.6 10.2 24.2 
fop 7.7 60.4 6034 4104 4862 4195 32.0 13.7 23.9 

213x_javac 5.3 20.7 5003 3181 4077 3426 36.3 15.9 27.2 
202_jess 6.9 64.6 6267 4216 5233 4487 32.7 14.3 24.3 
Average  ×6.4     34.3 14.4 25.3 

 
algorithm does not demand any iterative computation on recursive 
loops [11].  

In the previous work [23], we have found that a great threat to 
the precision improvement is a couple of huge side-effect sets 
(mainly belonging to the Java library methods) which are hard to 
refine but widely propagated due to the over-conservative call 
graph. In practice, to suffer less from them, we can ignore the 
implicit class initialization calls and finalize calls and treat the 
immutable types including java.lang.Object, java.lang.String, 
java.lang.Class, and the wrapper classes corresponding to char, 
int, float, and so on, as build-in types [23]. These treatments are 
reasonable because ignoring the class initialization calls and the 
finalize calls usually does not affect the understanding of a method’s 
behavior and the objects of immutable types are values instead of 
variable memory locations. Such treatments make the analysis 
less safe, but may still benefit many applications like program 
understanding and software maintenance. 

Table 3 presents the experimental results for the side-effect 
analyses with special treatments to the class initialization calls, 
the finalize calls, and the immutable types. From this table, we can 
see that with the treatments presented in the last paragraph the 
newly proposed algorithm averagely reduces 25.3% of each 
method’s side-effects. The precision improvement for the modifica-
tion effects is more significant. The new analysis averagely gets 
34.3% precision improvement for the modification effect compu-
tation. Although demanding 6.4 times of the analysis time, the 
average side-effect analysis time is just 40.9 seconds. These results 
indicate that the new side-effect analysis method can effectively 
improve the analysis precision within a short extra time, especially 
for the modification effect analysis. 

 
Table 4. Experimental comparison between the lazy access 

path resolving based side-effect analysis and the newly proposed 
side-effect analysis 

Improvement (%) Subject Time 
(s) Mod Use 

Mod Use Total
soot_c 29.3 2782 3115 7.7 5.9 6.8 

polyglot 15.3 2750 2783 8.4 7.1 7.7 
antlr 15.0 2949 3329 8.1 6.1 7.0 

jython 32.0 5793 5640 7.3 6.3 6.8 
bloat 46.9 4771 4974 6.6 5.4 6.0 
pmd 15.8 3860 4357 8.1 6.1 7.0 
ps 72.0 4150 4663 6.7 5.6 6.1 
fop 48.2 4389 4464 6.6 6.0 6.3 

213x_javac 21.2 3455 3652 7.8 6.1 6.9 
202_jess 60.6 4521 4775 6.8 6.0 6.4 
Average    7.4 6.1 6.7 

As mentioned in Section 3.3, the newly proposed approach also 
incorporates the idea of lazy access path resolving (LAPR) in 
side-effect analysis. To investigate whether the new approach 
does add more precision to the LAPR based side-effect analysis 
[23], we also compare it with the LAPR based side-effect analysis 
in experiment. Table 4 presents the experimental comparison 
results. In the table, column Time, Mod, and Use list the con-
sumed time, the modification effect set size, and the use effect 
size of the LAPR based side-effect analysis, respectively. Column 
Improvement shows the precision improvements of the newly 
proposed side-effect analysis compared to the LAPR based side-
effect analysis in modification effect computation, use effect 
computation, and total side-effect computation. From the table, 
we can see that the new analysis algorithm improves the side-
effect analysis precision by 6.7% compared to the LAPR based 
algorithm. Their analysis time is very close. This means that using 
the escape filter can add more precision to the LAPR based side-
effect analysis with very little extra cost. 

5. RELATED WORK 
There is a large body of work on side-effect analysis for lan-

guages with pointers. Clausen [9] proposes a field-based approach to 
compute side-effects for Java programs. The approach does not 
use any pointer information, and the instances of a field in different 
objects are not distinguished. Ryder et al. [26] present a general 
framework for modification side-effect analysis of C programs. 
They use alias analysis as a base for side-effect computation. Ra-
zafimahefa [24] presents algorithms for side-effect analysis for Java 
based on context-insensitive type-based analysis and refers-to 
analysis. Milanova et al. [19] propose a side-effect analysis for Java 
based on object-sensitive points-to analysis. Le et al. [16] com-
pute the side-effects for Java programs based on Spark context-
insensitive points-to analysis and use the side-effect information 
in compiler optimization. Xue et al. [30] propose a method to 
compute side-effects for incomplete Java programs. Qian et al. 
[23] introduce a lazy access path resolving based method to im-
prove the side-effect analysis precision under inclusion-based 
context-insensitive pointer analysis. Flexeder et al. [13] propose a 
method to compute side-effects for assemble code. All the above 
approaches do not use escape information in side-effect 
computation. Rountev [25] and Sălcianu and Rinard [27]’s ap-
proaches check whether an object is reachable from the outside of 
a method to determine whether the object escapes, and thereby 
use the escape information to filter superfluous side-effects. These 
approaches use the object-based escape information. As discussed 
before, such information is more complex to be used compared to 
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the variable-based escape information used by this paper. What’s 
more, both the two researches do not investigate to what extent 
the escape information can be used to improve the side-effect 
analysis precision. Cherem and Rugina [7] propose an approach to 
build special escape and effect summaries for each method. They 
do not compute the detailed side-effect sets. Therefore, the ap-
proach is not comparable with ours. 

Many escape analyses with flavors in different precisions and 
efficiency have been proposed in literature [3, 5-8, 12, 14, 17, 20, 
29]. Some of the analyses are context-insensitive (e.g., [6, 14]), 
while some others are context-sensitive (e.g., [5, 29]). Several 
escape analyses can even compute flow-sensitive escape informa-
tion (e.g., [8, 20, 29]). Most of the existing escape analyses are 
object-based (e.g., [5, 6, 8, 20, 29]), which tag escape information 
on heap objects to indicate whether an object can possibly escape 
from its creation scopes. There are also some variable-based escape 
analyses which tag escape information on local reference variables 
instead of heap objects to indicate whether an object can escape 
(e.g., [3, 14]). These analyses are usually less precise but much 
more efficient. This paper only investigates the effects of Gay and 
Steensgaard’s lightweight context-insensitive variable-based escape 
analysis on side-effect computation. The work cannot comprehen-
sively show the power of escape analysis on side-effect computation. 
With a more expensive escape analysis, more precision improve-
ment may be achieved. In the future, we also plan to study other 
escape analysis methods to improve side-effect computation.  

6. CONCLUSION 
People believe that escape information can be used to improve 

the precision of side-effect analysis. But, how can the escape 
information be used and how much improvement can be achieved? 
These questions have not been comprehensively answered. To 
address the problems, this paper designs a new side-effect analysis 
using Gay and Steensgaard’s fast escape analysis to filter super-
fluous side-effects. The experimental study shows that the new 
analysis with escape filter can effectively improve the side-effect 
analysis precision within a short extra time. This indicates that the 
escape information does be valuable in side-effect computation. 
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