
Register Allocation Across Procedure and Module Boundaries

Vutsa Santhanam
Daryl Odnert

Hewlett-Packard Company
California Language Laboratory

19447 Pruneridge Avenue
Cupertino, California 95014

Abstract

This paper describes a method for compiling programs using
interprocedural register allocation. A strategy for handling
programs built from multiple modules is presented, as well as
algorithms for global variable promotion and register spill code
motion. These algorithms attempt to address some of the
shortcomings of previous interprocedural register allocation
strategies. Results are given for an implementation on a sin-
gle register file RISC-based architecture.

1. Introduction

Priority-based graph coloring techniques for register allocation
have become common in many optimizing compilers designed
for recent computer architectures. This intraprocedural form
of register allocation has proven to be effective for computers
with a plurality of general purpose registers [Chow 841. How-
ever, in the absence of interprocedural information, the fol-
lowing situations occur, which leave room for further perfor-
mance improvement:
0 Local variables in different procedures can be assigned

to the same register. As a result, procedures must exe-
cute spill code to save and restore registers whose con-
tents need to be preserved across procedure calls.

l Global variables can be referenced out of different
registers in different procedures. Registers holding
values for global variables need to be stored to memory
and loaded back into registers at procedure calls and
returns.

TO solve this problem, interprocedural register allocation tech-
niques have been developed. Implementations of these tech-
niques for most programming languages are complicated by
the need to support programs built from multiple modules
(compilation units). For example, if a global variable is main-
tained in a single register across procedures of one module,
there must be a method to communicate this information to
procedures in other modules.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

@1990 ACM 0-89791-364-7/90/0006/0028 $1.50

Proceedings of the ACM SIGPLAN’SO Conference on
Programming Language Design and Implementation.
White Plains, New York, June 20-22, 1990.

1.1. Related Work

Previous attempts at interprocedural register allocation gen-
erally follow one of two approaches. One approach is to relo-
cate memory references at link-time, as was first suggested in
[Wall 861. In this technique, the compiler performs traditional
register allocation on each procedure and generates register
relocation information for the linker. Interprocedural register
allocation is implemented in the linker. Registers are
assigned to frequently referenced global variables and local
variables that are not concurrently active in the call graph. To
maintain a variable in a register across procedures, the linker
simply needs to follow the relocation actions prescribed by the
compiler.

This link-time technique was found to be effective for a pro-
cessor with a large register file. Most of the perfomlance
benefit was attributed to eliminating memory references to
global variables. In this approach, registers used for global
variables are dedicated to that purpose throughout the pro-
gram. A dedicated register is consequently unavailable for
other uses in regions of the program that do not access the
global variable.

The second approach to interprocedural register allocation
attempts to minimize register spill code by propagating regis-
ter usage information through the program call graph as each
procedure is compiled. Examples of this technique are
described in [Steen 871, [Chow 881, and [Mulder 891. In the
approach taken in [Chow 881, an intermediate code represen:
tation is written to a file by the first phase of the compiler.
Then, instead of linking object code, the user links the
required intermediate code files into one large intermediate
file. The intermediate code linker completes the code genera-
tion and optimization process.

Ueginning at the leaf nodes, procedures are compiled in a
bottom-up ordering of the call graph so that register usage
information can be propagated upwards. By examining the
register usage information at each call site, the register alloca-
tor can avoid assigning registers already used in the called
routines, effectively minimizing spill code.

This technique has yielded generally positive results, although
exceptions have been noted. With a limited number of avail-
able machine registers, the technique has been less effective
when applied to programs whose execution is concentrated in
the upper regions of the call graph.

28

1.2. A Different Approach

The approach presented in this paper differs from previous
interprocedural register allocation efforts in three main areas.
First, to maintain global variables in registers, instead of dedi-
cating a register to a global variable throughout the program
call graph, limited regions of the call graph are identified
where a gIoba1 variable is assigned to a register. This allows
the same register to be used for different global variables in
distinct regions of the program, resulting in a larger number
of global variables being maintained in registers. Moreover,
registers can be used for other purposes in regions where they
are not reserved for a global variable.

Second, to minimize register spill, instead of simply propagat-
ing register usage information to call graph nodes in depth-
first (bottom-up) order, restricted sets of call graph nodes are
identified over which interprocedural register allocation is per-
formed. These collections of nodes are arranged to
correspond to regions of the call graph that are procedure call
intensive. The objective is to move register spill code out of
frequently called routines in such regions. For some applica-
tions, minimizing register save-restore overhead in call inten-
sive regions can improve run-time performance more than an
approach that always favors the lower regions of the call
graph.
Third, a two-pass compiler organization is used that differs
from previous strategies for interprocedural register alloca-
tion. The key component of this compilation environment is a
tool called theprogmm analyzer. The program analyzer facili-
tates interprocedural register allocation without requiring pro-
cedures to be compiled in any particular order. The program
anaIyzer is somewhat similar to the Program Compiler com-
ponent of the R” compiler system described in [Cooper 861.
Although the Program Compiler is used to facilitate interpro-
cedural optimization, it has not been applied directly to the
register allocation problem.

The register allocation algorithms described in this paper have
been implemented in a prototype compiler and program
analyzer targeted for the Hewlett-Packard Precision RISC
Architecture (PA-RISC) [Mahon 861 [Lee 891. The method
will naturally adapt, however, to any processor architecture
with a large register file. A linkage convention which allows
each procedure a set of callee-saves and a set of caller-saves
registers is assumed.’

PA-RISC is a 32-bit load-store architecture in which most
instructions execute in a single clock cycle. Of the 32
general-purpose registers defined by the architecture, 16 regis-
ters are designated as callee-saves by sofhvare convention.
Data collected over a variety of optimized applications sug-
gested that several of the callee-saves registers remain unused
in the most common paths of execution. Making more effi-
cient use of these registers and reducing procedure call over-
head were the primary motivations behind our work.

This paper is divided into seven major sections. Section 2
introduces the compilation process used. Section 3 describes
the functionality of the compiler’s first phase. Section 4
describes how interprocedural register usage is determined by
the pro5am analyzer tool. Section 5 discusses the role of the

1. The contents of a calke-saws register must be saved and restored
by any procedure that modities it, and are lhw presewed across calls. A
caller-saves register can be modified by procedures without preserving its
contents. Hence, a caller-saves register must be saved and restored
around a call if its contends are subsequently used.

compiler’s second phase. Benchmark measurements and
analysis are presented in Section 6. Section 7 describes limi-
tations of our approach and ideas for future work.

2. The Compilation Process

Figure 1 illustrates the two-pass compilation system used to
perform interprocedural register allocation.

Source Files

Compiler
First Phase I

P
c-- InkI /r.i

Figure 1

The compiler first phase reads each source file containing
high-level program language text one at a time. After verify-
ing syntactic and semantic correctness, an intermediate
representation of the source is generated and saved in a file.
Additionally, for each procedure, the compiler first phase col-
lects a record of local information required to construct the
program call graph and make interprocedural register alloca-
tion decisions. Each record of local information is stored in a
sur~tary file for the module.

The compiler first phase must be run on each source file that
is to be included in the pro5am. After all the summary files
have been generated, the program analyzer is run. The pro-
gram analyzer examines the record for each procedure and
constructs the program call graph. It then computes register
allocation directives for interprocedural register allocation.
The program analyzer does not modify any code. Instead, a
summary of the relevant directives for each procedure is
placed in a pr-o,ornrn database.

By default, the register allocation decisions made by the pro-
gram analyzer are guided by compile-time heuristics. The
program analyzer can optionally use dynamic profile data to
improve the accuracy of these heuristics.

After the program database is generated, the compiler second
phase must be run on each intermediate file. This phase
translates the intermediate code into machine code and is
responsible for traditional global optimizations. As each pro-
cedure is optimized, the pro5am database is consulted to
obtain the register allocation directives computed by the pro-
gram analyzer. These directives are used by the register allo-
cation component of the compiler second phase.

29

The compiler second phase generates one object file
corresponding to each intermediate file. The object files are
then bound together by the linker with the appropriate run-
time libraries to produce an executable program.

3. The Compiler First Phase

The primary responsibility of the compiler first phase is the
traditional syntactic and semantic analysis of the source text.
It then generates an intermediate representation of the source
that is saved in a file and processed later by the compiler
second phase. When compiling for interprocedural register
allocation, the compiler first phase also writes out a record for
each procedure in the source to a summary file. Each record
contains the following information:
0 The list of global variables accessed in that procedure,

along with a value representing the frequency of local
accesses to that variable. Flags are also set for each
global variable to indicate, among other things, whether
aliased references are possible.

0 A list of all procedures called, and a value representing
the frequency of local calls to each procedure.

l A list of procedures whose addresses have been com-
puted for possible use in indirect calls and a flag indi-
cating if indirect calls are made by this procedure.

0 An estimate of the number of callee-saves registers
needed for the procedure.

4. The Program Analyzer

The program analyzer is run after all the summary files for an
application have been generated by the compiler first phase.
The program analyzer first reads in all the summary files to
construct a call graph for the program. The global variable
promotion algorithm is then run, followed by the spill code
motion algorithm.

4.1. Global Variable Promotion
Global variable promotion converts memory references of glo-
bal variables into register references. In effect, the global
variable is promoted from being a memory object to a register
object - hence the term global vanhble promotion. Many
optimizers are able to promote global variables to registers
locally within a procedure. Such locally-promoted global vari-
ables are still accessed from memory across procedures.
Before procedure calls and at the exit point, the optimizer
must insert instructions to store the register containing the
promoted global variable back to memory. Similarly, at the
entry point and just after procedure returns, the optimizer
must insert instructions to load the promoted global variable
from memory to the register.

The program analyzer facilitates interprocednd global vari-
able promotion. The objective is to arrange for a global vari-
able to be accessed out of the same register in separate pro-
cedures, thus obviating intermediate transfers to and from
memory. In the link-time technique described in [Wall 861, a
register is dedicated for each global variable to be interpro-
cedurally promoted throughout the program.

However, dedicating a unique register for each promoted glo-
bal variable can be inefficient in routines that do not access
those variables. To improve register use, we have applied the
graph coloring technique commonly used in intraprocedural
register allocation, described in [Chaitin 84, to live ranges of
global variables computed over the program call graph.

4.1.1. Webs

The nodes of the call graph which reference a particular glo-
bal variable can be grouped into disjoint live ranges, or webs,
for that variable. A web for a global variable is a minimal
subgraph of the program call graph such that the global vari-
able is neither referenced in an ancestor node nor a descen-
dent node of the subgraph. Partitioning the procedures that
access a global variable into webs allows each web to be con-
sidered for register promotion individually.

If a web for a global variable is selected for promotion, a
(callee-saves) register is dedicated to that global only in the
procedures belonging to the web. The same register can be
assigned to another global variable web or used for local
values at other nodes of the call graph.

Within web nodes, the value of the promoted global variable
is preserved across calls to nodes outside the web since it is
maintained in a callee-saves register. Furthermore, by con-
struction, it is guaranteed that such external nodes do not
reference that global variable.

At the root nodes of the web sub-graph, called web entry
no&s, code is inserted at the entry point by the compiler
second phase to load the global variable to the register. Like-
wise, code is inserted at the exit point of web entry nodes to
store the global variable back to memory.

Note that with this scheme, statically initialized global vari-
ables do not require special treatment. The initial value for a
promoted global variable is simply loaded into the appropriate
callee-saves register when the web entry node is invoked.

Another attractive feature of this scheme is that it is well
suited to global variable usage found in structured programs.
References to global variables tend to occur in localized sets
of procedures (that are logically dependent on that global
variable), rather than being scattered all over the program call
graph. Webs can encompass such regions of the call graph
and help limit dedicated register usage.

4.1.2. Identifying Webs

The program analyzer identifies webs by first determining the
global variables that are eligible for promotion. To be eligible
for promotion, a global variable must satisfy several criteria.
For instance, it must be a variable small enough to fit in a sin-
gle register, and it must not have been aliased to another vari-
able.

A simple interprocedural data flow analysis over the call
graph on the eligible global variables is then performed. The
following sets are defined for this purpose:

L-REF [P] the local reference set for each procedure P.
An eligible variable appears in this set if that
variable is accessed within procedure P.

P-REF [P] the parent reference set for each procedure I’.
An eligible variable appears in this set if that
variable is accessed in some procedure along a
call chain from a start node to P.2

C-REF[P] the child reference set for each procedure P.
An eligible variable appears in this set if that
variable is accessed in some procedure along a
call chain starting at P.

2. Every node without a predecessor is treated as a start node

30

In the program analyzer, the L-REF sets are easily initialized
using the information kept in the summary files. The PJZEF
and C-REF sets are initially empty. The following dataflow
equations are used to iteratively propagate the local informa-
tion through the call graph:

PJJzqP] = U (P-RBF[il U LXEF[i] >
(i 1 i is a predecessor of P)

C-RBF[p] = u (C-REF[il U LJBF[il)
(i 1 iisasuccessorofP)

Note that these equations are correct only if we limit the eligi-
ble global variables to those that have not been aliased to any
other variable. For faster convergence, the C-REF sets are
propagated in depth-first (bottom-up) order while the P-REF
sets are propagated in breadth-first (top-down) order.

Webs for a global variable are identified by looking for poten-
tial web entry nodes. The candidate web entry nodes for a
global variable will have that variable in their L-REF sets, but
not in their P-REF sets. Beginning from a web entry node,
the web is recursively expanded to include all successor nodes
which have the associated variable in either the L-REF or
C-REF set for that node. The algorithm is shown in Figure
2.

For correctness, the algorithm in Figure 2 ensures that all
immediate predecessors of web entry nodes are external to
the web. Entry nodes would otherwise replace the contents of
the dedicated register with a stale value when invoked from
within a promoted web. The algorithm also ensures that
nodes internal to the web do not have any external predeces-
sors. Otherwise, when the internal node is invoked bypassing
the web entry node, the dedicated register could be refer-
enced without being properly loaded.
Enlarging webs to overcome these restrictions implies dedicat-
ing a register over larger regions of the call graph. We will
later describe an extension involving stub routines to alleviate
this problem.

The algorithm in Figure 2 nodes of some recursive call chains
that reference eligible global variables will not be incor-
porated into webs. This is because a global variable can be
included in the P-REF set for all Ilodes in the cycle, but not
in the L-REF set of any nodes in the entry paths into that
cycle. A simple solution is to include all the nodes in each
such cycle into a separate web and enlarge that web for
correctness using the algorithm shown in Figure 2.

4.13. Promoting Webs

Once webs have been identified, a web interference graph is
constructed. Arcs connecting web nodes in this graph
represent interferences. Two webs are said to interfere if they
share a common call graph node. Clearly, interfering webs
can not be promoted to the same register. The nodes of the
web interference graph are sorted into a priority order for
coloring (i.e. register promotion). The priority value of a web
is computed using a heuristic function. This function factors
in the the estimated number of dynamic global variable refer-
ences within each web and the estimated calls to web entry
nodes (for which loads and stores would need to be inserted
at the entry and exit points).

Compute-Webs0
begin
for each eligible global variable G do

for each procedure P such that G E CREF[P] do
if (G p PJEF[P]) then

begin
allocate a new web W for G;
W-nodes : = 0 ;
temp:= {P);
repeat

for each node Q in temp do
Expand-Web(W, Q, G);

S:=(Z E W-nodes (
(Z has a predecessor in W-nodes) and
(Z has a predecessor not in W+nodes) };

if (S # 0) then
temp : = U predecessors of nodes in S

that are not in W-nodes;
until (S = 0);
if (W has any nodes in common with

any other web X for G) then
begin
W-nodes : = X-nodes U W-nodes;
delete web X;
end;

end;
end;

Expand-Web(W, Q, G)
begin
W-nodes : = W-nodes U Q;
for each successor S of Q do

if ((G c C-REF[S]) or (G c L-REF[S]))
and (S f W-nodes) then

Expand-Webs(W, S, G);
end;

Figure 2

Using a predetermined subset of the callee-saves registers, as
many web nodes of the interference graph are colored as pos-
sible. A web that is not colored results in the corresponding
global variable not being promoted across procedures. The
global variables of uncolored webs can still be promoted to
registers intraprocedurally by the compiler second phase.

For each procedure belonging to a colored web, the promo-
tion of the global variable to a specific register is recorded the
program database. During the compiler second phase, all
memory references to the corresponding global variable are
converted into register references in the procedures belonging
to the web. The register assigned to a web is unavailable for
other purposes in any of the web procedures. The compiler
second phase is also responsible for inserting register spill and
initialization code at web entry procedures as described ear-
lier.

31

4.1.4. An Example

The call graph shown in Figure 3 illustrates how this method
allows a register to be shared among multiple webs. The
nodes of the graph, labeled A to H, represent user procedures,
and the arcs between these nodes represent procedure calls.
In this example, there are three global variables named gl, g2,
and g3. An explicit access to one of these variables is indi-
cated by the presence of that variable in an L-REF set, from
which the P-REF and C-REF sets are derived (Table 1).

Procedure
A
B

2
E
F
G
H

I, RFF
+S3

gl B
82 83

gl
gl g2

g2
@
0

C REF
EC1 82 83

I21 @

P REF
0
s3
@

is1 &3

Table 1

The webs for the three global variables are summarized in
Table 2 and are outlined with dotted lines in Figure 3. As
mentioned earlier, web coloring ensures that webs that share
common procedures are assigned different registers. For this
example, all four webs can be colored using just two callee-
saves registers. Different webs for the same variable may be
assigned different registers (e.g. Web 4 and Web 2 for global
variable g2).

Web 1

Figure 3

~

Table 2

Procedure B is an entry procedure of Web 3. The compiler
second phase will insert code at the entry point of procedure

B to load the value of variable gl from memory into the
designated register. At the exit point of procedure B, code
will be added to store the contents of that register back to the
memory location associated with variable gl.

4.2. Spill Code Motion

RISC architectures that do not employ a register windowing
scheme tradeoff hardware implementation cost for register
spill overhead at procedure calls [Wall 881. Minimizing this
overhead in software is the primary motivation for compile-
time spill code minimization. In the technique presented
here, callee-saves register save and restore code is elevated in
the call graph so that descendant nodes may use them for
free, without the cost of spilling them - hence the term spill
code motion.

In previous attempts to minimize spill code at procedure calls,
procedures are compiled in bottom-up order, favoring rou-
tines close to the bottom of the call graphe3 Even in relatively
small graphs, it is likely that the “free” registers will be quickly
exhausted. To minimize spill code at different levels of the
call graph, we have developed a technique which first identi-
fies regions of the call graph called clusten.

4.2.1. Clusters

Informally, clusters correspond to areas of the call graph
where spill code motion is expected to be effective. The stan-
dard register linkage convention is adhered to at the boundary
of a cluster, but not internally. More precisely, a cluster is
defined as a set of nodes in the program call graph with the
following properties:

[l] There exists some node R, called the root of the clus-
ter, which dominates all other nodes within the cluster.
(Node D dominates node N if and only if every path
from each start node to N includes D.)

Note that this does not imply that all nodes dominated
by the root node are in the cluster.

PI For every node P in the cluster except R, all immediate
predecessors of P are also in the cluster.

[3] A non-root node is included only in the cluster of the
immediately dominating root node. That is, a node
dominated by more than one root node is only included
in the cluster associated with the nearest root.

The root nodes of clusters will save and restore callee-saves
registers so that other nodes in the cluster can use them
without incurring this expense. Cluster root nodes are identi-
fied by considering the estimated call frequencies along the
edges of the call graph. If the internal cluster nodes are
called more frequently than the root node, fewer instructions
and fewer memory references will be required to execute the
program.

Consider the example in Figure 4. Assume R is a cluster root
node while S and T are members of that cluster. Normally,
any callee-saves registers used in S must be saved at the entry
point of S and restored at the exit point. The program
analyzer can arrange for those callee-saves registers to be
spilled at the entry point of the cluster root, R. S may then

3. Bottom-up register allocation is well suited to programs that spend
most of their execution time in the lowest regions of the call graph A
top-down algorithm would favor procedures near the top of the call
graph

32

Figure 4

use the registers without spilling them as long as R does not
use the same registers to hold values across a call to S. This
results in a performance gain, assuming S is called more fre
quently than R. The spill code can be reduced further if
sibling nodes within the cluster use the same registers. For
example, R could spill a single set of registers that could be
used by both S and T.

Note that the definition of a cluster allows leaf nodes of a
cluster to be root nodes of other clusters. This facilitates spill
code motion upwards in the call graph across clusters. For
example, node R in Figure 4 could also belong to a cluster
rooted higher up in the call graph. Spill code that is moved
out of nodes S and T into node R can be moved further up to
the root node of the cluster containing node R.

4.2.2. Identifying Clusters

Clusters are found in a depth-first traversal of the program
call graph. Cluster root nodes are identified using a heuristic
that compares incoming call counts with call counrs to poten-
tial cluster member nodes. Successors nodes that meet the
criteria for inclusion in the cluster, are recursively added to
the cluster. The cluster identification algorithm is outlined in
Figure 5.

At the end of this algorithm, for each cluster root node R,
Cluster-Nodes[R] specifies the remaining nodes that belong to
that cluster. Note that a cluster root node can itself appear in
Cluster-Nodes of a higher level cluster root.

The function Postpone-Visit is used in the cluster identifica-
tion algorithm to defer consideration of a node until all its
predecessors have been visited. The exception to this rule is
when the unvisited predecessors of a node are part of a recur-
sive call chain involving that node.

For correctness, the algorithm outlined in Figure: is designed
to disallow recursive call cycles within clusters. Consider a
recursive routine which uses callee-saves registers. Such a
routine would expect that the values in these registers would
remain safe across the recursive call. If we eliminate the spill
code at a recursive routine’s entry and exit points, however,
we will destroy the values that were live across that recursive
call.

4. Note, however, that it does not limit ch&ers from being identified
within cycles in the call graph. The example shown later in Figure 7
illustrates this.

FindJJusters(G)
begin
for each node P in the call graph G do

begin
mark P as not visited;
Cluster-Nodes[P] : = 0;
end;

for each start node S in the call graph do
Examine_Node(S, NULL);

end;

Examine-Node(P, ClusterRoot)
begin
if Postpone-Visit(P) tben

return;
mark P as visited;
if ((ClusterRoot # NULL) and

(ClusterRoot dominates P) and
(all predecessors of P c Cluster-Nodes[ClusterRoot]))

then
add node P to Cluster-Nodes[P];

if P is a cluster root then
NearestClusterRoot : = P;

else
NearestClusterRoot : = ClusterRoot;

for each successor S of P do
if S has not been visited then

Examine-Node(S, NearestClusterRoot);
end;

boolean Postpone-Visit(P)
begin
for each predecessor Q of P do

if (Q has not been visited and
Q is not a descendant node of P)

then
return TRUE;

return FALSE;
end

Figure 5

4.2.3. Register Usage Sets
To facilitate spill code motion, the program analyzer identifies
how each general register may be used within each procedure
of a cluster. This is accomplished by placing each register
into one of four sets.

FREE[P] registers in this set need not be saved on entry
and restored on exit if they are used in pro-
cedure P, and may hold live values across calls.

CALLER[P] registers in this set need not be saved on entry
and restored on exit if they are used in pro-
cedure P, but may not hold live values across
calls.

CALLEE [P] registers in this set must be saved on entry and
restored on exit if they are used in procedure
P, but may hold live values across calls.

MSPILL[P] registers in this set lnust be saved on entry and
restored on exit if they are used in procedure
P and they may not hold live values across
calls.

33

The register sets for each procedure are saved in the program
database. The register allocator in the compiler second phase
must use each register according to the properties of the set
to which it belongs.

Our algorithm adds the additional requirement that all regis-
ters in the MSPILL set at a cluster root node must be saved
on entry and restored on exit, regardless of whether they are
actually used inside that procedure. This will accomplish our
goal of having the root node execute the spill code for the
remaining nodes of the cluster. In fact, the MSPILL sets will
contain registers only for cluster root nodes.

4.2.4. Computing Register Usage Sets

The MSPILL and FREE sets are first initialized to the empty
set and CALLER and CALLEE are initialized to the standard
caller-saves and callee-saves registers, respectively, for all pro-
cedures.

To compute the final register usage sets, each cluster root
node is considered in a bottom-up ordering. As each cluster
root is considered, we first find the set of registers that are in
the MSPILL set of any cluster root node that is also a
member of the current cluster.

This set is used to determine the order in which free registers
will be selected in the current cluster. Registers not in the set
will be selected first to increase the chances that we will be
able to move registers from the MSPILL set at the child clus-
ter root to the MSPILL set of the current cluster root. Mov-
ing registers from one MSPILL set to another effectively
causes the spill code for one cluster’s registers to be executed
at a root node higher up in the call graph.

To assist in computing the register usage sets, for each cluster
procedure P, the set AVAIL[P] is defined to be the subset of
the standard callee-saves registers that are available for free
use along calls out of P.

Recall that the compiler first phase estimated the number of
callee-saves registers needed by each procedure and saved this
information in the summary file. Using this estimate, we
select a set of callee-saves registers for use in the cluster root
procedure, R, and assign this set to CALLEE[R]. AVAIYR]
is then initialized to be the standard calleesaves registers that
are not in CALLEE[R].

The set of registers that have been reserved at some node of
the cluster for a promoted global variable will also be
removed from AVAIL[R], conservatively preventing these
registers from being used for other purposes at all nodes in
the cluster.

The recursive procedure Preallocnte-Notie, shown in Figure 6,
is then called on the root node. This procedure visits each
node of the current cluster to preallocate the set of callee-
saves registers that will be available in that node and arranges
for the root node to spill that register, if possible.

When Preallocate-Node completes its pass over a cluster, all
registers in the USED set are placed in the MSPILL[R] set.
We then augment the CALLER set at each node of the clus-
ter with the following algorithm:

for each node Q 6 Cluster-Nodes[R] do
if (Q is not a cluster root) then

CALLER@] : = CALLER[Q] U
(AVAIL[Q] r7 MSPILL[R]);

define USED : set of callee-saves registers;
(* Registers in USED will be added to the

MSPILL set of the current cluster root. *)

Preallocate-Node(N)
begin
mark N as visited;
AVAIL[N] : =

rl AVAILIP] over all immediate predecessors P of N;

if (N is a cluster root) then
begin
if (N is not the current cluster root) then

begin
USED := USED U (MSPILL[N] rl AVAIL[N])
MSPILL[N] : = MSPILL[N] - AVAIL[N];
USED := USED U (CALLEE[N] n AVAIL[N]);
FREE[N] : = CALLEE[N] fI AVAIL[N];
CALLEE[N] := CALLEE[N] - FREE[N];
end

end
else

begin
FREE[N] : =

Get-Registers{ Num-Regs-Needed(N), AVAIL[N]);
AVAIL[N] := AVAIL[N] - FREE[N];
CALLEE[N] : = CALLEE[N] - (FREEIN] U AVAIL[N]);
USED := USED U FREEIN];
end;

for each immediate successor S of N do
if (S E CurrentCtuster and

all immediate predecessors of S have been visited)
then

Preallocate-Node(S);
end;

Get-Registers(COUNT, REGS)
begin
select up to COUNT registers from the set REGS,
using the priority order determined for this cluster;
return the set of selected registers;
end;

Figure 6

This post-pass enables callee-saves registers spilled at the
cluster root node to be used as caller-saves registers at inter-
mediate nodes of certain paths within rhe cluster. In Figure 7,
assume procedure J is a cluster root node while K, L, M are
members of the cluster. For a register to be in FREE[M], it
must have also been in AVAIL[K] and AVAIL[L]. Since J is
the cluster root, all registers in FREE[M] will be in
MSPJLL[J]. From the definition of MSPILL, J must spill
these registers. Hence, they can be safely used as caller-saves
registers inside K and L.

34

Figure 7

4.3. The Program Database

The program analyzer algorithms result in a set of register
allocation directives for each procedure in the program.
These directives are represented as program database entries
for each procedure that contain the following information:
0 A list of global variables promoted in that routine. For

each promoted variable, the register reserved for that
variable is specified along with a set of flags indicating
conditions such as whether or not this procedure is a
web entry node for the promoted variable.

l The contents of the FREE, MSPILL, CALLER, and
CALLEE sets for the procedure.

Since these register directives are precomputed for each pro-
cedure by the program analyzer, the register allocator can be
run on procedures in any order during the compiler second
phase. Also, since the directives are stored in a single pro-
gram database, the compiler second phase can be run on each
source module independently.

5. The Compiler Second Phase
The compiler second phase reads in the intermediate
representation generated by the first phase and performs low-
level code generation and traditional global optimizations.
For each procedure, the relevant program database entry is
queried to implement interprocedural register allocation, as
computed by the program analyzer.

The steps involved in implementing global variable promotion
are outlined below.
l For each procedure belonging to a promoted web,

memory references to the corresponding global variable
are converted into register references.

This can enable additional intraprocedural optimiza-
tions such as register copy elimination.

0 For procedures corresponding to web entry nodes, the
global variable is loaded into the callee-saves register at
the entry point and stored back at the exit point. Care
is taken to insert loads and stores to promoted static
global variables correctly.
Note that if none of the procedures belon@ng to a pro-
moted web modify the global variable, a store instruc-
tion need not be inserted at the web entry procedures.

0 Register save/restore code for the callee-saves register
is suppressed at all procedures belonging to the pro-
moted web except at web entry nodes.

Note that the dedicated callee-saves register will not be
available for intraprocedural use in procedures belong-
ing to the promoted web since it will not be contained
in any of the register usage sets.

Implementing spill code motion is simpler. The CALLER set
for the current procedure is examined to obtain caller-saves
registers for local coloring. For calleesaves registers, the
FREE set is checked before the CALLEE set. Spill code for
registers in the MSPILL set is inserted at the entry point and
exit point of procedures that are cluster root nodes. Spill
code is also generated for &lee-saves registers obtained from
the CALLEE set.

6. Measurements

The interprocedural register allocation techniques described in
this paper have been implemented in a prototype program
analyzer consisting of about 6000 lines of C source code. The
compiler first and second phases have been implemented by
modifying the PA-RISC C compiler [Coutant 861 running
under the HP-UX operating system.

In the prototype implementation, the compiler first phase was
allowed to proceed through the normal code generation and
optimization phases before generating summary files. This
was done to obtain better heuristic information on usage
counts for global variables, call frequencies and estimates for
calleesaves register requirements. Usage counts and call fre-
quencies were determined based on the location of each refer-
ence or call in the control flow hierarchy.
The compiler second phase can be designed to accept either
an intermediate representation or the original programming
language text. In our implementation, the compiler second
phase uses the original program text file. Command-line
options are used to specify which phase of the compiler is to
be run. This helps minimize changes to existing compile
scripts, at the expense of compiling each source file twice.

The C compiler and program analyzer were used to optimize
the programs listed in Table 3, with both interprocedural glo-
bal variable promotion and spill code motion. The ben-
chmarked applications were linked with C run-time libraries
which were not interprocedurally optimized. Also, interpro-
cedural register allocation was restricted to calleesaves gen-
ernl registers.

I
Benchmark Programs

Name Lines
Of Code Description

Dhrystone 380 Popular CPU benchmark
460
800
1500
2700
6600
85000

Table 3

35

6.1. Performance Improvement

Table 4 shows the percentage improvement over level two
(global) optimization for the benchmarks with various options
enabled in the program analyzer. Most of the measurements
shown in Table 4 were obtained using a PA-RISC simulator.
These simulations did not model a cache, so some of the
benefits of interprocedural register allocation are not
accounted for here. Obviously, the extent of this benefit will
vary with differing cache parameters and placement algo-
rithms.

Percentage Performance Improvement
Over Level 2 Optimization

Total cycles measured by a simulator, excluding cache miss penalties.
$ Benchmarks measured with /bin/time on an HP 9000 Model 835

Benchmark
Dhrystone
Fgrep
0 thello
War
CR Tool
Proto CS

Opt3 PA

ABCDEF
0.8 0.8 3.4 3.4 5.5 3.4

1

0.0 0.0 8.8 8.4 8.6 8.8
0.1 0.0 4.8 4.8 4.7 4.9
1.2 1.2 3.7 3.7 3.7 3.7
0.0 0.0 2.2 1.5 0.8 2.3
n/a n/a 18.7 9.1 18.7 n/a
6.0 6.0 9.0 7.0 7.0 9.0

A-Spillmotiononly D - Spill motion & greedy coloring

B = Spill motion w/profile info E = Spill motion & blanket pmmotron

C = Spill motion C 6 reg cohiq F = Spill motion & 6 rcg mloring w/profile info

Table 4

The first column of data gives the results for spill code motion
alone. The results in the second and last columns were
obtained by making profile information available to the pro-
gram analyzer. The profile information was collected by run-
ning gprof [Graham 821 and provided the program analyzer
with actual counts of run-time procedure calls.

The remaining columns combine the results of spill code
motion with global variable promotion. For the third column,
6 callee-saves registers were made available for web coloring.
For the fourth column, a “greedy” coloring algorithm was used
which tries to color as many webs as possible without reserv-
ing any of the callee-saves registers required for any individual
procedure.

‘Blanket” promotion refers to the promotion of a set of user
specified global variables across the entire program. This was
implemented in the program analyzer to measure the advan-
tages of a web coloring technique over dedicating a register
for each key global variable over the whole program as in
[Wall 861. The 6 most frequently used global variables (as
detemnned by analyzing the prioritized web list) were chosen
for blanket promotion.

6.2. Analysis

Overall, Table 4 indicates that interprocedural register alloca-
tion is beneficial. The improvements for the P/wto C bench-
mark are exceptionally high because this application was
coded specifically to take advantage of global register vari-
ables.

Spill code motion typically provides a small reduction in
instructions executed; global variable promotion has a larger
impact. This is consistent with results reported in [Wall 861.

In our scheme, interprocedural global variable promotion has
additional benefits beyond just reducing the number of
dynamic memory references. In particular, the compiler
second phase is able to remove instructions that set up the
base register used in the deleted memory references to pro-
moted globals. Certain register copies involving promoted
globals are also eliminated.

Spill code motion as implemented in our prototype depends,
among other things, on the size and shape of the clusters
identified. The shorter and wider the cluster, the easier it is
to move spill code to the root node. For the applications con-
sidered, the average cluster size ranged between 2 to 4 nodes.
The small average cluster size is, in part, responsible for the
marginal performance benefit observed. Note that the perfor-
mance improvement observed for the PA Optimizer is prob-
ably due to external cache effects since it is not corroborated
by the reduction in dynamic memory references (illustrated
later in Table 5).
The figures in Table 5 are inconclusive with respect to the
utility of procedure-level profile information in our algorithms.
This is partly because the prototype program analyzer is able
to use heuristic call counts effectively. The program analyzer
normalizes the raw heuristic call counts obtained from the
summary files over the entire program call graph, increasing
the weights on recursive arcs and arcs to leaf nodes. Further-
more, procedure-level profile information is not fine-grained
enough to make a large difference in global variable promo-
tion.

As expected, web coloring has little or no advantage over
blanket promotion on the small CPU benchmarks. In larger
applications, which typically have a larger number of global
variables, web coloring is advantageous.

In the case of the PA Optimizer, the 500 global variables eli-
gible for register promotion were broken down into 1094
webs, of which 489 webs were considered for coloring. The
remaining webs were discarded either because they were too
sparse (low ratio of LREF nodes to total nodes) or because
the web contained just one node in which the corresponding
global variable was accessed infrequently. Of the 489 webs,
280 were successfully colored using just 6 registers reserved
for inter-procedural use.

Greedy coloring did not do as well as 6 register coloring for
some of the larger applications. With this strategy 309 webs
out of 489 were colored in the PA Optimizer. However, it
failed to color some of the more important webs that were
colored with 6 register coloring.

6.3. Memory Reference Reduction
Table 5 shows the percentage reduction in singleton memory
references executed in a subset of the benchmarks. A single-
ton memory reference is roughly defined as an access of a
simple variable (not an element of an array or structure) and
whose size is one, two, or four bytes.

Table 5 indicates that global variable promotion is effective in
eliminating many of the singIeton memory references remain-
ing after normal level two optimization. How much this
impacts overall performance depends on the percentage of the
total memory references that are eliminated. Note that inter-
procedural register allocation will not reduce the number of
references to elements of arrays and other data structures.

36

Percent Reduction in Dynamic Singleton Memory References
(Over Level 2 Optimization)

Benchmark]] A B C D E F -I

Dhrystone I] 14.0 14.0 25.6 25.6 41.9 25.6

7. Limitations and Extensions

7.1. Two-pass Compilation

The interprocedural register allocation scheme described in
this paper improves register usage across module boundaries
by using a two-pass approach. This two-pass approach has
the following limitations:
0 It requires management of additional files (summary

files, intermediate files and program database files).
l There is additional compile-time overhead. Aside from

the execution time of the program analyzer, the com-
piler second phase has to query the program database
and either read in the intermediate files or reprocess
the source files.

0 Source level changes need to be tracked carefully and
can be very expensive.

l Interprocedural register allocation is not performed
across calls to run-time libraries.

Most of the limitations associated with a two-pass approach
can be circumvented by deferring interprocedural register
allocation to link-time as described in [Wall 861. The linker
would need to perform the job of the program analyzer and
implement interprocedural register allocation by re-writing
each module appropriately. Module rewriting may be accom-
panied by certain local optimizations (e.g. peephole optimiza-
tion, and instruction scheduling).
Alternatively, interprocedural register allocation could be per-
formed in the context of a programming environment such as
R” [Cooper 861. The module editor used to create source
files could generate approximate summary infomlation. The
program compiler could compute interprocedural register
allocation information. This information could be communi-
cated to the module compiler, which would serve as the com-
piler second phase.

7.2. Partial Call Graphs

The methods described in this paper, can be applied to partial
call graphs, where not all procedures and global variable
references are exposed to the program analyzer. This situa-
tion might correspond to optimizing a set of run-time library
sources. The program analyzer would be forced to make con-
servative assumptions about externally visible procedures and
variables in this case. Alternatively, additional compiler direc-
tives could be supplied for the programmer to designate the
non-exported procedures and variables.
Assuming that summary files for run-time libraries are not
available, the program analyzer will rarely see the ~lltole call
graph. As long as the following assumptions hold true, partial
call graphs pose no problems.

0 Incoming calls are made only to the start nodes (nodes
with no predecessors) of the partial call graph.

0 Outgoing calls (e.g. to run-time library routines) return
normally without invoking directly or indirectly a rou-
tine belonging to the partial call graph.

0 Global variables eligible for interprocedural register
promotion are not accessed outside the partial call
wph.

There are cases involving the C run-time libra routines
5 when the last two assumptions may not hold. ghen these

assumptions are violated, the dataflow sets computed for glo-
bal variable promotion will be invalid, potentially leading to
incorrect optimizations. The program analyzer needs to be
informed if any of the default assumptions are violated.

7.3. Indirect Calls

As mentioned earlier, the compiler first phase identifies pro-
cedures whose addresses have been computed as well as pro-
cedures that can make indirect calls. The program analyzer
conservatively assumes that every procedure whose address
has been computed can be a target of any indirect procedure
call. This ensures that the dataflow set used in web construc-
tion are correct. It is still possible to promote webs and iden-
tify clusters that contain procedures that make indirect calls.

7.4. Statics

Global variables and routines declared to be static in C are
private to individual modules. Since different modules may
define identically named static global variables and routines,
static identifiers need to be sufficiently qualified by the com-
piler first phase.
A more subtle complication is introduced by register promo-
tion of static global variables. In particular, a web for a static
global variable may need to be expanded to include an entry
node defined in a different module. If such a web is pro-
moted, the compiler second phase will be unable to correctly
insert instructions at the entry routine to load and store a
static global belonging to another module. The program
analyzer could circumvent this problem by simply discarding
such webs.

7.5. Heuristics
The program analyzer can use profile information instead of
the heuristic call counts computed by the compiler first phase.
Having accurate call counts can help cluster identification, but
is of lesser value for global variable promotion. In prioritizing
webs for coloring, we currently weight the heuristic reference
counts for global variables within each web procedure by the
call count for that procedure. A profiler that combines execu-
tion counts for each optimized basic block with the number of
remaining global variable accesses in the basic block will be
able to provide more accurate information.

If the user has previously optimized the application (e.g. for
profiling), the number of callee-saves registers need for each
procedure would be known. Otherwise, without performing
code generation and optimization, it is difficult for the com-
piler first phase to accurately estimate register need for each
procedure.

5. The qsoff() routine is passed the address of a user (comparison)
routine that can be invoked indirectly. Also, global variables such as

-crype can be referenced both in wer code and nm-time library routines.

31

7.6. Extensions

Interprocedural register allocation is applicable to languages
other than C, and architectures other than the load-store
RISC variety. Spill code motion may not be of use on an
architecture that provides hardware support for creating a new
register context at a procedure call. Interprocedural global
variable promotion, however, may improve application perfor-
mance on any machine providing storage locations with faster
access time than main memory.

7.6.1. Global Variable Promotion

There are several opportunities for extending the global vari-
able promotion strategy. One possibility is to split large but
sparse global webs before coloring. A web with isolated vari-
able references at two ends of a long call chain can be broken
down into two smaller webs that more tightly encapsulate the
procedures containing the references. If the higher level web
is colored, the promoted global variable would need to be
saved and restored around certain external calls.

Splitting webs in this manner effectively reduces the number
of web interferences, allowing more nodes of the interference
graph to be colored. Alternatively, independent webs of a
global variable can be remerged to allow sharing of entry
nodes, at the expense of extra interferences.

Another possibility is to introduce stub routines to load and
store pTOmOted global variables instead of expanding webs
that have entry nodes with both internal and external prede
cessors. All incoming calls to the web entry node from exter-
nal predecessors would be redirected through the stub rou-
tines while incoming calls from internal predecessor would
continue to go directly to the web entry node. Stub routines
can also be inserted between internal web nodes and external
callers. Using stub routines avoids having to reserve callee-
saves registers in additional web entry procedures. However,
sharing such stub routines among different promoted global
variables can become complicated.

By virtue of having done interprocedural dataflow analysis, the
program analyzer can provide better than worst-case aliasing
information for the optimization algorithms in the compiler
second phase. The L-REF and C_REF sets for a called pro-
cedure can be examined to determine which of the global
variables that were eligible for interprocedural promotion may
actually be referenced.

7.6.2. Spill Code Motion

Improvements to the spill code motion algorithm are also pos-
sible. First, the heuristics used to decide whether a node is a
candidate cluster root can be refined. In the prototype pro-
gram analyzer, the incoming call counts to a potential root
node are compared to the outgoing call counts to immediate
successors that are dominated. We could also account for
factors such as register need and call counts to dominated
grandchild nodes.

Our program analyzer implementation performs spill code
motion after global variable promotion. Before pre-allocating
callee-saves registers within a cluster, the program analyzer
determines if global variables have been promoted over any
nodes of the cluster. Callee-saves registers dedicated to glo-
bal variables over any portion of the cluster are taken out of
the AVAIL set at the cluster root node and not considered
for pre-allocation. This is more conservative then necessary.
Instead, we can simply remove callee-saves registers reserved
for global variables from the FREE and AVAIL sets at web

nodes that are part of the cluster. ?his would allow such
calleesaves registers to be preallocated along paths within
the cluster where the global variable is not live.

Another possible improvement to the algorithm in Figure 6
would allow more free registers along some paths within clus-
ters. This enhancement can be understood by considering the
example shown earlier in Figure 7. Assume we wanted to
pre-allocate one callee-saves register to each of K and M
while two registers are needed at L. The current algorithm
will result in the following FREE sets, where rl, 12, and r3
are some arbitrary calleesaves registers:

ERBE[K] = { rl } FREE[L] = { rl, r2 } FREEM] = { r3)

Since r2 will be included in MSPILL[J] and it is not used in
M, it could be added to FREE[K]. K would then have an
additional calleesaves register that it could use without exe-
cuting spill code.

The spill code motion algorithm we have described has
focussed on calleesaves register spill. The program analyzer
could also preallocate caller-saves registers (based on infor-
mation provided by the compiler first phase) in a bottom-up
order, as described in [Chow 881. The total caller-saves regis-
ter usage for the call tree rooted at each procedure can be
communicated to the compiler second phase. This would
allow the compiler second phase to keep live values in caller-
saves registers across calls that don’t make use of those
caller-saves registers. This strategy would be subject to the
limitation of not being able to effectively exploit such register
usage information for procedures found in recursive call
chains and at indirect call sites.

8. Conclusions

A two-pass compilation system and program analyzer tool
have been presented that facilitate interprocedural register
allocation in programs built from multiple modules.
A graph coloring technique has been applied to webs of eligi-
ble global variables in the call graph. This method allows a
single calleesaves register to be used for different promoted
global variables in disjoint regions of the call graph. Web
coloring results in a larger number of promoted variables and
fewer executed memory references than previous methods
which dedicate a register to a promoted variable over the
entire program.

A clustering technique has been applied to nodes in the call
graph to allow migration of calleesaves register spill code
upwards in the call graph to infrequently executed procedures.
Since clusters may be found at all levels of the call graph, this
approach can result in a greater reduction in executed spill
code than one which favors the procedures near the bottom of
the call graph.
The combined results for the two algorithms have been posi-
tive. Generally, between 2 to 9 percent fewer machine cycles
were executed, excluding the additional savings possible due
to reduced cache misses. These results were obtained for a
small collection of C programs for a RISC-based architecture.
As expected, keeping global variables in registers across pro-
cedure calls was found to be of greater benefit than moving
spill code out of frequently called procedures.

Additional large, representative benchmarks need to be meas-
ured to fully characterize the overall performance benefits.
However, our results show, that these techniques can measur-
ably improve the use of limited hardware resources.

38

Acknowledgements 264-275.

We would like to thank the many people at Hewlett-Packard
who gave us advice and guidance during the course of our
work. Key contributions were made by Steve Saunders, Carol
Thompson, Deborah Coutant, Karl Pettis, Bob Hansen, Ron
Rasmussen, Marc Sabatella, Richard Holman, Gary Coutant,
Jon Kelley, Sunil Jain, Tim Pasek, and Joseph Coha. A spe
cial note of thanks goes to Mark Laventhal who managed the
project, as weU as Larry Rosler, Jim Schultz, and Linda Law-
son for their management support.

[Wall 881 David W. Wall, “Register Windows vs. Register
Allocation”, Proceedings of the SIGPLAN ‘88
Confervtace On Pqramming Language Des&n
and Implementation, SIGPLAN Notices, Vol.
23, No. 7, July 1988, pages 67-78.

Hewlett-Packard Company has filed a patent application on
some of the methods discussed in this paper.

References

[Chaitin 821 G. J. Chaitin, “Register Allocation and Spilling
via Graph Coloring”, Proceeciings of the SIG-
PLAN ‘82 Symposium On Compiler Construc-
tion, SIGPLAN Notices, Vol. 17, No. 6, June
1982, pages 98-105.

[Chow 841 Fred Chow and John Hennessy, “Register Allo-
cation by Priority-based Coloring”, Proceedings
of the ACM SIGPLAN Symposium on Compiler
Construction, SIGPLAN Notices, Vol. 19, No. 6,
June 1984, pages 222-232.

[Chow 881 Fred C. Chow, “Minimizing Register Usage
Penalty at Procedure Calls”, Proceedings of the
SIGPUN ‘88 Conference on Programming
Language Design and Implementation, July 1988,
pages 85-94.

[Cooper 861 Keith D. Cooper, Ken Kennedy, and Linda
Torczon, ‘The Impact of Interprocedural
Analysis and Optimization in the Rn Program-
ming Environment”, ACM Transactions on Pro-
gramming Languages and Systems, October
1986, pages 491-523.

[Coutant 863 Deborah S. Coutant, Carol L. Hammond, and
Jon W. Kelley, “Compilers for the New Genera-
tion of Hewlett-Packard Computers”, Hewlett-
Packard Journal, Vol. 37, no. 1, August 1986,
pages 4- 18.

[Graham 821 Susan L. Graham, Peter B. Kessler, and
Marshall K. McKusick. “gprof: a call graph
execution profiler”, Proceedings of the SIG-
PLA N’82 Symposium on Compiler Construction,
June 1982, pages 120-126

[Lee 891 Ruby B. Lee, ‘Trecision Architecture”, Com-
pllter;, January 1989, pages 78-91.

[Mahon 861 M. Mahon, et al, “Hewlett-Packard Precision
Architecture: The Processor”, Hewlett-Packard
Jormnal, Vol. 37, no. 8, August 1986, pages 4-21.

[Mulder 891 Hans Mulder, “Data Buffering: Run-Time
Versus Compile Time Support”, Ptxxeedings of
the 3rd International Conference on Architectural
Support for Progmmming Languages and Operat-
ing Systems, April 1989, pages 144-151.

[Steen 87] P. A. Steenkiste, LISP on a Reduced Instruction
Set Processw: Characterization and Optimiza-
tion, PhD Thesis, Stanford University Computer
Systems Laboratory, March 1987, Chapter 5.

[Wall 861 David W. Wall, “Global Register Allocation At
Link Time”, Proceedings of‘ the SIGPLAN 36
Symposium On Compiler Consttuction, SIG-
PLAN Notices, Vol. 21, No. 7, July 1986, pages

39

