
Data Distribution Support on Distributed Shared Memory Multiprocessors

Rohit Chandra, Ding-Kai Chen, Robert Cox, Dror E. Maydan, Nenad Nedeljkovic Jennifer M. Anderson

Silicon Graphics Computer Systems Digital Western Research Lab

Mountain View, CA Palo Alto, CA

Abstract

Cache-coherent multiprocessors with distributed shared
memory are becoming increasingly popular for parallel comput-

ing. However; obtaining high pe$ormance on these machines
mquires that an application execute with good data locality. In
addition to making efiective use of caches, it is often necessary to
distribute data structures across the local memories of the pro-
cessing nodes, thereby reducing the latency of cache misses.

While processor caches can exploit temporal locality on both
local and remote data, many applications, such as those without
temporal reuse or with working sets larger than the cache, are
unable to benefit from cache locality alone. To obtain high per-
formance on such applications, it is often necessary to distribute
the data structures in the program so that the cache misses of
each processor are more likely to be satisfied from local rather
than remote memory.

We have designed a set of abstractions for performing data

distribution in the context of explicitly parallel programs and
implemented them within the SGZ MZPSpro compiler system. Our
system incorporates many unique features to enhance both pto-
grammability and performance. We address the former by pro-
viding a very simple ptvgmmming model with extensive support

for emor detection. Reganiing performance, we carefully design
the user abstractions with the wuierlying compiler optimitations
in mind, we incorporate several optimization techniques to gen-
erate eJEcient code for accessing distributed data, and we pro-
vide a tight integration of these techniques with other
optimizations within the compiler Our initial experience sug-
gests that the directives are easy to use and can yield substantial
performance gains, in some cases by as much as a factor of 3
over the same codes without distribution.

In this paper we describe a set of data distribution abstractions
for CC-NUMA multiprocessors. We have designed these
abstractions as a set of directives that allow the programmer to
manually control the distribution of array data structures in
explicitly parallel programs. We provide a small set of abstrac-
tions that are easy to use. yet expressive enough for real applica-
tions. Our directives are integrated with existing mechanisms for
exploiting loop-level parallelism. Furthermore, the directives are
designed keeping in mind the compiler’s ability to generate effi-
cient code for accesses to distributed data. Taken together, our
abstractions enable the programmer to exploit loop-level paral-
lelism and exercise fine control over both data distribution and
computation scheduling. We have implemented these directives
in the SGI MIPSpro7.1 commercial compiler system targeting
the Origin-2000 multiprocessor.

1 Introduction

Cache-coherent shared memory multiprocessors are attractive
for parallel programming since they provide a uniform view of
memory, with inter-processor communication specified implic-
itly through load and store operations to shared memory loca-
tions. To enable scaling beyond bus-based machines, modern
multiprocessors typically contain a large number of processing
nodes each with one or more processors and a portion of main
memory connected through a scalable interconnection network.
This class of machines is termed CC-NUMA (cache-coherent
non-uniform memory access) and includes several commercially
available systems, such as Convex Exemplar, Sequent SliNG,
and SGI Origin-2000.

The primary concern when distributing data on CC-NUMA
architectures is that physical placement of data must be per-
formed in units of an operating system page (16 KB on the Ori-
gin-2000). This can lead to false sharing at the page level when
multiple data items that we wish to place in local memories of
distinct processors happen to lie within the same page. In such
situations it becomes necessary to move data objects within the
virtual address space of the process so that they now belong to
distinct pages. However, moving data within the virtual address
space of a process is not always legal and must be done carefully
to be correct. Performing these transformations safely and effi-
ciently is a key component of our approach.

Although global memory is uniformly accessible by all the pro-
cessors, remote memory latencies are typically much larger than
local memory latencies (e.g., 2-3 times on the Origin-2000).

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM.
Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

PLDI ‘97 Las Vegas, NV, USA

0 1997 ACM 0-89791~907-6/9710006...$3.50

The main contributions of this paper are the following. We
present a set of abstractions for controlling loop scheduling and
data distribution on CC-NUMA architectures, and describe the
implementation of these abstractions within a production com-
piler. The unique aspects of our system include extensive error-
detection features, support for separate compilation across multi-
ple files, optimization techniques to generate efficient code for
distributed arrays, and tight integration of data distribution opti-
mizations with other loop-level optimixations in the compiler.

The rest of the paper is organized as follows. Section 2 provides
an overview of the Origin-2000 architecture. Section 3 contains a

334

detailed description of our directives for parallelism and data dis-
tribution. In Section 4 we describe the implementation of these
directives within the compiler and the runtime system. Section 5
describes our scheme for automatically propagating distribution
directives across subroutine calls. Section 6 outlines our support
for error detection. Section 7 presents the optimizations per-
formed by the compiler to efficiently support these constructs.
We present performance results on some applications in
Section 8, discuss related work in Section 9, and offer conclud-
ing remarks in Section 10.

2 Overview of the Origin-2000

Figure 1 shows the high-level architecture of the Origin-2000
[LL97]. %o 195 MHz MIPS RlOOOO processors together with a
portion of the shared memory are connected through a hub, and
multiple such nodes are connected together in a hypercube
through a switch-based interconnect.. Each processor has sepa-
rate on-chip instruction and data caches (32KB each, 32-byte line
size), and a unified off-chip cache (typically l-4MB, 128-byte
line size), all two-way set associative. The hub maintains cache
coherence across processors using a directory-based invalidation
protocol. The latency of a miss to local memory is about 70 pro-
cessor cycles, while a miss to the remote memory of another pro-
cessor ranges from I10 to 180 cycles.

The operating system on the Origin-2000 supports data alloca-
tion at the granularity of a physical page (16Kbytes). It provides
a default first-touch page allocation policy where a page is allo-
cated from the local memory of the processor incurring the page
fault, as well as an optional round-robin policy where pages are
allocated in a round-robin fashion across processors.

3 Programming Model

In this section we provide a detailed description of our program-
ming model [SGI96]. We first give a brief overview of the direc-
tives to exploit loop-level parallelism. We then describe our data
distribution directives, with particular emphasis on our approach
to overcoming the page granularity limitations. Finally, we
describe the mechanisms to control the scheduling of parallel
loops.

3.1 Existing Directives for Loop Parallelization

The code segment below illustrates our commonly used directive
for specifying parallelism.

c$doacross local(i) shared(n, A)
doi= I,n

A(i) = 2*i
en&o

The a&cross directive specifies that all the iterations of the i
loop can be executed concurrently. The local and shared clauses
specify that each iteration should have a local instance of the
variable i, while the variables A and n should be shared across all
the iterations and can be accessed directly through shared mem-
ory references. It is assumed that all iterations are fully concur-
rent with an implicit barrier at the end of the doacross loop. The

. . .

I Switch-Based Interconnect
I

Figure l. Origin-2000 Architecture Overview.

partitioning of iterations across processors may be controlled
with an optional schedtype clause, and additional synchroniza-
tion, if required, must be explicitly specified by the programmer
using constructs such as locks and barriers.

We also support the parallel execution of nested loops through
the nest clause on a doacross directive. For instance, in the fol-
lowing example all iterations in the (i,jj iteration space can be
executed concurrently.

c$a’oacross nest (i,j) local (i,j) shared (m,n,B)
do i = 1, n

do j = I.m

B(j.i) = i+j
enaifo

enaiio

3.2 Extensions for Data Distribution

Our data distribution support focuses on regular distributions of
arrays in Fortran. Our directives are similar to the basic data dis-
tribution directive in HPF (High Performance Fortran) [Lov93,
KLS+94, HPM-971, as shown below.

real*8 A(m, n, . . .)
c$distribute A (<dist>, <dist>, . . .)

<dist> may be. one of block, cyclic, cyclic(<expr>), or *, with
the same meaning as in HPF.

Distribution may be specified for both global and local arrays,
including dynamically sized local arrays. There are no restric-
tions on the size or the assigned number of processors for an
array dimension. The number of processors in each distributed
dimension is determined at program start-up time, which enables
the same executable to run with different number of processors.
Furthermore, distribute directive can contain an optional onto
clause specifying how the total number of processors should be
assigned across multiple distributed array dimensions.

We consider two possible ways of supporting array distribution.
The simple approach attempts to map each processor’s portion of
the distributed array onto physical pages allocated from within
the local memory of that processor (regular distribution). This

335

approach is simple and easy to implement, but is limited by the
underlying page granularity. The aggressive approach reorga-
nizes the layout of the array within the virtual address space of
the process, thereby overcoming the page-granularity limitations
and guaranteeing the desired distribution (reshaped distribution).
However, changing the layout of an array is not always legal
since it may violate storage layout assumptions in the program.
Furthermore, it can incur additional array addressing overhead.

The choice between these two implementations depends on the
size and layout of individual portions of the distributed array and
can vary for different arrays within the same program. For
instance, in the example

POiPI :p2;
, 1 1

real *8 A (1000, IOOO)
I 1 1
, 1 *

c$distribute A (*, block)
I 1 1
1 *
1 1
I 1 1
I 4 I

I 1 1

an individual portion is a single contiguous piece of size 8*10‘%
bytes, assuming Fortran style column-major layout and P proces-
sors. Since an individual portion may be much larger than a page,
regular distribution may be sufficient for this array. On the other
hand, in the example

real*8 A (lC#, IOOO)
c$distribute A (block *)

__---------

I
PO

PI
__-_---------

P2
.--__------ -

an individual portion is still 8*106/P bytes, but due to the col-
umn-major layout of the array each contiguous piece is only
8*103/p bytes, significantly less than a page. In such situations
reshaped data distribution is desirable.

As we can see, the choice between regular and reshaped distribu-
tion may depend on array bounds and the number of processors,
which are typically symbolic values not known at compile time.
Rather than leave the implementation choice to the compiler, we
allow the programmer to choose between regular and reshaped
distributions using the directives

&distribute
c$distribute-reshape

A program can contain both distribute and distribute-reshape
arrays. A particular array, however, must be declared either dis-
tribute or distribute-reshape (or neither, of course) for the dura-
tion of the program, and cannot be dynamically switched
between the two kinds of distributions.

3.2.1 Restrictions on Data Reshaping

Array reshaping is legal only under certain conditions related to
storage and sequence assumptions about that array and to passing
arrays as subroutine arguments.

First, a reshaped array cannot be equivalenced to another array,
either explicitly through an equivalence statement or implicitly

through multiple declarations of a common block. If an array in a
common block is reshaped, then each declaration of that common
block must (a) contain an array at the same offset within the com-
mon block, (b) declare that array with the same number of
dimensions, each of the same size, and (c) specify the same
reshaped distribution for the array.

The second restriction concerns passing a reshaped array as an
argument to a subroutine. If the entire array is passed as an argu-
ment, then the number of dimensions and the size of each dimen-
sion in the actual and the formal parameter must match exactly.
On the other hand, passing an element of a reshaped array’ is
treated as passing a portion of a distributed array (the size. and
shape of the portion depend on the array distribution, as illus-
trated by the example below). The called procedure treats the
incoming parameter as a non-distributed (i.e., standard Fortran)
array. The declared bounds on the formal parameter are required
not to exceed the size of the distributed array portion passed in as
the actual argument.

For instance, in the example

real*8A(lOOO)
c$distribute-reshape A (cycfic(5))
do i=l,lt390,5

call mysub (A(i))
enddo

end
subroutine mysub (X)
real *8 X(5)
. . .

end

the main program calls subroutine mysub once for each portion
(5 elements) of the reshaped array A. The declared size of the for-
mal parameter X in mysub can therefore be at most 5 elements.

Given these restrictions, it can be difficult for the programmer to
correctly reshape arrays in a large application. We make this task
easier in multiple ways. First, the programmer does not need to
specify reshaped distributions on formal parameters of subrou-
tines; distribute-reshape directives need to be supplied only at
array definition points, and the compiler automatically propa-
gates them down a call chain (Section 5). Second, we provide
extensive error-detection support (both compile-time and mnt-
ime) to enforce the consistency of reshaped arrays (Section 6).
Finally, we provide a rich set of intrinsics for traversing the indi-
vidual portions of a distributed array [SG196]. Taken together,
these features make it significantly easier to distribute data in
large applications.

3.3 Dynamic Data Redistribution

Dynamic data redistribution may be useful when an application
needs a different distribution on the same array in two distinct
phases of the program. We therefore provide the following redis-
tribute directive

1. We treat call sub(A) as passing the entire array A, and call
sub(A(O)J and call sub (A(i)) as passing an element of A to sub.

336

Original loop (with affinity for a distributed array of size n):

c$doacross afjhity (i) = &ta(A(s*i+c))
do i=LB. UB, step

Block distribution: (b =

dop = 0, P-l
do i = max(LB Pb - c fT]), min(UB,[(p+‘)sb-C-‘]),step

Cyclic distribution: (s=l. the expressions for s>l are omitteq for brevity)

dop=O,P-1

doi=LB+ ((p-LB-c)modP),UB,P

Block-cyclic: (cyclic(k))

(UB)s+c+l -1

kP 1
min(UB, (P+l)k-c-1 +kPj

s

c$redist’bute A (<dist>, <dist>, . . .)

where <dist> may be one of block, cyclic, cyclic(<expr>), or *.
Redistribute is an executable statement that has global effect. We
do not allow redistribution of reshaped arrays - as discussed later,
dynamic reshaping severely restricts compiler optimizations of
reshaped data distributions and can result in inefficient code.

3.4 AfGnity Scheduling

Along with data distribution we allow the user to control the
scheduling of the iterations of a parallel loop across processors
through an optional affinity clause on a doacross directive (see
Section 3.1).

real *8 A(n)
&distribute A(block)
c$doacross local (i) shared(n, A) afinity (i)=data(A(i))
do i=l,n

A(i) = i*i
e&do

The affinity clause specifies that iteration i should execute on the
processor that contains element A(i) of the distributed array A
(the distribution can be either regular or reshaped). Simple linear
expressions such as A(p*i+q) are also allowed, but p and q must
be literal constants, with p non-negative.

In summary, a programmer can use the distribute and
distribute-reshape directives to distribute the key arrays in the
program, along with the afiity clause on ~YXUYOSS loops to
ensure that each loop iteration and the data referenced in that
iteration are collocated on the same processor.

Figure 2. Implementing Affinity Scheduling.

4 Implementation of Basic Features

We now describe the implementation of our progmmming
model. We focus on reshaped arrays and give only a brief over-
view of the implementation of the other features.

4.1 Affinity Scheduling

We implement affinity scheduling by transforming the loop into a
doubly (or triply) nested loop, where the outermost loop
traverses the processors in the distributed dimension, and the
inner loop(s) traverse each processor’s elements of the distrib-
uted array. Our transformations, similar to those described by
Hiranandani et al. [HKM+93], are reproduced in Figure 2.

4.2 Regular Distributions

Regular data distribution only affects the underlying page alloca-
tion. Its implementation, therefore, is simply an operating system
call to allocate the physical pages for each portion of the distrib-
uted array from within the local memory of the corresponding
processor. This system call is the only OS support required to
implement both regular and reshaped data distribution, and it
overrides the default first-touch page allocation policy.

This system call for page allocation is generated within the com-
piled code for local arrays. For common block arrays the object
file is annotated with information about array dimensions and
their specified distributions. At program start-up time the runtime
library reads this information and makes the appropriate operat-
ing system call. Finally, a redistribute directive also translates
into a runtime call to remap the pages for the array.

337

4.3 Reshaped Distributions

The implementation of the distribute-reshape must guarantee the
desired distribution and is allowed to change the layout of the
array in the virtual address space.

Rather than simply padding the array portions up to the next page
boundary, we transform a reshaped array into a processor-array
with each element of the processor-array in turn pointing to the
array elements belonging to that processor (see Figure 3).

For a single reshaped dimension a reference A(i) is transformed
as shown in Table 1 (the transformed reference is shown in C
syntax). Our transformation of a reference is similar to that
described by Anderson, Amarasinghe, and Lam [AAL95]. The
first dimension of each reference is the index into the processor
array (the processor containing element i), while the remaining
dimensions index into the processor’s portion of the array to
locate element i. In this table N is the size of the array dimension,
P is the number of processors assigned to that dimension, b is the
size of a processor portion for a block distribution, and k is the
chunk size for a cyclic(k) distribution. The transformation for a
reshaped array distributed in multiple dimensions is a simple
composition of this basic scheme.

~~

Table 1. ‘Itansformation of Reshaped Array References

This implementation scheme allows us to manage storage for
reshaped arrays in a space-efficient fashion. Since each proces-
sor’s portion of a distributed array can be allocated indepen-
dently of the other portions, each processor allocates a pool of
storage from the shared heap, maps the pages for this pool of
storage from within its local memory, and allocates its potion of
each reshaped array from this pool of memory. We can therefore
avoid padding the ends of each portion up to a page boundary.

As shown in Table 1, a transformed reference to a reshaped array
contains integer divide and remainder operations (div and mod).
These operations are extremely expensive on modem micropro-
cessors - our optimizations for reducing their impact is the sub-
ject of Section 7.

5 Propagating Reshape Directives

As mentioned in Section 3, when a reshaped array is passed as an
argument to another subroutine, we automatically propagate the
distribute-reshape directive to the called subroutine.

There are two main issues m supporting this feature. The first is
that it should work correctly with separate compilation, so that
we can propagate the directive to subroutines that may be defined
in other, separately compiled files. We do so in a way that is sim-
ilar to a C++ template instantiation mechanism [Str94]. Briefly,
for each user source file, the compiler maintains a shadow file

Original Array , , ,

PO : Pl : P2 : P3

Reshaped Array : : :

Processor
Array i Be! Ezi:

P3 by

-I
I

I ,

Figure 3. Transformation of a Reshaped Array.

into which it inserts an entry each time a reshaped array is passed
as an argument to a subroutine. When the linker is called with all
the object files, it first invokes a pre-linker, which examines all
the object files and the corresponding shadow files, and propa-
gates each directive to the called subroutine. Since the pre-linker
is called with all the object files, it has a global view of the user
program and can successfully propagate directives across files.

The second issue is that a subroutine may be invoked from multi-
ple places with a different distribution on the same parameter.
Compiling the subroutine to dynamically handle multiple incom-
ing distributions may result in substantial runtime overhead.
Instead, we clone a copy of the subroutine for each distinct com-
bination of distribute-reshape directives on its parameters.
Although this results in code expansion, the generated code is
more efficient, since each cloned copy of the subroutine can be
optimized at compile time for the particular combination of
incoming distributions. Furthermore, in practice we expect the
number of distinct distributions to be small.

The actual cloning of the subroutine is implemented as follows.
The compiler updates the shadow file with (a) the name of each
subroutine defined in the file (along with any distribute-reshape
directives propagated into the subroutine), and (b) the name of
each subroutine call in the file that contained a reshaped array as
an actual argument. The pre-linker examines all the shadow files,
matching subroutine invocations with subroutine definitions with
respect to distribute-reshape directives on the parameters. For
each invocation without a matching definition the pre-linker
inserts a request into the shadow file for the desired subroutine
instance and invokes the compiler again on that file. The com-
piler in turn examines the corresponding shadow file and creates
the requested clones (if any) of each subroutine.

Finally, we avoid unnecessary cloning by removing requests
from the shadow file for each definition that does not have a
matching call. This is useful when the user removes a subroutine
invocation from the program, leaving a now redundant request in
the shadow file from the previous compilation.

Overall, this mechanism allows us to transparently clone multi-
ple instances of a subroutine, one for each incoming combination
of distribute-reshape directives on the subroutine parameters.
We do so by transparently reinvoking the compiler at link time to
compile a new clone of a subroutine. The first compilation of a

338

program can potentially result in several recompilations as the
disrribute-reshape directives are propagated all the way down
the call graph of the program. However, subsequent compilations
incur a recompilation only if a new cloning request is generated.

6 Error-Detection Support

Our error-detection support is geared towards enforcing the
restrictions on reshaped arrays outlined in Section 3.2.1. The
mechanisms for error detection include compile-time, link-time,
and runtime checks. Among the compile-time checks, disallow-
ing the equivalencing of reshaped arrays is straightforward and
performed during the compilation of each subroutine. Checking
that common blocks are declared consistently across all files is
performed at link time - we annotate the shadow file (described
in Section 5) with an entry for every declaration of a common
block, along with the information (shape, size, and distribution)
about each reshaped array (if any) in that common block. When
the pre-linker is invoked, it reads all the entries and verifies that
all declarations of each common block (one for each subroutine
that uses it) are consistent with each other. Specifically, it verifies
that each reshaped array in a common block appears at the same
offset within the common block and with the same shape, size,
and distribution in all declarations of that comnton block. This
rule flags a link-time error only for inconsistent common blocks
with reshaped arrays - common blocks without reshaped arrays
are not affected.

Our optional runtime checks are useful when a reshaped array (or
portion thereof) is passed as an argument to a subroutine. They
are used to verify that the shape and size of the declared forma1
parameter are consistent with those of the incoming actual argu-
ment. These checks are implemented as follows. At each subrou-
tine invocation with a reshaped array (or a portion thereof)
passed as an argument, we take the address being passed in and
use it as an index into a runtime hash table to store information
about the actual argument. For the entire array we store the shape
and size of the array, while for an array portion we store just the
size of that portion. Upon entry to each subroutine, we take the
incoming value for each parameter and use it as an index into the
hash table described above. If an entry is found then the incom-
ing argument is either a reshaped array or a portion thereof. In
either case, we compare the information found in the hash table
with the declared shape and size of the formal parameter, gener-
ating a nmtime error in case of a mismatch.

The overhead for the runtime checks includes (i) adding an entry
to the hash table each time a reshaped array is passed as an argu-
ment to a subroutine (and removing the entry upon return from
the subroutine), and (ii) performing a lookup of the hash table at
subroutine entry for each parameter to the subroutine (we opti-
mize the second part to some extent by performing this lookup
only for formal parameters that are declared to be arrays).

Overall, these runtime checks are extremely useful in catching
errors in reshaped distributions. Such errors are otherwise
extremely difficult to detect, since they are not easily distin-
guished from other algorithmic or coding errors.

7 Optimizing Reshaped Array References

As we saw earlier in Section 4.3, computing the address of an
element of a reshaped array requires expensive div and mod
operations - on a R10000 processor a 32-bit integer divide takes
about 35 cycles. Optimizing these operations is crucial for high
performance and is the subject of this section.

Given a reference to an element of a distributed array, the div
operation determines which processor contains the element,
while the mod operation determines the offset within that proces-
sor’s portion of the array. When the reference is known to be
local to the processor then the div operation can simply be
replaced by the processor number. When the offsets within each
processor’s portion are strictly increasing then the mod operation
can be replaced by an addition. Our basic optimization approach,
therefore, consists of loop tiling and Reeling to create inner loops
that reference a single portion of the reshaped array and do not
require any div and mod operations; this is similar to the
approaches proposed by Anderson, Amarasinghe, and Lam
[AAL95] and Hiranandani et al. [HKM+93]. Furthermore, sev-
eral additional optimizations are necessary to ensure that other
compiler optimizations are not adversely affected by reshaped
arrays; we describe each of these below.

7.1 Tiling and Peeling for Reshaped Arrays

The tiling transformations to create kernels over portions of a
distributed array are exactly the same as those presented for
affinity scheduling in Section 4.1. The original loop is trans-
formed into either two (for block and cyclic distributions) or
three (for cyclic(k) distributions) loops. In either case, the outer
loop, called the processor tile loop, indexes through the proces-
sors in the distributed dimension, while the inner loop(s) traverse
the elements within a portion of the distributed array A.

We illustrate these with a few examples.

real*8 A(n)
c$distribute-reshape A(block)
do i = I, n

A(i) = i
em20

Before optimization, this loop has the form

doi= I,n
A[ti][i%b] = i

enddo

After the tiling optimization, the loop is transformed into

dop = 0. P-l
lb = MAX((p*b+l), I)
ub = MIN(((p+l)*b). n)
locafjuiex = lb % b
do i = lb, ub

A[p][local&dex] = i
local-index = local-index + I

enddo
en&o

339

As we can see, the mod operation has been moved out of the
innermost loop so that we now need only P rather than n mod
operations, while the div operation has disappeared altogether.

If there are references to elements in the neighboring portion of a
distributed array, then we peel iterations from the inner loop. For
instance, in the code

do i = 2, n-1
A(i) = (A(&I) + A(i) t A(i+l)Y3

eddo

we peel one iteration from each end of the inner loop, which
again results in an innermost loop without any div or mod opera-
tions.

dop=O,P-1
lb = MAX(p*b, 2)

ub = MIN(((p+l)*b-I. n-1)
f(lb LE. ub) then

A[(lb-lyb][(lb-l)%b] = (A[lbIb][lb%b] +

A[(lb-lyb][(lb-l)%b] +
A[(lb+l)/b][(lb+l)%b])/3

endif
if(lb+l .LE. ub-I) local&uiex = lb % b
do i= Ib+l, ub-I

A[p][local-index] = (A[p][local-index-l] +
A[p][local-index] + A[p][local-index+l]Y3

local-index = local-index + I
enddo
if (lb .L?Y ub) then

ANub-lyb][(ub- I)%b] = (A[ub/b][ub%b] +

A[(ub-iJfb][(ub-l)%b] +
A[(ub+l)/b][(ub+l)%b])/3

endif
enddo

We increase the applicability of the above transformations in
three ways. First, besides parallel loops with data affinity, we
apply them to other loops that reference reshaped arrays, such as
serial loops and parallel loops without user-declared affinity. For
each loop we examine the reshaped array references in that loop
and use a simple heuristic to determine the desired tiling and
peeling of the loop that will result in the fewest div and mod
operations. However, this optimization is not always possible:
whereas tiling for reshaped arrays is always legal for (a) parallel
loops, and (b) serial loops with block distributions (since the iter-
ations are still executed in the same order as the original loop),
for cyclic or cyclic(k) distributions this transformation changes
the order in which the iterations are executed and is therefore
subject to data dependence constraints.

Second, for loops such as

doi= I,n
A(i+c*k) = l l l

enddo

(c is a constant and k is a loop-invariant variable) we skew the
loop by (c*k). This converts references like A(i+c*k) to A(i),
which enables subsequent tiling and peeling.

Third, having tiled a loop based on one array, we can simulta-
neously optimize references to other reshaped arrays that match
the first array in size and distribution.

These optimizations are successful only when the index expres-
sions of reshaped references are of the simple form s*i+c, with s
and c being literal constants. More complex index expressions
are not optimized and always incur the indexing overhead.

7.1.1 Loop Interchange

We can tile multiple loops in a nest if they reference reshaped
arrays. In the code

real*8 A(n, n)
c$distribute-reshape Atblock, block)
doj= 1, N

doi=l,N
A(ij) = i+j

enddo

enddo

since A is distributed in both dimensions, we tile each of the j
and i loops, generating a loop structure as follows:

do pj = 1, Pi-1

doj=...
do pi = I, Pi-1

do i = . . .
. . .

enddo
enddo

enddo
enddo

We try to interchange the j and pi loops so that the processor tile
loops @i and pj) are outermost and the actual data loops (i and j)
are innermost. We can then hoist div and mod operations within
the pi loop out of the j loop, which results in fewer such opera-
tions. This interchange is always legal for parallel loops within
the doacross-nest directive (see Section 3. l), but is subject to the
same legality constraints as normal loop interchange for sequen-
tial loops.

7.2 Hoisting and CSE of Array Index Expressions

After performing the optimizations described above, we exam-
ined the generated code for some small examples, but found that
the address computation for reshaped arrays was still inefficient.
There were three main reasons.

The first problem was the inability of the scalar optimizer to per-
form code hoisting and common subexpression elimination
(CSE) across the index expressions of reshaped arrays. A
reshaped reference generates indirect loads (from the processor
array) and div and mod operations, all of which are, in general,
unsafe operations that cannot be speculated. As a result, they
cannot be moved out of an if clause or a do loop. Since these
operations are always safe in the context of reshaped arrays, we
fixed this problem by hoisting them out of loop nests and condi-

340

tional statements directly during the transformation of reshaped
array references.

The second problem was poor CSE across index expressions in
the presence of subroutine calls. For instance, the index expres-
sion for a reshaped array may contain references to the block size
6 of a distributed dimension. Although 6 is initialized at the array
definition point and never modified, the compiler must assume
that the subroutine call could modify 6 and must reload it from
memory after each call. We solved this problem by marking such
variables as constant within the compiler internal representation.

The third problem was that subsequent optimizations of the
transformed code were affected by the indirect loads generated
for accesses to reshaped arrays, since an indirect memory refer-
ence can in general be aliased to any other data in the program.
We solved this problem by marking the base symbol of the array
as aliased only to other references using the same base array.

7.3 DIV/MOD using Floating-Point Arithmetic

While an integer divide takes about 35 cycles on the MIPS
RlOOOO processor and is not pipelined, the corresponding float-
ing-point operation takes 11 cycles. We therefore simulate the
integer divide in software using the floating-point unit. In addi-
tion to reducing the cost of the basic div and mod, the software
scheme often enables additional hoisting of the reciprocal of the
operands.

7.4 Integration with Other Optimizations

Within the overall MIPSpro7.1 compiler, we process reshaped
arrays as part of the loop-nest optimizer. The order of the optimi-
zations is as follows:

1. Loop skewing, tiling, interchange, and peeling for reshaped
arrays.

2. Regular loop-nest optimizations (e.g., fusion, fission, inter-
change, cache and register tiling).

3. Transformation of reshaped array references, including opti-
mization of reshaped references in the inner loops, and hoist-
ing indirect loads and div and mod operations.

4. CSE across index expressions of reshaped arrays.

The primary benefit of this approach is that the loop transforma-
tions for reshaped arrays are done early, presenting the code in a
convenient form for the regular loop-level optimizer. Since the
processor tiles are in place and often interchanged to be the out-
ermost within a loop nest, the loop-nest optimizer can perform
single processor optimizations as it would on normal, single pro-
cessor code. Furthermore, by delaying the transformation of
reshaped arrays references we maintain them in a reasonable
form during the regular loop-level transformations.

8 Performance Results

We present performance results from one benchmark application
(LU from the NAS 2.1 parallel benchmark suite) and two compu-

tation kernels (matrix transpose and 2-D convolution). Our
results are obtained on a l28-processor Origin-2000 with a 4MB
secondary cache per processor and 16 GB of memory. In addition
to measuring the overall performance, we use the hardware
counters on the MIPS RlOOOO to analyze our results [ZLT+96].

8.1 LU

We converted the original MPI version of the LU benchmark to a
shared memory version using doucrcxs directives for parallelism
and distribute-reshape directives for data distribution. The pri-
mary data structures are two Cdimensional arrays that we dis-
tribute in a (*,block,block, *) fashion, based on the parallel
partitioning of the program.

I I
Optimization lime (sets)

Reshape, no optimizations 83.91

Reshape, tile and peel 53.26

Reshape, tile and peel, hoist 46.23

Original code without reshaping 45.71

Table 2. Effect of Reshape Optimizations.

We first evaluate just the basic effectiveness of our reshaped
array addressing optimizations. We do so by comparing the code
with and without reshaping running on a single processor, so that
we can focus on just the reshaped array addressing overhead. As
shown in Table 2, the basic code with reshaping, compiled at -03
but without optimizations for reshaped arrays, ran very poorly.
Tiling and peeling for reshaped arrays helped tremendously, fol-
lowed by hoisting of indirect loads and div and mod operations,
which enabled CSE across index expressions. Most importantly,
the final version of the code ran nearly as efficiently as the origi-
nal code without reshaping.

Figure 4 shows the relative performance of four versions of LU
on the class C input (the arrays are of size (5,166,166,166)). Two
instances are without any data distribution directives: one uses
the first-touch policy and the other uses round-robin page place-
ment. (Data is initialized in parallel in this application.) The
other two instances are with regular and reshaped data distribu-
tion directives respectively.

As shown by the results, the performance of this application is
determined by bandwidth rather than latency considerations.
Since all four versions spread the data across the machine
(although differently), they all achieve good performance. The
parallel initialization of data is quite effective, with first-touch
outperforming both round-robin and regular distribution (the lat-
ter two exhibit nearly identical performance). Furthermore. only
reshaping can effectively provide the desired (*,block,block, *)
distribution and obtains the best performance on 64 processors,
although the improvements over first-touch are modest (6%).

All four instances exhibit superlinear speedup because (a) the
large data set size (360MB) exceeds the amount of memory on a
single node (about 250MB) resulting in remote memory refer-
ences even in the uniprocessor case, and (b) the larger aggregate

341

80

t

.‘.’ Linear Speedup

-A- Reshaped

64

t

* Round Robin

+ Regular
+- First Touch

B 48 ,’ ,.
.:’

3

8. ,:’
v) .:’

,.:
32 ,:.

i/ ,..’ ,..’

_:’
.:’

.:’
_..’

,:’

16’
.:’

..,’
_.,’

.'
,:'

Ok*’
0 16 32 48 64

Number of Processors

NAS LU (Class C)

Figure 4. Performance of NAS-LU (Class C).

cache at high processor counts improves the cache hit rate. We other versions. Using the hardware performance counters, we
counted the cache misses using the hardware counters on the pro- found that at 32 processors the round-robin version spends about
cessor, and found that the total number of secondary cache 15% of its time in TLB misses, while the reshaped version needs
misses decreased by a factor of three from 1 to 16 processors. less than half that time.

8.2 Matrix Transpose

We next examine the performance of a parallel matrix transpose,
in which we iterate several times over the following loop nest.

c$distribute A (*.block), Efblock, *j
c$doacross locul(i,jJ
do i=l,m

do j=l.m
A(j,i) = B(i,jj

enddo
enddo

Figure 5 presents the speedup of four versions of the code over a
serial version on an input of size 5000x5000. The four versions
are first-touch allocation, round-robin placement, regular distri-
bution, and reshaped distribution. Data initialization is per-
formed serially in this application. The matrix with the (block, *)

distribution cannot be distributed properly without reshaping;
consequently both first-touch policy and regular distribution
result in most of the data being allocated from within the mem-
ory of one or two nodes. These nodes become a bottleneck for
accesses to this matrix, which results in extremely poor perfor-
mance. Round-robin placement outperforms these two versions
by distributing the data uniformly across the nodes and better uti-
lizing the network bandwidth.

The reshaped version obtains the best performance: by reshaping
even the row-distributed matrix so that each processor’s portion
is contiguous in memory we are able to ensure that almost all
misses are satisfied locally. A secondary effect is the reduction in
TLB misses with reshaping: since the reshaped version uses all
the data in a page, it uses much fewer pages compared to the

140

+- Reshaped

120
-4

100
t

Linear Speedup

Round Robin

+ Regular

-e- First Touch

0
0 16 32 48 64 80 96

Number of F’mcessors

Matrix Transpose 5000x5000

Figure 5. Performance of Matrix ‘Ikauspose.

At moderate processor counts the reshaped version outperforms
the round-robin version by 30-508. At a little over 64 processors
the reshaped version starts to improve superlinearly as the appli-
cation gets increasing benefits from cache reuse. The two arrays
require a total of 400 MB of memory while our system has 4 MB
of secondary cache per processor. At large processor counts this
data begins to fit within the secondary caches, and the number of
cache misses decreases substantially for the reshaped version (a
total of 244M misses compared to 702M for the round-robin ver-
sion at P=96). One might expect similar effects for the other ver-
sions, but random cache interference will prevent them from
fully utilizing the cache until much larger processor counts. Data
reshaping ensures that each processor’s portion is contiguous in
virtual memory, and the OS page-coloring algorithm tries to
ensure that contiguous virtual addresses do not map into conflict-
ing physical addresses. As a result, cache interference is greatly
reduced for the reshaped version of the code.

8.3 2-D Convolution

We next examine the performance of a 2-D convolution. As
shown in the code below, we exploit either one or two levels of
parallelism with distributions of (*,block) and (bfock,bfock)
respectively.

c$distribute A(*, block), B(*, block)

c$doacmss local (i,j) af/iiry(i) = data(A(ij))
do j=2,n-I

do i=2,n- I
A(i,j)=(B(i-I j)+B(ij-I)+B(i,j)+B(ij+l)+B(i+l,j))6

end do
end do

342

0 16 32 48 64 80 96

Number of Processors

2D Convolution 1OOOx1ooO, (*,blcck)

Figure 6. Performance

The following exploits two levels of parallelism

c$disttibute A(block, block). B(block, block)
c$ainzcmss nest (i,i) local (i,jj a@&y(j,i)=&ta (A(i,j))
do j=2,n- I

do i=2,n-I

A(ij)=(B(i-I,j)+B(i,j-l)+B(i,j)+B(i,j+l)+B(i+l,j))/5
end do

en&o

We present results with the first-touch policy, round-robin page
placement, regular distribution, and reshaped distribution. Due to
serial initialization all the data is placed on just a few nodes with
the first-touch scheme. Our results are relative to the serial ver-
sion of the code and presented on two different input sets:
1000x1000 (Figure 6) and 5000x5000 (Figure 7).

With a single level of parallelism we obtain successive improve-
ments over first-touch allocation with regular, round-robin, and
then reshaped distribution. Regular distribution benefits are due
to memory locality alone. On the smaller input round-robin
placement outperforms regular distribution for increasing num-
ber of processors, even though the cache miss behavior remains
unchanged. We believe this is because the round-robin policy
results in more uniform page distribution and better bandwidth
utilization as compared to regular distribution. For the
1000x1000 case the performance of regular distribution actually
becomes chaotic at large processor counts - each processor’s por-
tion becomes progressively smaller, increasing page-level false
sharing. Since a page requested by multiple processors is simply
allocated from within the local memory of the processor to last
request the page, this often results in a poor distribution. Reshap-
ing reduces the degradation due to edge effects at page bound-
aries and achieves the best performance. However, these edge
effects are less important for larger problem sizes - for the
5000x5000 case (the left graph in Figure 7) regular distribution
performs as well as reshaped distribution. With 96 processors the
application data (400MB) fits completely within the processor

80

48

32

16

0
0 16 32 48 64 80 %

Number of Processors

2D Convolution 1OOOx1OCQ (block.block)

of 2-D Convolution (1OOOx1000).

caches and both round-robin and regular distribution outperform
the reshaped version (which incurs some reshaping overhead).

When we exploit two levels of parallelism both first-touch and
regular distribution perform equally poorly, since with two-
dimensional blocks the array layout suffers severely from false
sharing over both cache lines and pages. Round-robin placement
is an improvement due to better bandwidth utilization, but
reshaping is the only option for such distributions and, as
expected, performs much better. For larger processor counts in
the 5000x5000 case, two-level parallelism outperforms the single
level due to better communication/computation ratio.

Finally, the data set size (16MB for the smaller input, 400MB for
the larger input) exceeds the 4MB cache of a single processor,
which leads to superlinear speedups for higher processor counts
with larger aggregate cache size.

8.4 Summary

Overall, these performance results illustrate the need for provid-
ing both regular and reshaped distribution. As demonstrated by
the convolution code on the bigger input, regular distribution is
perfectly adequate when the individual portions of a distributed
array are large. Reshaped distributions, on the other hand, are
useful when data needs to be distributed at a finer granularity,
such as the (block, block) distribution in the convolution code.
Besides improving memory locality, reshaping the layout of an
array can also improve cache behavior by improving spatial
locality and reducing false sharing across cache lines.

9 Related Work

Several approaches have been proposed in the literature to
improve data locality, including operating-system-based page
migration, compiler-based data distribution, as well as program-
ming languages such as HPF.

343

160

‘44

t

“’ Linear Speedup

-A- Reshaped

128 * Round Robin

+ Regular

112 -a- First Touch

s- %
3
5 80

160 -

Linear Speedup
‘44 -A- Reshaped

+ 128 - Round Robin

+ Regular
112 -+ First Touch

2 %-
B
5 80-

64-

,..’
48

32

16

0
0 16 32 48 64 80 %

Number of Processors Number of Processors

2D Convolution SOOOxSooO, (*,block) 2D Convolution SOOOxSOOO, (block.block)

Figure 7. Performance of 2-D Convolution (5OOOx5000).

Operating-system-based approaches [VDG+96] use mntime sta-
tistics, such as TLB or cache misses, to identify the processor
incurring the most cache misses to a page and migrate the page to
the local memory of that processor. While transparent to the user,
the main limitations of this approach are that it migrates data at
the granularity of an entire page, incurs nmtime overhead and
must therefore be conservative, and infers application behavior
only indirectly through per-page statistics.

Compiler-based approaches [AAL95, AnL93, GuB92, KeK95,
SSP+95] to data distribution are typically integrated with the
automatic detection of loop-level parallelism. These approaches
are attractive since they are entirely transparent to the user and,
in contrast to OS-guided approaches, perform data distribution
based on a static analysis of the data reference patterns in the
program. However, many codes are not amenable to such auto-
matic compiler analysis and require explicit programmer inter-
vention.

Finally, programming languages such as HPF [Lov93, KLS+94,
HPF2-971. Fortran-D [HKK+91], and Vienna Fortran [CMZ92],
provide a variety of data distribution directives. We limit our
comparison to HPF, the most widely known of these languages.
HPF was originally designed as an alternative to message pass-
ing for programming distributed address space machines such as
the IBM SP-2. In HPF the user typically writes a serial program
and annotates it with data distribution information. Based on this
distribution, the compiler partitions and schedules the program
for parallel execution and manages the communication and syn-
chronization between processors. Programming in the message
passing paradigm can be quite difficult, and the primary attrac-
tion of HPF is a familiar shared memory programming model
with all the communication managed automatically by the imple-
mentation.

Our model is similar to HPF in many respects: our data distribu-
tion directives are similar to those provided in HPF, our doacross
directive for expressing loop-level parallelism is the same as the

independent directive in HPF, while our @r&y clause corm-
sponds to the on directive, recently introduced in HPF-2.0
[HPM-971. Furthermore, our restrictions related to storage and
sequence association on reshaped arrays are similar to those
imposed on distributed arrays in HPF.

In contrast to HPF, however, our model was designed for cache-
coherent shared address space machines and therefore differs in
several fundamental ways. When programming in HPF on a dis-
tributed address space machine, data distribution is necessary to
obtain parallel execution. In contrast, on a CC-NUMA machine
data distribution is performed as an optional optimization over
and above exploiting parallelism. On such machines, because of
global cache-coherent shared memory, traditional multiprocess-
ing codes written with loop-level parallel directives continue to
run correctly in parallel without requiring data distribution.
Because remote latencies are relatively low (compared with
those on distributed address space machines), these programs
often run well without any modifications. Data distribution on
these machines is purely a performance enhancement to over-
come the additional penalty of a remote reference over a local
reference. For our abstractions, therefore, a simple programming
model and an efficient implementation were absolutely critical: if
we were not careful, the overhead of managing data distribution
could very quickly outweigh any gains from memory locality.

The differing goals are reflected in our specific designs. First, we
provide two distinct types of data distribution, regular and
reshaped, whereas HPF provides only reshaped distributions. We
believe it is important to have both types of distributions on CC-
NUMA architectures: distributions that do not have page granu-
larity problems can use regular distribution, thereby avoiding the
legality restrictions and the array addressing overhead of
reshaped arrays, while distributions that suffer from page granu-
larity limitations can use reshaping.

Second, we provide only the core data distribution constructs,
and omit most of the advanced HPF features. For instance, we do

344

not support dynamic redistribution of reshaped data. Also, we
provide a simpler model for passing reshaped arrays as argu-
ments to subroutines. HPF allows mismatched distributions on
actual and formal parameters, and it provides three different
kinds of distribution directives on formal array parameters. The
implementation must remap the data (if necessary) at tuntime if
the directive is prescriprive, compile the called subroutine to
accept any incoming distribution if the directive is transcriptive,
and assert the specified distribution of the actual parameter if the
directive is descriptive. In contrast, we automatically propagate
distributions down the call chain, cloning routines as necessary.
An HPF implementation cannot always propagate distributions
at compile time since HPF permits dynamic redistribution of
data. Because of these simplifications in our programming
model, the distributions of all reshaped arrays are always known
at compile time. This makes it much more likely that we will
optimize the implementation of reshaped array references.

10 Conclusions

In this paper we have presented a set of abstractions for distribut-
ing data on CC-NUMA multiprocessors. Our abstractions are
easy to use and provide a simple model for data reshaping. Our
unique error-detection features and propagation of distribution
directives across subroutine calls enable the user to safely use
reshaped distributions. Efficiency has been a prime concern, and
we have carefully avoided features that could hinder compiler
optimizations of data distribution (such as dynamic data reshap-
ing). We have implemented these abstractions within the SGI
MIPSpro7.1 compiler and incorporated several optimization
techniques to improve the efficiency of the generated code. Our
initial experience has been encouraging: the abstractions allow
the user to focus on identifying the desired distribution based on
the characteristics of the application, and leave the implementa-
tion details to the compiler.

Acknowledgments: We thank Jeff McDonald who helped us
with the LU application, Chau-Wen Tseng who participated in
the initial stages of this work, and Seema Hiranandani and the
anonymous referees who offered many useful comments on ear-
lier drafts of this paper.

Bibliography

[AAL95] J. M. Anderson, S. P Amarasinghe and M. S. Lam.
Data and Computation Transformations for
Multiprocessors. In Proceedings of rhe Fifrh ACM
SIGPL4N Symposium on Principles and Practice of

Parallel Programming, pages 166-178, July 1995

[AnL93] J. M. Anderson and M. S. Lam. Global Optimizations
for Parallelism and Locality on Scalable Parallel
Machines. In Proceedings of SIGPLAN ‘93 Conference

Programming L4ww Design and
Tzplementation, pages 112-125, June 1993.

[CMZ92] B. Chapman, P Mehrotra, and H. Zima. Programming
in Vienna Fortran. Scienrijic Programming, 1 (l), pages
3 l-50, Fall 1992.

[GuB92] M. Gupta and P Banejee. Demonstration of Automatic
Data Partitioning Techniques for Parallelizing
Compilers on Multicomputers. In Transactions on
Parallel and Distributed Systems, 3(2), pages 179- 193,
March 1992.

[HPF2-971 High Performance Fortran Language Specification,
Version 2.0, January 1997. Available by anonymous
ftp from softlibriceedu: /pub/HPF.

[HKK+91] S. Hiranandani, K. Kennedy, C. Koelhel, U. Kremer,
and C-W. Tseng. An Overview of the Fortran-D
Programming System. In LJ. Banejee. D. Gelemter, A.
Nicolau, and D. Padua, editors, Languuges and

Compilers for Parallel Computing, Springer-Verlag,
August 1991.

[HKM+93] S. Hiranandani, K. Kennedy, J. Mellor-Crummey.
and A. Sethi. Advanced Compilation Techniques for
Fortran D. Technical Report CRPCTR93338, Center
for Research on Parallel Computation, October 1993.

[KeK95] K. Kennedy and U. Kremer. Automatic Data Layout for
High Performance FORTRAN. In Proceedings of

Supetcomputing ‘95, December 1995.

[KLS+94] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L.
Steele Jr., and M. E. Zosel. The High Performance
Fortran Handbook. MIT Press, Cambridge MA, 1994.

[LL97] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. In Proceedings of the 24th
Annual International Symposium on Computer
Architecture, May 1997.

[Lov93] D. B. Loveman. High Performance Fortran. In IEEE

Parallel and Distributed Technology, Systems &
Applications, l(l), pages 25-42, February 1993.

[SSP+95] T. J. ShefIler. R. Schreiber, W. Pugh, J. R. Gilbert and
S. Chatterjee. Efficient Distribution Analysis via Graph
Contraction. In Proceedings of the Eighth Workshop on
Languages and Compilers for Parallel Processing,

August 1995.

[SGI96] Silicon Graphics, MIPSpro Fortran- Programmer’s
Guide, Document number 007-236 l-004,1996.

[Str94] B. Stroustrup. The Design and Evolution of C++.
Addison Wesley, Reading MA, 1994.

[VDG+96] B. Verghese, S. Devine, A. Gupta, and M.
Rosenblum. Operating System Support for Improving
Data Locality on CC-NUMA Compute Servers. In
Proceedings of the 7th International Conferences on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS VII), pages 219-289,

October 1996.

[ZLT+96] M. Zagha, B. Larson, S. Turner, M. Itzkowitz.
Performance Analysis Using the MIPS RlOOOO
Performance Counters. In Supercomputing 96,
Pittsburgh PA, November 1996.

345

