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Abstract 

Cache-coherent multiprocessors with distributed shared 
memory are becoming increasingly popular for parallel comput- 

ing. However; obtaining high pe$ormance on these machines 
mquires that an application execute with good data locality. In 
addition to making efiective use of caches, it is often necessary to 
distribute data structures across the local memories of the pro- 
cessing nodes, thereby reducing the latency of cache misses. 

While processor caches can exploit temporal locality on both 
local and remote data, many applications, such as those without 
temporal reuse or with working sets larger than the cache, are 
unable to benefit from cache locality alone. To obtain high per- 
formance on such applications, it is often necessary to distribute 
the data structures in the program so that the cache misses of 
each processor are more likely to be satisfied from local rather 
than remote memory. 

We have designed a set of abstractions for performing data 

distribution in the context of explicitly parallel programs and 
implemented them within the SGZ MZPSpro compiler system. Our 
system incorporates many unique features to enhance both pto- 
grammability and performance. We address the former by pro- 
viding a very simple ptvgmmming model with extensive support 

for emor detection. Reganiing performance, we carefully design 
the user abstractions with the wuierlying compiler optimitations 
in mind, we incorporate several optimization techniques to gen- 
erate eJEcient code for accessing distributed data, and we pro- 
vide a tight integration of these techniques with other 
optimizations within the compiler Our initial experience sug- 
gests that the directives are easy to use and can yield substantial 
performance gains, in some cases by as much as a factor of 3 
over the same codes without distribution. 

In this paper we describe a set of data distribution abstractions 
for CC-NUMA multiprocessors. We have designed these 
abstractions as a set of directives that allow the programmer to 
manually control the distribution of array data structures in 
explicitly parallel programs. We provide a small set of abstrac- 
tions that are easy to use. yet expressive enough for real applica- 
tions. Our directives are integrated with existing mechanisms for 
exploiting loop-level parallelism. Furthermore, the directives are 
designed keeping in mind the compiler’s ability to generate effi- 
cient code for accesses to distributed data. Taken together, our 
abstractions enable the programmer to exploit loop-level paral- 
lelism and exercise fine control over both data distribution and 
computation scheduling. We have implemented these directives 
in the SGI MIPSpro7.1 commercial compiler system targeting 
the Origin-2000 multiprocessor. 

1 Introduction 

Cache-coherent shared memory multiprocessors are attractive 
for parallel programming since they provide a uniform view of 
memory, with inter-processor communication specified implic- 
itly through load and store operations to shared memory loca- 
tions. To enable scaling beyond bus-based machines, modern 
multiprocessors typically contain a large number of processing 
nodes each with one or more processors and a portion of main 
memory connected through a scalable interconnection network. 
This class of machines is termed CC-NUMA (cache-coherent 
non-uniform memory access) and includes several commercially 
available systems, such as Convex Exemplar, Sequent SliNG, 
and SGI Origin-2000. 

The primary concern when distributing data on CC-NUMA 
architectures is that physical placement of data must be per- 
formed in units of an operating system page (16 KB on the Ori- 
gin-2000). This can lead to false sharing at the page level when 
multiple data items that we wish to place in local memories of 
distinct processors happen to lie within the same page. In such 
situations it becomes necessary to move data objects within the 
virtual address space of the process so that they now belong to 
distinct pages. However, moving data within the virtual address 
space of a process is not always legal and must be done carefully 
to be correct. Performing these transformations safely and effi- 
ciently is a key component of our approach. 

Although global memory is uniformly accessible by all the pro- 
cessors, remote memory latencies are typically much larger than 
local memory latencies (e.g., 2-3 times on the Origin-2000). 
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The main contributions of this paper are the following. We 
present a set of abstractions for controlling loop scheduling and 
data distribution on CC-NUMA architectures, and describe the 
implementation of these abstractions within a production com- 
piler. The unique aspects of our system include extensive error- 
detection features, support for separate compilation across multi- 
ple files, optimization techniques to generate efficient code for 
distributed arrays, and tight integration of data distribution opti- 
mizations with other loop-level optimixations in the compiler. 

The rest of the paper is organized as follows. Section 2 provides 
an overview of the Origin-2000 architecture. Section 3 contains a 
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detailed description of our directives for parallelism and data dis- 
tribution. In Section 4 we describe the implementation of these 
directives within the compiler and the runtime system. Section 5 
describes our scheme for automatically propagating distribution 
directives across subroutine calls. Section 6 outlines our support 
for error detection. Section 7 presents the optimizations per- 
formed by the compiler to efficiently support these constructs. 
We present performance results on some applications in 
Section 8, discuss related work in Section 9, and offer conclud- 
ing remarks in Section 10. 

2 Overview of the Origin-2000 

Figure 1 shows the high-level architecture of the Origin-2000 
[LL97]. %o 195 MHz MIPS RlOOOO processors together with a 
portion of the shared memory are connected through a hub, and 
multiple such nodes are connected together in a hypercube 
through a switch-based interconnect.. Each processor has sepa- 
rate on-chip instruction and data caches (32KB each, 32-byte line 
size), and a unified off-chip cache (typically l-4MB, 128-byte 
line size), all two-way set associative. The hub maintains cache 
coherence across processors using a directory-based invalidation 
protocol. The latency of a miss to local memory is about 70 pro- 
cessor cycles, while a miss to the remote memory of another pro- 
cessor ranges from I10 to 180 cycles. 

The operating system on the Origin-2000 supports data alloca- 
tion at the granularity of a physical page (16Kbytes). It provides 
a default first-touch page allocation policy where a page is allo- 
cated from the local memory of the processor incurring the page 
fault, as well as an optional round-robin policy where pages are 
allocated in a round-robin fashion across processors. 

3 Programming Model 

In this section we provide a detailed description of our program- 
ming model [SGI96]. We first give a brief overview of the direc- 
tives to exploit loop-level parallelism. We then describe our data 
distribution directives, with particular emphasis on our approach 
to overcoming the page granularity limitations. Finally, we 
describe the mechanisms to control the scheduling of parallel 
loops. 

3.1 Existing Directives for Loop Parallelization 

The code segment below illustrates our commonly used directive 
for specifying parallelism. 

c$doacross local(i) shared(n, A) 
doi= I,n 

A(i) = 2*i 
en&o 

The a&cross directive specifies that all the iterations of the i 
loop can be executed concurrently. The local and shared clauses 
specify that each iteration should have a local instance of the 
variable i, while the variables A and n should be shared across all 
the iterations and can be accessed directly through shared mem- 
ory references. It is assumed that all iterations are fully concur- 
rent with an implicit barrier at the end of the doacross loop. The 

. . . 

I Switch-Based Interconnect 
I 

Figure l. Origin-2000 Architecture Overview. 

partitioning of iterations across processors may be controlled 
with an optional schedtype clause, and additional synchroniza- 
tion, if required, must be explicitly specified by the programmer 
using constructs such as locks and barriers. 

We also support the parallel execution of nested loops through 
the nest clause on a doacross directive. For instance, in the fol- 
lowing example all iterations in the (i,jj iteration space can be 
executed concurrently. 

c$a’oacross nest (i,j) local (i,j) shared (m,n,B) 
do i = 1, n 

do j = I.m 

B(j.i) = i+j 
enaifo 

enaiio 

3.2 Extensions for Data Distribution 

Our data distribution support focuses on regular distributions of 
arrays in Fortran. Our directives are similar to the basic data dis- 
tribution directive in HPF (High Performance Fortran) [Lov93, 
KLS+94, HPM-971, as shown below. 

real*8 A(m, n, . . .) 
c$distribute A (<dist>, <dist>, . . .) 

<dist> may be. one of block, cyclic, cyclic(<expr>), or *, with 
the same meaning as in HPF. 

Distribution may be specified for both global and local arrays, 
including dynamically sized local arrays. There are no restric- 
tions on the size or the assigned number of processors for an 
array dimension. The number of processors in each distributed 
dimension is determined at program start-up time, which enables 
the same executable to run with different number of processors. 
Furthermore, distribute directive can contain an optional onto 
clause specifying how the total number of processors should be 
assigned across multiple distributed array dimensions. 

We consider two possible ways of supporting array distribution. 
The simple approach attempts to map each processor’s portion of 
the distributed array onto physical pages allocated from within 
the local memory of that processor (regular distribution). This 
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approach is simple and easy to implement, but is limited by the 
underlying page granularity. The aggressive approach reorga- 
nizes the layout of the array within the virtual address space of 
the process, thereby overcoming the page-granularity limitations 
and guaranteeing the desired distribution (reshaped distribution). 
However, changing the layout of an array is not always legal 
since it may violate storage layout assumptions in the program. 
Furthermore, it can incur additional array addressing overhead. 

The choice between these two implementations depends on the 
size and layout of individual portions of the distributed array and 
can vary for different arrays within the same program. For 
instance, in the example 

POiPI :p2; 
, 1 1 

real *8 A (1000, IOOO) 
I 1 1 
, 1 * 

c$distribute A ( *, block) 
I 1 1 
# 1 * 
# 1 1 
I 1 1 
I 4 I 

I 1 1 

an individual portion is a single contiguous piece of size 8*10‘% 
bytes, assuming Fortran style column-major layout and P proces- 
sors. Since an individual portion may be much larger than a page, 
regular distribution may be sufficient for this array. On the other 
hand, in the example 

real*8 A (lC#, IOOO) 
c$distribute A (block *) 

__--------- 

I 
PO 

PI 
__-_--------- 

P2 
.--__------ - 

an individual portion is still 8*106/P bytes, but due to the col- 
umn-major layout of the array each contiguous piece is only 
8*103/p bytes, significantly less than a page. In such situations 
reshaped data distribution is desirable. 

As we can see, the choice between regular and reshaped distribu- 
tion may depend on array bounds and the number of processors, 
which are typically symbolic values not known at compile time. 
Rather than leave the implementation choice to the compiler, we 
allow the programmer to choose between regular and reshaped 
distributions using the directives 

&distribute 
c$distribute-reshape 

A program can contain both distribute and distribute-reshape 
arrays. A particular array, however, must be declared either dis- 
tribute or distribute-reshape (or neither, of course) for the dura- 
tion of the program, and cannot be dynamically switched 
between the two kinds of distributions. 

3.2.1 Restrictions on Data Reshaping 

Array reshaping is legal only under certain conditions related to 
storage and sequence assumptions about that array and to passing 
arrays as subroutine arguments. 

First, a reshaped array cannot be equivalenced to another array, 
either explicitly through an equivalence statement or implicitly 

through multiple declarations of a common block. If an array in a 
common block is reshaped, then each declaration of that common 
block must (a) contain an array at the same offset within the com- 
mon block, (b) declare that array with the same number of 
dimensions, each of the same size, and (c) specify the same 
reshaped distribution for the array. 

The second restriction concerns passing a reshaped array as an 
argument to a subroutine. If the entire array is passed as an argu- 
ment, then the number of dimensions and the size of each dimen- 
sion in the actual and the formal parameter must match exactly. 
On the other hand, passing an element of a reshaped array’ is 
treated as passing a portion of a distributed array (the size. and 
shape of the portion depend on the array distribution, as illus- 
trated by the example below). The called procedure treats the 
incoming parameter as a non-distributed (i.e., standard Fortran) 
array. The declared bounds on the formal parameter are required 
not to exceed the size of the distributed array portion passed in as 
the actual argument. 

For instance, in the example 

real*8A(lOOO) 
c$distribute-reshape A (cycfic(5)) 
do i=l,lt390,5 

call mysub (A(i)) 
enddo 

end 
subroutine mysub (X) 
real *8 X(5) 
. . . 

end 

the main program calls subroutine mysub once for each portion 
(5 elements) of the reshaped array A. The declared size of the for- 
mal parameter X in mysub can therefore be at most 5 elements. 

Given these restrictions, it can be difficult for the programmer to 
correctly reshape arrays in a large application. We make this task 
easier in multiple ways. First, the programmer does not need to 
specify reshaped distributions on formal parameters of subrou- 
tines; distribute-reshape directives need to be supplied only at 
array definition points, and the compiler automatically propa- 
gates them down a call chain (Section 5). Second, we provide 
extensive error-detection support (both compile-time and mnt- 
ime) to enforce the consistency of reshaped arrays (Section 6). 
Finally, we provide a rich set of intrinsics for traversing the indi- 
vidual portions of a distributed array [SG196]. Taken together, 
these features make it significantly easier to distribute data in 
large applications. 

3.3 Dynamic Data Redistribution 

Dynamic data redistribution may be useful when an application 
needs a different distribution on the same array in two distinct 
phases of the program. We therefore provide the following redis- 
tribute directive 

1. We treat call sub(A) as passing the entire array A, and call 
sub(A(O)J and call sub (A(i)) as passing an element of A to sub. 
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Original loop (with affinity for a distributed array of size n): 

c$doacross afjhity (i) = &ta(A(s*i+c)) 
do i=LB. UB, step 

Block distribution: (b = 

dop = 0, P-l 
do i = max(LB Pb - c fT]), min(UB,[(p+‘)sb-C-‘]),step 

Cyclic distribution: (s=l. the expressions for s>l are omitteq for brevity) 

dop=O,P-1 

doi=LB+ ((p-LB-c)modP),UB,P 

Block-cyclic: (cyclic(k)) 

(UB)s+c+l -1 

kP 1 
min(UB, (P+l)k-c-1 +kPj 

s 

c$redist’bute A (<dist>, <dist>, . . .) 

where <dist> may be one of block, cyclic, cyclic(<expr>), or *. 
Redistribute is an executable statement that has global effect. We 
do not allow redistribution of reshaped arrays - as discussed later, 
dynamic reshaping severely restricts compiler optimizations of 
reshaped data distributions and can result in inefficient code. 

3.4 AfGnity Scheduling 

Along with data distribution we allow the user to control the 
scheduling of the iterations of a parallel loop across processors 
through an optional affinity clause on a doacross directive (see 
Section 3.1). 

real *8 A(n) 
&distribute A(block) 
c$doacross local (i) shared(n, A) afinity (i)=data(A(i)) 
do i=l,n 

A(i) = i*i 
e&do 

The affinity clause specifies that iteration i should execute on the 
processor that contains element A(i) of the distributed array A 
(the distribution can be either regular or reshaped). Simple linear 
expressions such as A(p*i+q) are also allowed, but p and q must 
be literal constants, with p non-negative. 

In summary, a programmer can use the distribute and 
distribute-reshape directives to distribute the key arrays in the 
program, along with the afiity clause on ~YXUYOSS loops to 
ensure that each loop iteration and the data referenced in that 
iteration are collocated on the same processor. 

Figure 2. Implementing Affinity Scheduling. 

4 Implementation of Basic Features 

We now describe the implementation of our progmmming 
model. We focus on reshaped arrays and give only a brief over- 
view of the implementation of the other features. 

4.1 Affinity Scheduling 

We implement affinity scheduling by transforming the loop into a 
doubly (or triply) nested loop, where the outermost loop 
traverses the processors in the distributed dimension, and the 
inner loop(s) traverse each processor’s elements of the distrib- 
uted array. Our transformations, similar to those described by 
Hiranandani et al. [HKM+93], are reproduced in Figure 2. 

4.2 Regular Distributions 

Regular data distribution only affects the underlying page alloca- 
tion. Its implementation, therefore, is simply an operating system 
call to allocate the physical pages for each portion of the distrib- 
uted array from within the local memory of the corresponding 
processor. This system call is the only OS support required to 
implement both regular and reshaped data distribution, and it 
overrides the default first-touch page allocation policy. 

This system call for page allocation is generated within the com- 
piled code for local arrays. For common block arrays the object 
file is annotated with information about array dimensions and 
their specified distributions. At program start-up time the runtime 
library reads this information and makes the appropriate operat- 
ing system call. Finally, a redistribute directive also translates 
into a runtime call to remap the pages for the array. 
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4.3 Reshaped Distributions 

The implementation of the distribute-reshape must guarantee the 
desired distribution and is allowed to change the layout of the 
array in the virtual address space. 

Rather than simply padding the array portions up to the next page 
boundary, we transform a reshaped array into a processor-array 
with each element of the processor-array in turn pointing to the 
array elements belonging to that processor (see Figure 3). 

For a single reshaped dimension a reference A(i) is transformed 
as shown in Table 1 (the transformed reference is shown in C 
syntax). Our transformation of a reference is similar to that 
described by Anderson, Amarasinghe, and Lam [AAL95]. The 
first dimension of each reference is the index into the processor 
array (the processor containing element i), while the remaining 
dimensions index into the processor’s portion of the array to 
locate element i. In this table N is the size of the array dimension, 
P is the number of processors assigned to that dimension, b is the 
size of a processor portion for a block distribution, and k is the 
chunk size for a cyclic(k) distribution. The transformation for a 
reshaped array distributed in multiple dimensions is a simple 
composition of this basic scheme. 

~~ 

Table 1. ‘Itansformation of Reshaped Array References 

This implementation scheme allows us to manage storage for 
reshaped arrays in a space-efficient fashion. Since each proces- 
sor’s portion of a distributed array can be allocated indepen- 
dently of the other portions, each processor allocates a pool of 
storage from the shared heap, maps the pages for this pool of 
storage from within its local memory, and allocates its potion of 
each reshaped array from this pool of memory. We can therefore 
avoid padding the ends of each portion up to a page boundary. 

As shown in Table 1, a transformed reference to a reshaped array 
contains integer divide and remainder operations (div and mod). 
These operations are extremely expensive on modem micropro- 
cessors - our optimizations for reducing their impact is the sub- 
ject of Section 7. 

5 Propagating Reshape Directives 

As mentioned in Section 3, when a reshaped array is passed as an 
argument to another subroutine, we automatically propagate the 
distribute-reshape directive to the called subroutine. 

There are two main issues m supporting this feature. The first is 
that it should work correctly with separate compilation, so that 
we can propagate the directive to subroutines that may be defined 
in other, separately compiled files. We do so in a way that is sim- 
ilar to a C++ template instantiation mechanism [Str94]. Briefly, 
for each user source file, the compiler maintains a shadow file 

Original Array , , , 

PO : Pl : P2 : P3 

Reshaped Array : : : 

Processor 
Array i Be! Ezi: 

P3 by 

-I 
I 

I , 

Figure 3. Transformation of a Reshaped Array. 

into which it inserts an entry each time a reshaped array is passed 
as an argument to a subroutine. When the linker is called with all 
the object files, it first invokes a pre-linker, which examines all 
the object files and the corresponding shadow files, and propa- 
gates each directive to the called subroutine. Since the pre-linker 
is called with all the object files, it has a global view of the user 
program and can successfully propagate directives across files. 

The second issue is that a subroutine may be invoked from multi- 
ple places with a different distribution on the same parameter. 
Compiling the subroutine to dynamically handle multiple incom- 
ing distributions may result in substantial runtime overhead. 
Instead, we clone a copy of the subroutine for each distinct com- 
bination of distribute-reshape directives on its parameters. 
Although this results in code expansion, the generated code is 
more efficient, since each cloned copy of the subroutine can be 
optimized at compile time for the particular combination of 
incoming distributions. Furthermore, in practice we expect the 
number of distinct distributions to be small. 

The actual cloning of the subroutine is implemented as follows. 
The compiler updates the shadow file with (a) the name of each 
subroutine defined in the file (along with any distribute-reshape 
directives propagated into the subroutine), and (b) the name of 
each subroutine call in the file that contained a reshaped array as 
an actual argument. The pre-linker examines all the shadow files, 
matching subroutine invocations with subroutine definitions with 
respect to distribute-reshape directives on the parameters. For 
each invocation without a matching definition the pre-linker 
inserts a request into the shadow file for the desired subroutine 
instance and invokes the compiler again on that file. The com- 
piler in turn examines the corresponding shadow file and creates 
the requested clones (if any) of each subroutine. 

Finally, we avoid unnecessary cloning by removing requests 
from the shadow file for each definition that does not have a 
matching call. This is useful when the user removes a subroutine 
invocation from the program, leaving a now redundant request in 
the shadow file from the previous compilation. 

Overall, this mechanism allows us to transparently clone multi- 
ple instances of a subroutine, one for each incoming combination 
of distribute-reshape directives on the subroutine parameters. 
We do so by transparently reinvoking the compiler at link time to 
compile a new clone of a subroutine. The first compilation of a 
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program can potentially result in several recompilations as the 
disrribute-reshape directives are propagated all the way down 
the call graph of the program. However, subsequent compilations 
incur a recompilation only if a new cloning request is generated. 

6 Error-Detection Support 

Our error-detection support is geared towards enforcing the 
restrictions on reshaped arrays outlined in Section 3.2.1. The 
mechanisms for error detection include compile-time, link-time, 
and runtime checks. Among the compile-time checks, disallow- 
ing the equivalencing of reshaped arrays is straightforward and 
performed during the compilation of each subroutine. Checking 
that common blocks are declared consistently across all files is 
performed at link time - we annotate the shadow file (described 
in Section 5) with an entry for every declaration of a common 
block, along with the information (shape, size, and distribution) 
about each reshaped array (if any) in that common block. When 
the pre-linker is invoked, it reads all the entries and verifies that 
all declarations of each common block (one for each subroutine 
that uses it) are consistent with each other. Specifically, it verifies 
that each reshaped array in a common block appears at the same 
offset within the common block and with the same shape, size, 
and distribution in all declarations of that comnton block. This 
rule flags a link-time error only for inconsistent common blocks 
with reshaped arrays - common blocks without reshaped arrays 
are not affected. 

Our optional runtime checks are useful when a reshaped array (or 
portion thereof) is passed as an argument to a subroutine. They 
are used to verify that the shape and size of the declared forma1 
parameter are consistent with those of the incoming actual argu- 
ment. These checks are implemented as follows. At each subrou- 
tine invocation with a reshaped array (or a portion thereof) 
passed as an argument, we take the address being passed in and 
use it as an index into a runtime hash table to store information 
about the actual argument. For the entire array we store the shape 
and size of the array, while for an array portion we store just the 
size of that portion. Upon entry to each subroutine, we take the 
incoming value for each parameter and use it as an index into the 
hash table described above. If an entry is found then the incom- 
ing argument is either a reshaped array or a portion thereof. In 
either case, we compare the information found in the hash table 
with the declared shape and size of the formal parameter, gener- 
ating a nmtime error in case of a mismatch. 

The overhead for the runtime checks includes (i) adding an entry 
to the hash table each time a reshaped array is passed as an argu- 
ment to a subroutine (and removing the entry upon return from 
the subroutine), and (ii) performing a lookup of the hash table at 
subroutine entry for each parameter to the subroutine (we opti- 
mize the second part to some extent by performing this lookup 
only for formal parameters that are declared to be arrays). 

Overall, these runtime checks are extremely useful in catching 
errors in reshaped distributions. Such errors are otherwise 
extremely difficult to detect, since they are not easily distin- 
guished from other algorithmic or coding errors. 

7 Optimizing Reshaped Array References 

As we saw earlier in Section 4.3, computing the address of an 
element of a reshaped array requires expensive div and mod 
operations - on a R10000 processor a 32-bit integer divide takes 
about 35 cycles. Optimizing these operations is crucial for high 
performance and is the subject of this section. 

Given a reference to an element of a distributed array, the div 
operation determines which processor contains the element, 
while the mod operation determines the offset within that proces- 
sor’s portion of the array. When the reference is known to be 
local to the processor then the div operation can simply be 
replaced by the processor number. When the offsets within each 
processor’s portion are strictly increasing then the mod operation 
can be replaced by an addition. Our basic optimization approach, 
therefore, consists of loop tiling and Reeling to create inner loops 
that reference a single portion of the reshaped array and do not 
require any div and mod operations; this is similar to the 
approaches proposed by Anderson, Amarasinghe, and Lam 
[AAL95] and Hiranandani et al. [HKM+93]. Furthermore, sev- 
eral additional optimizations are necessary to ensure that other 
compiler optimizations are not adversely affected by reshaped 
arrays; we describe each of these below. 

7.1 Tiling and Peeling for Reshaped Arrays 

The tiling transformations to create kernels over portions of a 
distributed array are exactly the same as those presented for 
affinity scheduling in Section 4.1. The original loop is trans- 
formed into either two (for block and cyclic distributions) or 
three (for cyclic(k) distributions) loops. In either case, the outer 
loop, called the processor tile loop, indexes through the proces- 
sors in the distributed dimension, while the inner loop(s) traverse 
the elements within a portion of the distributed array A. 

We illustrate these with a few examples. 

real*8 A(n) 
c$distribute-reshape A(block) 
do i = I, n 

A(i) = i 
em20 

Before optimization, this loop has the form 

doi= I,n 
A[ti][i%b] = i 

enddo 

After the tiling optimization, the loop is transformed into 

dop = 0. P-l 
lb = MAX((p*b+l), I) 
ub = MIN(((p+l)*b). n) 
locafjuiex = lb % b 
do i = lb, ub 

A[p][local&dex] = i 
local-index = local-index + I 

enddo 
en&o 
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As we can see, the mod operation has been moved out of the 
innermost loop so that we now need only P rather than n mod 
operations, while the div operation has disappeared altogether. 

If there are references to elements in the neighboring portion of a 
distributed array, then we peel iterations from the inner loop. For 
instance, in the code 

do i = 2, n-1 
A(i) = (A(&I) + A(i) t A(i+l)Y3 

eddo 

we peel one iteration from each end of the inner loop, which 
again results in an innermost loop without any div or mod opera- 
tions. 

dop=O,P-1 
lb = MAX(p*b, 2) 

ub = MIN(((p+l)*b-I. n-1) 
f(lb LE. ub) then 

A[(lb-lyb][(lb-l)%b] = (A[lbIb][lb%b] + 

A[(lb-lyb][(lb-l)%b] + 
A[(lb+l)/b][(lb+l)%b])/3 

endif 
if(lb+l .LE. ub-I) local&uiex = lb % b 
do i= Ib+l, ub-I 

A[p][local-index] = (A[p][local-index-l] + 
A[p][local-index] + A[p][local-index+l]Y3 

local-index = local-index + I 
enddo 
if (lb .L?Y ub) then 

ANub-lyb][(ub- I)%b] = (A[ub/b][ub%b] + 

A[(ub-iJfb][(ub-l)%b] + 
A[(ub+l)/b][(ub+l)%b])/3 

endif 
enddo 

We increase the applicability of the above transformations in 
three ways. First, besides parallel loops with data affinity, we 
apply them to other loops that reference reshaped arrays, such as 
serial loops and parallel loops without user-declared affinity. For 
each loop we examine the reshaped array references in that loop 
and use a simple heuristic to determine the desired tiling and 
peeling of the loop that will result in the fewest div and mod 
operations. However, this optimization is not always possible: 
whereas tiling for reshaped arrays is always legal for (a) parallel 
loops, and (b) serial loops with block distributions (since the iter- 
ations are still executed in the same order as the original loop), 
for cyclic or cyclic(k) distributions this transformation changes 
the order in which the iterations are executed and is therefore 
subject to data dependence constraints. 

Second, for loops such as 

doi= I,n 
A(i+c*k) = l l l 

enddo 

(c is a constant and k is a loop-invariant variable) we skew the 
loop by (c*k). This converts references like A(i+c*k) to A(i), 
which enables subsequent tiling and peeling. 

Third, having tiled a loop based on one array, we can simulta- 
neously optimize references to other reshaped arrays that match 
the first array in size and distribution. 

These optimizations are successful only when the index expres- 
sions of reshaped references are of the simple form s*i+c, with s 
and c being literal constants. More complex index expressions 
are not optimized and always incur the indexing overhead. 

7.1.1 Loop Interchange 

We can tile multiple loops in a nest if they reference reshaped 
arrays. In the code 

real*8 A(n, n) 
c$distribute-reshape Atblock, block) 
doj= 1, N 

doi=l,N 
A(ij) = i+j 

enddo 

enddo 

since A is distributed in both dimensions, we tile each of the j 
and i loops, generating a loop structure as follows: 

do pj = 1, Pi-1 

doj=... 
do pi = I, Pi-1 

do i = . . . 
. . . 

enddo 
enddo 

enddo 
enddo 

We try to interchange the j and pi loops so that the processor tile 
loops @i and pj) are outermost and the actual data loops (i and j) 
are innermost. We can then hoist div and mod operations within 
the pi loop out of the j loop, which results in fewer such opera- 
tions. This interchange is always legal for parallel loops within 
the doacross-nest directive (see Section 3. l), but is subject to the 
same legality constraints as normal loop interchange for sequen- 
tial loops. 

7.2 Hoisting and CSE of Array Index Expressions 

After performing the optimizations described above, we exam- 
ined the generated code for some small examples, but found that 
the address computation for reshaped arrays was still inefficient. 
There were three main reasons. 

The first problem was the inability of the scalar optimizer to per- 
form code hoisting and common subexpression elimination 
(CSE) across the index expressions of reshaped arrays. A 
reshaped reference generates indirect loads (from the processor 
array) and div and mod operations, all of which are, in general, 
unsafe operations that cannot be speculated. As a result, they 
cannot be moved out of an if clause or a do loop. Since these 
operations are always safe in the context of reshaped arrays, we 
fixed this problem by hoisting them out of loop nests and condi- 
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tional statements directly during the transformation of reshaped 
array references. 

The second problem was poor CSE across index expressions in 
the presence of subroutine calls. For instance, the index expres- 
sion for a reshaped array may contain references to the block size 
6 of a distributed dimension. Although 6 is initialized at the array 
definition point and never modified, the compiler must assume 
that the subroutine call could modify 6 and must reload it from 
memory after each call. We solved this problem by marking such 
variables as constant within the compiler internal representation. 

The third problem was that subsequent optimizations of the 
transformed code were affected by the indirect loads generated 
for accesses to reshaped arrays, since an indirect memory refer- 
ence can in general be aliased to any other data in the program. 
We solved this problem by marking the base symbol of the array 
as aliased only to other references using the same base array. 

7.3 DIV/MOD using Floating-Point Arithmetic 

While an integer divide takes about 35 cycles on the MIPS 
RlOOOO processor and is not pipelined, the corresponding float- 
ing-point operation takes 11 cycles. We therefore simulate the 
integer divide in software using the floating-point unit. In addi- 
tion to reducing the cost of the basic div and mod, the software 
scheme often enables additional hoisting of the reciprocal of the 
operands. 

7.4 Integration with Other Optimizations 

Within the overall MIPSpro7.1 compiler, we process reshaped 
arrays as part of the loop-nest optimizer. The order of the optimi- 
zations is as follows: 

1. Loop skewing, tiling, interchange, and peeling for reshaped 
arrays. 

2. Regular loop-nest optimizations (e.g., fusion, fission, inter- 
change, cache and register tiling). 

3. Transformation of reshaped array references, including opti- 
mization of reshaped references in the inner loops, and hoist- 
ing indirect loads and div and mod operations. 

4. CSE across index expressions of reshaped arrays. 

The primary benefit of this approach is that the loop transforma- 
tions for reshaped arrays are done early, presenting the code in a 
convenient form for the regular loop-level optimizer. Since the 
processor tiles are in place and often interchanged to be the out- 
ermost within a loop nest, the loop-nest optimizer can perform 
single processor optimizations as it would on normal, single pro- 
cessor code. Furthermore, by delaying the transformation of 
reshaped arrays references we maintain them in a reasonable 
form during the regular loop-level transformations. 

8 Performance Results 

We present performance results from one benchmark application 
(LU from the NAS 2.1 parallel benchmark suite) and two compu- 

tation kernels (matrix transpose and 2-D convolution). Our 
results are obtained on a l28-processor Origin-2000 with a 4MB 
secondary cache per processor and 16 GB of memory. In addition 
to measuring the overall performance, we use the hardware 
counters on the MIPS RlOOOO to analyze our results [ZLT+96]. 

8.1 LU 

We converted the original MPI version of the LU benchmark to a 
shared memory version using doucrcxs directives for parallelism 
and distribute-reshape directives for data distribution. The pri- 
mary data structures are two Cdimensional arrays that we dis- 
tribute in a (*,block,block, *) fashion, based on the parallel 
partitioning of the program. 

I I 
Optimization lime (sets) 

Reshape, no optimizations 83.91 

Reshape, tile and peel 53.26 

Reshape, tile and peel, hoist 46.23 

Original code without reshaping 45.71 

Table 2. Effect of Reshape Optimizations. 

We first evaluate just the basic effectiveness of our reshaped 
array addressing optimizations. We do so by comparing the code 
with and without reshaping running on a single processor, so that 
we can focus on just the reshaped array addressing overhead. As 
shown in Table 2, the basic code with reshaping, compiled at -03 
but without optimizations for reshaped arrays, ran very poorly. 
Tiling and peeling for reshaped arrays helped tremendously, fol- 
lowed by hoisting of indirect loads and div and mod operations, 
which enabled CSE across index expressions. Most importantly, 
the final version of the code ran nearly as efficiently as the origi- 
nal code without reshaping. 

Figure 4 shows the relative performance of four versions of LU 
on the class C input (the arrays are of size (5,166,166,166)). Two 
instances are without any data distribution directives: one uses 
the first-touch policy and the other uses round-robin page place- 
ment. (Data is initialized in parallel in this application.) The 
other two instances are with regular and reshaped data distribu- 
tion directives respectively. 

As shown by the results, the performance of this application is 
determined by bandwidth rather than latency considerations. 
Since all four versions spread the data across the machine 
(although differently), they all achieve good performance. The 
parallel initialization of data is quite effective, with first-touch 
outperforming both round-robin and regular distribution (the lat- 
ter two exhibit nearly identical performance). Furthermore. only 
reshaping can effectively provide the desired (*,block,block, *) 
distribution and obtains the best performance on 64 processors, 
although the improvements over first-touch are modest (6%). 

All four instances exhibit superlinear speedup because (a) the 
large data set size (360MB) exceeds the amount of memory on a 
single node (about 250MB) resulting in remote memory refer- 
ences even in the uniprocessor case, and (b) the larger aggregate 
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Figure 4. Performance of NAS-LU (Class C). 

cache at high processor counts improves the cache hit rate. We other versions. Using the hardware performance counters, we 
counted the cache misses using the hardware counters on the pro- found that at 32 processors the round-robin version spends about 
cessor, and found that the total number of secondary cache 15% of its time in TLB misses, while the reshaped version needs 
misses decreased by a factor of three from 1 to 16 processors. less than half that time. 

8.2 Matrix Transpose 

We next examine the performance of a parallel matrix transpose, 
in which we iterate several times over the following loop nest. 

c$distribute A (*.block), Efblock, *j 
c$doacross locul(i,jJ 
do i=l,m 

do j=l.m 
A(j,i) = B(i,jj 

enddo 
enddo 

Figure 5 presents the speedup of four versions of the code over a 
serial version on an input of size 5000x5000. The four versions 
are first-touch allocation, round-robin placement, regular distri- 
bution, and reshaped distribution. Data initialization is per- 
formed serially in this application. The matrix with the (block, *) 

distribution cannot be distributed properly without reshaping; 
consequently both first-touch policy and regular distribution 
result in most of the data being allocated from within the mem- 
ory of one or two nodes. These nodes become a bottleneck for 
accesses to this matrix, which results in extremely poor perfor- 
mance. Round-robin placement outperforms these two versions 
by distributing the data uniformly across the nodes and better uti- 
lizing the network bandwidth. 

The reshaped version obtains the best performance: by reshaping 
even the row-distributed matrix so that each processor’s portion 
is contiguous in memory we are able to ensure that almost all 
misses are satisfied locally. A secondary effect is the reduction in 
TLB misses with reshaping: since the reshaped version uses all 
the data in a page, it uses much fewer pages compared to the 
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Figure 5. Performance of Matrix ‘Ikauspose. 

At moderate processor counts the reshaped version outperforms 
the round-robin version by 30-508. At a little over 64 processors 
the reshaped version starts to improve superlinearly as the appli- 
cation gets increasing benefits from cache reuse. The two arrays 
require a total of 400 MB of memory while our system has 4 MB 
of secondary cache per processor. At large processor counts this 
data begins to fit within the secondary caches, and the number of 
cache misses decreases substantially for the reshaped version (a 
total of 244M misses compared to 702M for the round-robin ver- 
sion at P=96). One might expect similar effects for the other ver- 
sions, but random cache interference will prevent them from 
fully utilizing the cache until much larger processor counts. Data 
reshaping ensures that each processor’s portion is contiguous in 
virtual memory, and the OS page-coloring algorithm tries to 
ensure that contiguous virtual addresses do not map into conflict- 
ing physical addresses. As a result, cache interference is greatly 
reduced for the reshaped version of the code. 

8.3 2-D Convolution 

We next examine the performance of a 2-D convolution. As 
shown in the code below, we exploit either one or two levels of 
parallelism with distributions of (*,block) and (bfock,bfock) 
respectively. 

c$distribute A( *, block), B( *, block) 

c$doacmss local (i,j) af/iiry(i) = data(A(ij)) 
do j=2,n-I 

do i=2,n- I 
A(i,j)=(B(i-I j)+B(ij-I)+B(i,j)+B(ij+l)+B(i+l,j))6 

end do 
end do 
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The following exploits two levels of parallelism 

c$disttibute A(block, block). B(block, block) 
c$ainzcmss nest (i,i) local (i,jj a@&y(j,i)=&ta (A(i,j)) 
do j=2,n- I 

do i=2,n-I 

A(ij)=(B(i-I,j)+B(i,j-l)+B(i,j)+B(i,j+l)+B(i+l,j))/5 
end do 

en&o 

We present results with the first-touch policy, round-robin page 
placement, regular distribution, and reshaped distribution. Due to 
serial initialization all the data is placed on just a few nodes with 
the first-touch scheme. Our results are relative to the serial ver- 
sion of the code and presented on two different input sets: 
1000x1000 (Figure 6) and 5000x5000 (Figure 7). 

With a single level of parallelism we obtain successive improve- 
ments over first-touch allocation with regular, round-robin, and 
then reshaped distribution. Regular distribution benefits are due 
to memory locality alone. On the smaller input round-robin 
placement outperforms regular distribution for increasing num- 
ber of processors, even though the cache miss behavior remains 
unchanged. We believe this is because the round-robin policy 
results in more uniform page distribution and better bandwidth 
utilization as compared to regular distribution. For the 
1000x1000 case the performance of regular distribution actually 
becomes chaotic at large processor counts - each processor’s por- 
tion becomes progressively smaller, increasing page-level false 
sharing. Since a page requested by multiple processors is simply 
allocated from within the local memory of the processor to last 
request the page, this often results in a poor distribution. Reshap- 
ing reduces the degradation due to edge effects at page bound- 
aries and achieves the best performance. However, these edge 
effects are less important for larger problem sizes - for the 
5000x5000 case (the left graph in Figure 7) regular distribution 
performs as well as reshaped distribution. With 96 processors the 
application data (400MB) fits completely within the processor 
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caches and both round-robin and regular distribution outperform 
the reshaped version (which incurs some reshaping overhead). 

When we exploit two levels of parallelism both first-touch and 
regular distribution perform equally poorly, since with two- 
dimensional blocks the array layout suffers severely from false 
sharing over both cache lines and pages. Round-robin placement 
is an improvement due to better bandwidth utilization, but 
reshaping is the only option for such distributions and, as 
expected, performs much better. For larger processor counts in 
the 5000x5000 case, two-level parallelism outperforms the single 
level due to better communication/computation ratio. 

Finally, the data set size (16MB for the smaller input, 400MB for 
the larger input) exceeds the 4MB cache of a single processor, 
which leads to superlinear speedups for higher processor counts 
with larger aggregate cache size. 

8.4 Summary 

Overall, these performance results illustrate the need for provid- 
ing both regular and reshaped distribution. As demonstrated by 
the convolution code on the bigger input, regular distribution is 
perfectly adequate when the individual portions of a distributed 
array are large. Reshaped distributions, on the other hand, are 
useful when data needs to be distributed at a finer granularity, 
such as the (block, block) distribution in the convolution code. 
Besides improving memory locality, reshaping the layout of an 
array can also improve cache behavior by improving spatial 
locality and reducing false sharing across cache lines. 

9 Related Work 

Several approaches have been proposed in the literature to 
improve data locality, including operating-system-based page 
migration, compiler-based data distribution, as well as program- 
ming languages such as HPF. 

343 



160 

‘44 

t 

“’ Linear Speedup 

-A- Reshaped 

128 * Round Robin 

+ Regular 

112 -a- First Touch 

s- % 
3 
5 80 

160 - 

Linear Speedup 
‘44 -A- Reshaped 

+ 128 - Round Robin 

+ Regular 
112 -+ First Touch 

2 %- 
B 
5 80- 

64- 

,..’ 
48 

32 

16 

0 
0 16 32 48 64 80 % 

Number of Processors Number of Processors 

2D Convolution SOOOxSooO, (*,block) 2D Convolution SOOOxSOOO, (block.block) 

Figure 7. Performance of 2-D Convolution (5OOOx5000). 

Operating-system-based approaches [VDG+96] use mntime sta- 
tistics, such as TLB or cache misses, to identify the processor 
incurring the most cache misses to a page and migrate the page to 
the local memory of that processor. While transparent to the user, 
the main limitations of this approach are that it migrates data at 
the granularity of an entire page, incurs nmtime overhead and 
must therefore be conservative, and infers application behavior 
only indirectly through per-page statistics. 

Compiler-based approaches [AAL95, AnL93, GuB92, KeK95, 
SSP+95] to data distribution are typically integrated with the 
automatic detection of loop-level parallelism. These approaches 
are attractive since they are entirely transparent to the user and, 
in contrast to OS-guided approaches, perform data distribution 
based on a static analysis of the data reference patterns in the 
program. However, many codes are not amenable to such auto- 
matic compiler analysis and require explicit programmer inter- 
vention. 

Finally, programming languages such as HPF [Lov93, KLS+94, 
HPF2-971. Fortran-D [HKK+91], and Vienna Fortran [CMZ92], 
provide a variety of data distribution directives. We limit our 
comparison to HPF, the most widely known of these languages. 
HPF was originally designed as an alternative to message pass- 
ing for programming distributed address space machines such as 
the IBM SP-2. In HPF the user typically writes a serial program 
and annotates it with data distribution information. Based on this 
distribution, the compiler partitions and schedules the program 
for parallel execution and manages the communication and syn- 
chronization between processors. Programming in the message 
passing paradigm can be quite difficult, and the primary attrac- 
tion of HPF is a familiar shared memory programming model 
with all the communication managed automatically by the imple- 
mentation. 

Our model is similar to HPF in many respects: our data distribu- 
tion directives are similar to those provided in HPF, our doacross 
directive for expressing loop-level parallelism is the same as the 

independent directive in HPF, while our @r&y clause corm- 
sponds to the on directive, recently introduced in HPF-2.0 
[HPM-971. Furthermore, our restrictions related to storage and 
sequence association on reshaped arrays are similar to those 
imposed on distributed arrays in HPF. 

In contrast to HPF, however, our model was designed for cache- 
coherent shared address space machines and therefore differs in 
several fundamental ways. When programming in HPF on a dis- 
tributed address space machine, data distribution is necessary to 
obtain parallel execution. In contrast, on a CC-NUMA machine 
data distribution is performed as an optional optimization over 
and above exploiting parallelism. On such machines, because of 
global cache-coherent shared memory, traditional multiprocess- 
ing codes written with loop-level parallel directives continue to 
run correctly in parallel without requiring data distribution. 
Because remote latencies are relatively low (compared with 
those on distributed address space machines), these programs 
often run well without any modifications. Data distribution on 
these machines is purely a performance enhancement to over- 
come the additional penalty of a remote reference over a local 
reference. For our abstractions, therefore, a simple programming 
model and an efficient implementation were absolutely critical: if 
we were not careful, the overhead of managing data distribution 
could very quickly outweigh any gains from memory locality. 

The differing goals are reflected in our specific designs. First, we 
provide two distinct types of data distribution, regular and 
reshaped, whereas HPF provides only reshaped distributions. We 
believe it is important to have both types of distributions on CC- 
NUMA architectures: distributions that do not have page granu- 
larity problems can use regular distribution, thereby avoiding the 
legality restrictions and the array addressing overhead of 
reshaped arrays, while distributions that suffer from page granu- 
larity limitations can use reshaping. 

Second, we provide only the core data distribution constructs, 
and omit most of the advanced HPF features. For instance, we do 
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not support dynamic redistribution of reshaped data. Also, we 
provide a simpler model for passing reshaped arrays as argu- 
ments to subroutines. HPF allows mismatched distributions on 
actual and formal parameters, and it provides three different 
kinds of distribution directives on formal array parameters. The 
implementation must remap the data (if necessary) at tuntime if 
the directive is prescriprive, compile the called subroutine to 
accept any incoming distribution if the directive is transcriptive, 
and assert the specified distribution of the actual parameter if the 
directive is descriptive. In contrast, we automatically propagate 
distributions down the call chain, cloning routines as necessary. 
An HPF implementation cannot always propagate distributions 
at compile time since HPF permits dynamic redistribution of 
data. Because of these simplifications in our programming 
model, the distributions of all reshaped arrays are always known 
at compile time. This makes it much more likely that we will 
optimize the implementation of reshaped array references. 

10 Conclusions 

In this paper we have presented a set of abstractions for distribut- 
ing data on CC-NUMA multiprocessors. Our abstractions are 
easy to use and provide a simple model for data reshaping. Our 
unique error-detection features and propagation of distribution 
directives across subroutine calls enable the user to safely use 
reshaped distributions. Efficiency has been a prime concern, and 
we have carefully avoided features that could hinder compiler 
optimizations of data distribution (such as dynamic data reshap- 
ing). We have implemented these abstractions within the SGI 
MIPSpro7.1 compiler and incorporated several optimization 
techniques to improve the efficiency of the generated code. Our 
initial experience has been encouraging: the abstractions allow 
the user to focus on identifying the desired distribution based on 
the characteristics of the application, and leave the implementa- 
tion details to the compiler. 
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