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Abstract 

This paper describes a method for compiling programs using 
interprocedural register allocation. A strategy for handling 
programs built from multiple modules is presented, as well as 
algorithms for global variable promotion and register spill code 
motion. These algorithms attempt to address some of the 
shortcomings of previous interprocedural register allocation 
strategies. Results are given for an implementation on a sin- 
gle register file RISC-based architecture. 

1. Introduction 

Priority-based graph coloring techniques for register allocation 
have become common in many optimizing compilers designed 
for recent computer architectures. This intraprocedural form 
of register allocation has proven to be effective for computers 
with a plurality of general purpose registers [Chow 841. How- 
ever, in the absence of interprocedural information, the fol- 
lowing situations occur, which leave room for further perfor- 
mance improvement: 
0 Local variables in different procedures can be assigned 

to the same register. As a result, procedures must exe- 
cute spill code to save and restore registers whose con- 
tents need to be preserved across procedure calls. 

l Global variables can be referenced out of different 
registers in different procedures. Registers holding 
values for global variables need to be stored to memory 
and loaded back into registers at procedure calls and 
returns. 

TO solve this problem, interprocedural register allocation tech- 
niques have been developed. Implementations of these tech- 
niques for most programming languages are complicated by 
the need to support programs built from multiple modules 
(compilation units). For example, if a global variable is main- 
tained in a single register across procedures of one module, 
there must be a method to communicate this information to 
procedures in other modules. 
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1.1. Related Work 

Previous attempts at interprocedural register allocation gen- 
erally follow one of two approaches. One approach is to relo- 
cate memory references at link-time, as was first suggested in 
[Wall 861. In this technique, the compiler performs traditional 
register allocation on each procedure and generates register 
relocation information for the linker. Interprocedural register 
allocation is implemented in the linker. Registers are 
assigned to frequently referenced global variables and local 
variables that are not concurrently active in the call graph. To 
maintain a variable in a register across procedures, the linker 
simply needs to follow the relocation actions prescribed by the 
compiler. 

This link-time technique was found to be effective for a pro- 
cessor with a large register file. Most of the perfomlance 
benefit was attributed to eliminating memory references to 
global variables. In this approach, registers used for global 
variables are dedicated to that purpose throughout the pro- 
gram. A dedicated register is consequently unavailable for 
other uses in regions of the program that do not access the 
global variable. 

The second approach to interprocedural register allocation 
attempts to minimize register spill code by propagating regis- 
ter usage information through the program call graph as each 
procedure is compiled. Examples of this technique are 
described in [Steen 871, [Chow 881, and [Mulder 891. In the 
approach taken in [Chow 881, an intermediate code represen: 
tation is written to a file by the first phase of the compiler. 
Then, instead of linking object code, the user links the 
required intermediate code files into one large intermediate 
file. The intermediate code linker completes the code genera- 
tion and optimization process. 

Ueginning at the leaf nodes, procedures are compiled in a 
bottom-up ordering of the call graph so that register usage 
information can be propagated upwards. By examining the 
register usage information at each call site, the register alloca- 
tor can avoid assigning registers already used in the called 
routines, effectively minimizing spill code. 

This technique has yielded generally positive results, although 
exceptions have been noted. With a limited number of avail- 
able machine registers, the technique has been less effective 
when applied to programs whose execution is concentrated in 
the upper regions of the call graph. 
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1.2. A Different Approach 

The approach presented in this paper differs from previous 
interprocedural register allocation efforts in three main areas. 
First, to maintain global variables in registers, instead of dedi- 
cating a register to a global variable throughout the program 
call graph, limited regions of the call graph are identified 
where a gIoba1 variable is assigned to a register. This allows 
the same register to be used for different global variables in 
distinct regions of the program, resulting in a larger number 
of global variables being maintained in registers. Moreover, 
registers can be used for other purposes in regions where they 
are not reserved for a global variable. 

Second, to minimize register spill, instead of simply propagat- 
ing register usage information to call graph nodes in depth- 
first (bottom-up) order, restricted sets of call graph nodes are 
identified over which interprocedural register allocation is per- 
formed. These collections of nodes are arranged to 
correspond to regions of the call graph that are procedure call 
intensive. The objective is to move register spill code out of 
frequently called routines in such regions. For some applica- 
tions, minimizing register save-restore overhead in call inten- 
sive regions can improve run-time performance more than an 
approach that always favors the lower regions of the call 
graph. 
Third, a two-pass compiler organization is used that differs 
from previous strategies for interprocedural register alloca- 
tion. The key component of this compilation environment is a 
tool called theprogmm analyzer. The program analyzer facili- 
tates interprocedural register allocation without requiring pro- 
cedures to be compiled in any particular order. The program 
anaIyzer is somewhat similar to the Program Compiler com- 
ponent of the R” compiler system described in [Cooper 861. 
Although the Program Compiler is used to facilitate interpro- 
cedural optimization, it has not been applied directly to the 
register allocation problem. 

The register allocation algorithms described in this paper have 
been implemented in a prototype compiler and program 
analyzer targeted for the Hewlett-Packard Precision RISC 
Architecture (PA-RISC) [Mahon 861 [Lee 891. The method 
will naturally adapt, however, to any processor architecture 
with a large register file. A linkage convention which allows 
each procedure a set of callee-saves and a set of caller-saves 
registers is assumed.’ 

PA-RISC is a 32-bit load-store architecture in which most 
instructions execute in a single clock cycle. Of the 32 
general-purpose registers defined by the architecture, 16 regis- 
ters are designated as callee-saves by sofhvare convention. 
Data collected over a variety of optimized applications sug- 
gested that several of the callee-saves registers remain unused 
in the most common paths of execution. Making more effi- 
cient use of these registers and reducing procedure call over- 
head were the primary motivations behind our work. 

This paper is divided into seven major sections. Section 2 
introduces the compilation process used. Section 3 describes 
the functionality of the compiler’s first phase. Section 4 
describes how interprocedural register usage is determined by 
the pro5am analyzer tool. Section 5 discusses the role of the 

1. The contents of a calke-saws register must be saved and restored 
by any procedure that modities it, and are lhw presewed across calls. A 
caller-saves register can be modified by procedures without preserving its 
contents. Hence, a caller-saves register must be saved and restored 
around a call if its contends are subsequently used. 

compiler’s second phase. Benchmark measurements and 
analysis are presented in Section 6. Section 7 describes limi- 
tations of our approach and ideas for future work. 

2. The Compilation Process 

Figure 1 illustrates the two-pass compilation system used to 
perform interprocedural register allocation. 

Source Files 

Compiler 
First Phase I 

P 
c-- InkI /r.i 

Figure 1 

The compiler first phase reads each source file containing 
high-level program language text one at a time. After verify- 
ing syntactic and semantic correctness, an intermediate 
representation of the source is generated and saved in a file. 
Additionally, for each procedure, the compiler first phase col- 
lects a record of local information required to construct the 
program call graph and make interprocedural register alloca- 
tion decisions. Each record of local information is stored in a 
sur~tary file for the module. 

The compiler first phase must be run on each source file that 
is to be included in the pro5am. After all the summary files 
have been generated, the program analyzer is run. The pro- 
gram analyzer examines the record for each procedure and 
constructs the program call graph. It then computes register 
allocation directives for interprocedural register allocation. 
The program analyzer does not modify any code. Instead, a 
summary of the relevant directives for each procedure is 
placed in a pr-o,ornrn database. 

By default, the register allocation decisions made by the pro- 
gram analyzer are guided by compile-time heuristics. The 
program analyzer can optionally use dynamic profile data to 
improve the accuracy of these heuristics. 

After the program database is generated, the compiler second 
phase must be run on each intermediate file. This phase 
translates the intermediate code into machine code and is 
responsible for traditional global optimizations. As each pro- 
cedure is optimized, the pro5am database is consulted to 
obtain the register allocation directives computed by the pro- 
gram analyzer. These directives are used by the register allo- 
cation component of the compiler second phase. 
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The compiler second phase generates one object file 
corresponding to each intermediate file. The object files are 
then bound together by the linker with the appropriate run- 
time libraries to produce an executable program. 

3. The Compiler First Phase 

The primary responsibility of the compiler first phase is the 
traditional syntactic and semantic analysis of the source text. 
It then generates an intermediate representation of the source 
that is saved in a file and processed later by the compiler 
second phase. When compiling for interprocedural register 
allocation, the compiler first phase also writes out a record for 
each procedure in the source to a summary file. Each record 
contains the following information: 
0 The list of global variables accessed in that procedure, 

along with a value representing the frequency of local 
accesses to that variable. Flags are also set for each 
global variable to indicate, among other things, whether 
aliased references are possible. 

0 A list of all procedures called, and a value representing 
the frequency of local calls to each procedure. 

l A list of procedures whose addresses have been com- 
puted for possible use in indirect calls and a flag indi- 
cating if indirect calls are made by this procedure. 

0 An estimate of the number of callee-saves registers 
needed for the procedure. 

4. The Program Analyzer 

The program analyzer is run after all the summary files for an 
application have been generated by the compiler first phase. 
The program analyzer first reads in all the summary files to 
construct a call graph for the program. The global variable 
promotion algorithm is then run, followed by the spill code 
motion algorithm. 

4.1. Global Variable Promotion 
Global variable promotion converts memory references of glo- 
bal variables into register references. In effect, the global 
variable is promoted from being a memory object to a register 
object - hence the term global vanhble promotion. Many 
optimizers are able to promote global variables to registers 
locally within a procedure. Such locally-promoted global vari- 
ables are still accessed from memory across procedures. 
Before procedure calls and at the exit point, the optimizer 
must insert instructions to store the register containing the 
promoted global variable back to memory. Similarly, at the 
entry point and just after procedure returns, the optimizer 
must insert instructions to load the promoted global variable 
from memory to the register. 

The program analyzer facilitates interprocednd global vari- 
able promotion. The objective is to arrange for a global vari- 
able to be accessed out of the same register in separate pro- 
cedures, thus obviating intermediate transfers to and from 
memory. In the link-time technique described in [Wall 861, a 
register is dedicated for each global variable to be interpro- 
cedurally promoted throughout the program. 

However, dedicating a unique register for each promoted glo- 
bal variable can be inefficient in routines that do not access 
those variables. To improve register use, we have applied the 
graph coloring technique commonly used in intraprocedural 
register allocation, described in [Chaitin 84, to live ranges of 
global variables computed over the program call graph. 

4.1.1. Webs 

The nodes of the call graph which reference a particular glo- 
bal variable can be grouped into disjoint live ranges, or webs, 
for that variable. A web for a global variable is a minimal 
subgraph of the program call graph such that the global vari- 
able is neither referenced in an ancestor node nor a descen- 
dent node of the subgraph. Partitioning the procedures that 
access a global variable into webs allows each web to be con- 
sidered for register promotion individually. 

If a web for a global variable is selected for promotion, a 
(callee-saves) register is dedicated to that global only in the 
procedures belonging to the web. The same register can be 
assigned to another global variable web or used for local 
values at other nodes of the call graph. 

Within web nodes, the value of the promoted global variable 
is preserved across calls to nodes outside the web since it is 
maintained in a callee-saves register. Furthermore, by con- 
struction, it is guaranteed that such external nodes do not 
reference that global variable. 

At the root nodes of the web sub-graph, called web entry 
no&s, code is inserted at the entry point by the compiler 
second phase to load the global variable to the register. Like- 
wise, code is inserted at the exit point of web entry nodes to 
store the global variable back to memory. 

Note that with this scheme, statically initialized global vari- 
ables do not require special treatment. The initial value for a 
promoted global variable is simply loaded into the appropriate 
callee-saves register when the web entry node is invoked. 

Another attractive feature of this scheme is that it is well 
suited to global variable usage found in structured programs. 
References to global variables tend to occur in localized sets 
of procedures (that are logically dependent on that global 
variable), rather than being scattered all over the program call 
graph. Webs can encompass such regions of the call graph 
and help limit dedicated register usage. 

4.1.2. Identifying Webs 

The program analyzer identifies webs by first determining the 
global variables that are eligible for promotion. To be eligible 
for promotion, a global variable must satisfy several criteria. 
For instance, it must be a variable small enough to fit in a sin- 
gle register, and it must not have been aliased to another vari- 
able. 

A simple interprocedural data flow analysis over the call 
graph on the eligible global variables is then performed. The 
following sets are defined for this purpose: 

L-REF [P] the local reference set for each procedure P. 
An eligible variable appears in this set if that 
variable is accessed within procedure P. 

P-REF [P] the parent reference set for each procedure I’. 
An eligible variable appears in this set if that 
variable is accessed in some procedure along a 
call chain from a start node to P.2 

C-REF[P] the child reference set for each procedure P. 
An eligible variable appears in this set if that 
variable is accessed in some procedure along a 
call chain starting at P. 

2. Every node without a predecessor is treated as a start node 
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In the program analyzer, the L-REF sets are easily initialized 
using the information kept in the summary files. The PJZEF 
and C-REF sets are initially empty. The following dataflow 
equations are used to iteratively propagate the local informa- 
tion through the call graph: 

PJJzqP] = U ( P-RBF[il U LXEF[i] > 
( i 1 i is a predecessor of P ) 

C-RBF[p] = u ( C-REF[il U LJBF[il ) 
(i 1 iisasuccessorofP) 

Note that these equations are correct only if we limit the eligi- 
ble global variables to those that have not been aliased to any 
other variable. For faster convergence, the C-REF sets are 
propagated in depth-first (bottom-up) order while the P-REF 
sets are propagated in breadth-first (top-down) order. 

Webs for a global variable are identified by looking for poten- 
tial web entry nodes. The candidate web entry nodes for a 
global variable will have that variable in their L-REF sets, but 
not in their P-REF sets. Beginning from a web entry node, 
the web is recursively expanded to include all successor nodes 
which have the associated variable in either the L-REF or 
C-REF set for that node. The algorithm is shown in Figure 
2. 

For correctness, the algorithm in Figure 2 ensures that all 
immediate predecessors of web entry nodes are external to 
the web. Entry nodes would otherwise replace the contents of 
the dedicated register with a stale value when invoked from 
within a promoted web. The algorithm also ensures that 
nodes internal to the web do not have any external predeces- 
sors. Otherwise, when the internal node is invoked bypassing 
the web entry node, the dedicated register could be refer- 
enced without being properly loaded. 
Enlarging webs to overcome these restrictions implies dedicat- 
ing a register over larger regions of the call graph. We will 
later describe an extension involving stub routines to alleviate 
this problem. 

The algorithm in Figure 2 nodes of some recursive call chains 
that reference eligible global variables will not be incor- 
porated into webs. This is because a global variable can be 
included in the P-REF set for all Ilodes in the cycle, but not 
in the L-REF set of any nodes in the entry paths into that 
cycle. A simple solution is to include all the nodes in each 
such cycle into a separate web and enlarge that web for 
correctness using the algorithm shown in Figure 2. 

4.13. Promoting Webs 

Once webs have been identified, a web interference graph is 
constructed. Arcs connecting web nodes in this graph 
represent interferences. Two webs are said to interfere if they 
share a common call graph node. Clearly, interfering webs 
can not be promoted to the same register. The nodes of the 
web interference graph are sorted into a priority order for 
coloring (i.e. register promotion). The priority value of a web 
is computed using a heuristic function. This function factors 
in the the estimated number of dynamic global variable refer- 
ences within each web and the estimated calls to web entry 
nodes (for which loads and stores would need to be inserted 
at the entry and exit points). 

Compute-Webs0 
begin 
for each eligible global variable G do 

for each procedure P such that G E CREF[P] do 
if ( G p PJEF[P] ) then 

begin 
allocate a new web W for G; 
W-nodes : = 0 ; 
temp:= {P); 
repeat 

for each node Q in temp do 
Expand-Web( W, Q, G ); 

S:=(Z E W-nodes ( 
(Z has a predecessor in W-nodes) and 
(Z has a predecessor not in W+nodes) }; 

if ( S # 0 ) then 
temp : = U predecessors of nodes in S 

that are not in W-nodes; 
until ( S = 0 ); 
if ( W has any nodes in common with 

any other web X for G ) then 
begin 
W-nodes : = X-nodes U W-nodes; 
delete web X; 
end; 

end; 
end; 

Expand-Web( W, Q, G ) 
begin 
W-nodes : = W-nodes U Q; 
for each successor S of Q do 

if ((G c C-REF[S]) or (G c L-REF[S])) 
and (S f W-nodes) then 

Expand-Webs( W, S, G ); 
end; 

Figure 2 

Using a predetermined subset of the callee-saves registers, as 
many web nodes of the interference graph are colored as pos- 
sible. A web that is not colored results in the corresponding 
global variable not being promoted across procedures. The 
global variables of uncolored webs can still be promoted to 
registers intraprocedurally by the compiler second phase. 

For each procedure belonging to a colored web, the promo- 
tion of the global variable to a specific register is recorded the 
program database. During the compiler second phase, all 
memory references to the corresponding global variable are 
converted into register references in the procedures belonging 
to the web. The register assigned to a web is unavailable for 
other purposes in any of the web procedures. The compiler 
second phase is also responsible for inserting register spill and 
initialization code at web entry procedures as described ear- 
lier. 
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4.1.4. An Example 

The call graph shown in Figure 3 illustrates how this method 
allows a register to be shared among multiple webs. The 
nodes of the graph, labeled A to H, represent user procedures, 
and the arcs between these nodes represent procedure calls. 
In this example, there are three global variables named gl, g2, 
and g3. An explicit access to one of these variables is indi- 
cated by the presence of that variable in an L-REF set, from 
which the P-REF and C-REF sets are derived (Table 1). 

Procedure 
A 
B 

2 
E 
F 
G 
H 

I, RFF 
+S3 

gl B 
82 83 

gl 
gl g2 

g2 
@ 
0 

C REF 
EC1 82 83 

I21 @ 

P REF 
0 
s3 
@ 

is1 &3 

Table 1 

The webs for the three global variables are summarized in 
Table 2 and are outlined with dotted lines in Figure 3. As 
mentioned earlier, web coloring ensures that webs that share 
common procedures are assigned different registers. For this 
example, all four webs can be colored using just two callee- 
saves registers. Different webs for the same variable may be 
assigned different registers (e.g. Web 4 and Web 2 for global 
variable g2). 

Web 1 

Figure 3 

~ 

Table 2 

Procedure B is an entry procedure of Web 3. The compiler 
second phase will insert code at the entry point of procedure 

B to load the value of variable gl from memory into the 
designated register. At the exit point of procedure B, code 
will be added to store the contents of that register back to the 
memory location associated with variable gl. 

4.2. Spill Code Motion 

RISC architectures that do not employ a register windowing 
scheme tradeoff hardware implementation cost for register 
spill overhead at procedure calls [Wall 881. Minimizing this 
overhead in software is the primary motivation for compile- 
time spill code minimization. In the technique presented 
here, callee-saves register save and restore code is elevated in 
the call graph so that descendant nodes may use them for 
free, without the cost of spilling them - hence the term spill 
code motion. 

In previous attempts to minimize spill code at procedure calls, 
procedures are compiled in bottom-up order, favoring rou- 
tines close to the bottom of the call graphe3 Even in relatively 
small graphs, it is likely that the “free” registers will be quickly 
exhausted. To minimize spill code at different levels of the 
call graph, we have developed a technique which first identi- 
fies regions of the call graph called clusten. 

4.2.1. Clusters 

Informally, clusters correspond to areas of the call graph 
where spill code motion is expected to be effective. The stan- 
dard register linkage convention is adhered to at the boundary 
of a cluster, but not internally. More precisely, a cluster is 
defined as a set of nodes in the program call graph with the 
following properties: 

[l] There exists some node R, called the root of the clus- 
ter, which dominates all other nodes within the cluster. 
(Node D dominates node N if and only if every path 
from each start node to N includes D.) 

Note that this does not imply that all nodes dominated 
by the root node are in the cluster. 

PI For every node P in the cluster except R, all immediate 
predecessors of P are also in the cluster. 

[3] A non-root node is included only in the cluster of the 
immediately dominating root node. That is, a node 
dominated by more than one root node is only included 
in the cluster associated with the nearest root. 

The root nodes of clusters will save and restore callee-saves 
registers so that other nodes in the cluster can use them 
without incurring this expense. Cluster root nodes are identi- 
fied by considering the estimated call frequencies along the 
edges of the call graph. If the internal cluster nodes are 
called more frequently than the root node, fewer instructions 
and fewer memory references will be required to execute the 
program. 

Consider the example in Figure 4. Assume R is a cluster root 
node while S and T are members of that cluster. Normally, 
any callee-saves registers used in S must be saved at the entry 
point of S and restored at the exit point. The program 
analyzer can arrange for those callee-saves registers to be 
spilled at the entry point of the cluster root, R. S may then 

3. Bottom-up register allocation is well suited to programs that spend 
most of their execution time in the lowest regions of the call graph A 
top-down algorithm would favor procedures near the top of the call 
graph 

32 



Figure 4 

use the registers without spilling them as long as R does not 
use the same registers to hold values across a call to S. This 
results in a performance gain, assuming S is called more fre 
quently than R. The spill code can be reduced further if 
sibling nodes within the cluster use the same registers. For 
example, R could spill a single set of registers that could be 
used by both S and T. 

Note that the definition of a cluster allows leaf nodes of a 
cluster to be root nodes of other clusters. This facilitates spill 
code motion upwards in the call graph across clusters. For 
example, node R in Figure 4 could also belong to a cluster 
rooted higher up in the call graph. Spill code that is moved 
out of nodes S and T into node R can be moved further up to 
the root node of the cluster containing node R. 

4.2.2. Identifying Clusters 

Clusters are found in a depth-first traversal of the program 
call graph. Cluster root nodes are identified using a heuristic 
that compares incoming call counts with call counrs to poten- 
tial cluster member nodes. Successors nodes that meet the 
criteria for inclusion in the cluster, are recursively added to 
the cluster. The cluster identification algorithm is outlined in 
Figure 5. 

At the end of this algorithm, for each cluster root node R, 
Cluster-Nodes[R] specifies the remaining nodes that belong to 
that cluster. Note that a cluster root node can itself appear in 
Cluster-Nodes of a higher level cluster root. 

The function Postpone-Visit is used in the cluster identifica- 
tion algorithm to defer consideration of a node until all its 
predecessors have been visited. The exception to this rule is 
when the unvisited predecessors of a node are part of a recur- 
sive call chain involving that node. 

For correctness, the algorithm outlined in Figure: is designed 
to disallow recursive call cycles within clusters. Consider a 
recursive routine which uses callee-saves registers. Such a 
routine would expect that the values in these registers would 
remain safe across the recursive call. If we eliminate the spill 
code at a recursive routine’s entry and exit points, however, 
we will destroy the values that were live across that recursive 
call. 

4. Note, however, that it does not limit ch&ers from being identified 
within cycles in the call graph. The example shown later in Figure 7 
illustrates this. 

FindJJusters( G ) 
begin 
for each node P in the call graph G do 

begin 
mark P as not visited; 
Cluster-Nodes[P] : = 0; 
end; 

for each start node S in the call graph do 
Examine_Node( S, NULL ); 

end; 

Examine-Node( P, ClusterRoot ) 
begin 
if Postpone-Visit(P) tben 

return; 
mark P as visited; 
if ( (ClusterRoot # NULL) and 

(ClusterRoot dominates P) and 
(all predecessors of P c Cluster-Nodes[ClusterRoot]) ) 

then 
add node P to Cluster-Nodes[P]; 

if P is a cluster root then 
NearestClusterRoot : = P; 

else 
NearestClusterRoot : = ClusterRoot; 

for each successor S of P do 
if S has not been visited then 

Examine-Node( S, NearestClusterRoot ); 
end; 

boolean Postpone-Visit( P ) 
begin 
for each predecessor Q of P do 

if ( Q has not been visited and 
Q is not a descendant node of P ) 

then 
return TRUE; 

return FALSE; 
end 

Figure 5 

4.2.3. Register Usage Sets 
To facilitate spill code motion, the program analyzer identifies 
how each general register may be used within each procedure 
of a cluster. This is accomplished by placing each register 
into one of four sets. 

FREE[P] registers in this set need not be saved on entry 
and restored on exit if they are used in pro- 
cedure P, and may hold live values across calls. 

CALLER[P] registers in this set need not be saved on entry 
and restored on exit if they are used in pro- 
cedure P, but may not hold live values across 
calls. 

CALLEE [ P] registers in this set must be saved on entry and 
restored on exit if they are used in procedure 
P, but may hold live values across calls. 

MSPILL[P] registers in this set lnust be saved on entry and 
restored on exit if they are used in procedure 
P and they may not hold live values across 
calls. 
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The register sets for each procedure are saved in the program 
database. The register allocator in the compiler second phase 
must use each register according to the properties of the set 
to which it belongs. 

Our algorithm adds the additional requirement that all regis- 
ters in the MSPILL set at a cluster root node must be saved 
on entry and restored on exit, regardless of whether they are 
actually used inside that procedure. This will accomplish our 
goal of having the root node execute the spill code for the 
remaining nodes of the cluster. In fact, the MSPILL sets will 
contain registers only for cluster root nodes. 

4.2.4. Computing Register Usage Sets 

The MSPILL and FREE sets are first initialized to the empty 
set and CALLER and CALLEE are initialized to the standard 
caller-saves and callee-saves registers, respectively, for all pro- 
cedures. 

To compute the final register usage sets, each cluster root 
node is considered in a bottom-up ordering. As each cluster 
root is considered, we first find the set of registers that are in 
the MSPILL set of any cluster root node that is also a 
member of the current cluster. 

This set is used to determine the order in which free registers 
will be selected in the current cluster. Registers not in the set 
will be selected first to increase the chances that we will be 
able to move registers from the MSPILL set at the child clus- 
ter root to the MSPILL set of the current cluster root. Mov- 
ing registers from one MSPILL set to another effectively 
causes the spill code for one cluster’s registers to be executed 
at a root node higher up in the call graph. 

To assist in computing the register usage sets, for each cluster 
procedure P, the set AVAIL[P] is defined to be the subset of 
the standard callee-saves registers that are available for free 
use along calls out of P. 

Recall that the compiler first phase estimated the number of 
callee-saves registers needed by each procedure and saved this 
information in the summary file. Using this estimate, we 
select a set of callee-saves registers for use in the cluster root 
procedure, R, and assign this set to CALLEE[R]. AVAIYR] 
is then initialized to be the standard calleesaves registers that 
are not in CALLEE[R]. 

The set of registers that have been reserved at some node of 
the cluster for a promoted global variable will also be 
removed from AVAIL[R], conservatively preventing these 
registers from being used for other purposes at all nodes in 
the cluster. 

The recursive procedure Preallocnte-Notie, shown in Figure 6, 
is then called on the root node. This procedure visits each 
node of the current cluster to preallocate the set of callee- 
saves registers that will be available in that node and arranges 
for the root node to spill that register, if possible. 

When Preallocate-Node completes its pass over a cluster, all 
registers in the USED set are placed in the MSPILL[R] set. 
We then augment the CALLER set at each node of the clus- 
ter with the following algorithm: 

for each node Q 6 Cluster-Nodes[R] do 
if ( Q is not a cluster root ) then 

CALLER@] : = CALLER[Q] U 
(AVAIL[Q] r7 MSPILL[R]); 

define USED : set of callee-saves registers; 
(* Registers in USED will be added to the 

MSPILL set of the current cluster root. *) 

Preallocate-Node( N ) 
begin 
mark N as visited; 
AVAIL[ N] : = 

rl AVAILIP] over all immediate predecessors P of N; 

if ( N is a cluster root ) then 
begin 
if ( N is not the current cluster root ) then 

begin 
USED := USED U ( MSPILL[N] rl AVAIL[N] ) 
MSPILL[N] : = MSPILL[N] - AVAIL[N]; 
USED := USED U ( CALLEE[N] n AVAIL[N] ); 
FREE[N] : = CALLEE[N] fI AVAIL[N]; 
CALLEE[N] := CALLEE[N] - FREE[N]; 
end 

end 
else 

begin 
FREE[N] : = 

Get-Registers{ Num-Regs-Needed( N ), AVAIL[N] ); 
AVAIL[N] := AVAIL[N] - FREE[N]; 
CALLEE[N] : = CALLEE[N] - ( FREEIN] U AVAIL[N] ); 
USED := USED U FREEIN]; 
end; 

for each immediate successor S of N do 
if ( S E CurrentCtuster and 

all immediate predecessors of S have been visited ) 
then 

Preallocate-Node( S ); 
end; 

Get-Registers( COUNT, REGS ) 
begin 
select up to COUNT registers from the set REGS, 
using the priority order determined for this cluster; 
return the set of selected registers; 
end; 

Figure 6 

This post-pass enables callee-saves registers spilled at the 
cluster root node to be used as caller-saves registers at inter- 
mediate nodes of certain paths within rhe cluster. In Figure 7, 
assume procedure J is a cluster root node while K, L, M are 
members of the cluster. For a register to be in FREE[M], it 
must have also been in AVAIL[K] and AVAIL[L]. Since J is 
the cluster root, all registers in FREE[M] will be in 
MSPJLL[J]. From the definition of MSPILL, J must spill 
these registers. Hence, they can be safely used as caller-saves 
registers inside K and L. 
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Figure 7 

4.3. The Program Database 

The program analyzer algorithms result in a set of register 
allocation directives for each procedure in the program. 
These directives are represented as program database entries 
for each procedure that contain the following information: 
0 A list of global variables promoted in that routine. For 

each promoted variable, the register reserved for that 
variable is specified along with a set of flags indicating 
conditions such as whether or not this procedure is a 
web entry node for the promoted variable. 

l The contents of the FREE, MSPILL, CALLER, and 
CALLEE sets for the procedure. 

Since these register directives are precomputed for each pro- 
cedure by the program analyzer, the register allocator can be 
run on procedures in any order during the compiler second 
phase. Also, since the directives are stored in a single pro- 
gram database, the compiler second phase can be run on each 
source module independently. 

5. The Compiler Second Phase 
The compiler second phase reads in the intermediate 
representation generated by the first phase and performs low- 
level code generation and traditional global optimizations. 
For each procedure, the relevant program database entry is 
queried to implement interprocedural register allocation, as 
computed by the program analyzer. 

The steps involved in implementing global variable promotion 
are outlined below. 
l For each procedure belonging to a promoted web, 

memory references to the corresponding global variable 
are converted into register references. 

This can enable additional intraprocedural optimiza- 
tions such as register copy elimination. 

0 For procedures corresponding to web entry nodes, the 
global variable is loaded into the callee-saves register at 
the entry point and stored back at the exit point. Care 
is taken to insert loads and stores to promoted static 
global variables correctly. 
Note that if none of the procedures belon@ng to a pro- 
moted web modify the global variable, a store instruc- 
tion need not be inserted at the web entry procedures. 

0 Register save/restore code for the callee-saves register 
is suppressed at all procedures belonging to the pro- 
moted web except at web entry nodes. 

Note that the dedicated callee-saves register will not be 
available for intraprocedural use in procedures belong- 
ing to the promoted web since it will not be contained 
in any of the register usage sets. 

Implementing spill code motion is simpler. The CALLER set 
for the current procedure is examined to obtain caller-saves 
registers for local coloring. For calleesaves registers, the 
FREE set is checked before the CALLEE set. Spill code for 
registers in the MSPILL set is inserted at the entry point and 
exit point of procedures that are cluster root nodes. Spill 
code is also generated for &lee-saves registers obtained from 
the CALLEE set. 

6. Measurements 

The interprocedural register allocation techniques described in 
this paper have been implemented in a prototype program 
analyzer consisting of about 6000 lines of C source code. The 
compiler first and second phases have been implemented by 
modifying the PA-RISC C compiler [Coutant 861 running 
under the HP-UX operating system. 

In the prototype implementation, the compiler first phase was 
allowed to proceed through the normal code generation and 
optimization phases before generating summary files. This 
was done to obtain better heuristic information on usage 
counts for global variables, call frequencies and estimates for 
calleesaves register requirements. Usage counts and call fre- 
quencies were determined based on the location of each refer- 
ence or call in the control flow hierarchy. 
The compiler second phase can be designed to accept either 
an intermediate representation or the original programming 
language text. In our implementation, the compiler second 
phase uses the original program text file. Command-line 
options are used to specify which phase of the compiler is to 
be run. This helps minimize changes to existing compile 
scripts, at the expense of compiling each source file twice. 

The C compiler and program analyzer were used to optimize 
the programs listed in Table 3, with both interprocedural glo- 
bal variable promotion and spill code motion. The ben- 
chmarked applications were linked with C run-time libraries 
which were not interprocedurally optimized. Also, interpro- 
cedural register allocation was restricted to calleesaves gen- 
ernl registers. 

I 
Benchmark Programs 

Name Lines 
Of Code Description 

Dhrystone 380 Popular CPU benchmark 
460 
800 
1500 
2700 
6600 
85000 

Table 3 
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6.1. Performance Improvement 

Table 4 shows the percentage improvement over level two 
(global) optimization for the benchmarks with various options 
enabled in the program analyzer. Most of the measurements 
shown in Table 4 were obtained using a PA-RISC simulator. 
These simulations did not model a cache, so some of the 
benefits of interprocedural register allocation are not 
accounted for here. Obviously, the extent of this benefit will 
vary with differing cache parameters and placement algo- 
rithms. 

Percentage Performance Improvement 
Over Level 2 Optimization 

Total cycles measured by a simulator, excluding cache miss penalties. 
$ Benchmarks measured with /bin/time on an HP 9000 Model 835 

Benchmark 
Dhrystone 
Fgrep 
0 thello 
War 
CR Tool 
Proto CS 

Opt3 PA 

ABCDEF 
0.8 0.8 3.4 3.4 5.5 3.4 

1 

0.0 0.0 8.8 8.4 8.6 8.8 
0.1 0.0 4.8 4.8 4.7 4.9 
1.2 1.2 3.7 3.7 3.7 3.7 
0.0 0.0 2.2 1.5 0.8 2.3 
n/a n/a 18.7 9.1 18.7 n/a 
6.0 6.0 9.0 7.0 7.0 9.0 

A-Spillmotiononly D - Spill motion & greedy coloring 

B = Spill motion w/profile info E = Spill motion & blanket pmmotron 

C = Spill motion C 6 reg cohiq F = Spill motion & 6 rcg mloring w/profile info 

Table 4 

The first column of data gives the results for spill code motion 
alone. The results in the second and last columns were 
obtained by making profile information available to the pro- 
gram analyzer. The profile information was collected by run- 
ning gprof [Graham 821 and provided the program analyzer 
with actual counts of run-time procedure calls. 

The remaining columns combine the results of spill code 
motion with global variable promotion. For the third column, 
6 callee-saves registers were made available for web coloring. 
For the fourth column, a “greedy” coloring algorithm was used 
which tries to color as many webs as possible without reserv- 
ing any of the callee-saves registers required for any individual 
procedure. 

‘Blanket” promotion refers to the promotion of a set of user 
specified global variables across the entire program. This was 
implemented in the program analyzer to measure the advan- 
tages of a web coloring technique over dedicating a register 
for each key global variable over the whole program as in 
[Wall 861. The 6 most frequently used global variables (as 
detemnned by analyzing the prioritized web list) were chosen 
for blanket promotion. 

6.2. Analysis 

Overall, Table 4 indicates that interprocedural register alloca- 
tion is beneficial. The improvements for the P/wto C bench- 
mark are exceptionally high because this application was 
coded specifically to take advantage of global register vari- 
ables. 

Spill code motion typically provides a small reduction in 
instructions executed; global variable promotion has a larger 
impact. This is consistent with results reported in [Wall 861. 

In our scheme, interprocedural global variable promotion has 
additional benefits beyond just reducing the number of 
dynamic memory references. In particular, the compiler 
second phase is able to remove instructions that set up the 
base register used in the deleted memory references to pro- 
moted globals. Certain register copies involving promoted 
globals are also eliminated. 

Spill code motion as implemented in our prototype depends, 
among other things, on the size and shape of the clusters 
identified. The shorter and wider the cluster, the easier it is 
to move spill code to the root node. For the applications con- 
sidered, the average cluster size ranged between 2 to 4 nodes. 
The small average cluster size is, in part, responsible for the 
marginal performance benefit observed. Note that the perfor- 
mance improvement observed for the PA Optimizer is prob- 
ably due to external cache effects since it is not corroborated 
by the reduction in dynamic memory references (illustrated 
later in Table 5). 
The figures in Table 5 are inconclusive with respect to the 
utility of procedure-level profile information in our algorithms. 
This is partly because the prototype program analyzer is able 
to use heuristic call counts effectively. The program analyzer 
normalizes the raw heuristic call counts obtained from the 
summary files over the entire program call graph, increasing 
the weights on recursive arcs and arcs to leaf nodes. Further- 
more, procedure-level profile information is not fine-grained 
enough to make a large difference in global variable promo- 
tion. 

As expected, web coloring has little or no advantage over 
blanket promotion on the small CPU benchmarks. In larger 
applications, which typically have a larger number of global 
variables, web coloring is advantageous. 

In the case of the PA Optimizer, the 500 global variables eli- 
gible for register promotion were broken down into 1094 
webs, of which 489 webs were considered for coloring. The 
remaining webs were discarded either because they were too 
sparse (low ratio of LREF nodes to total nodes) or because 
the web contained just one node in which the corresponding 
global variable was accessed infrequently. Of the 489 webs, 
280 were successfully colored using just 6 registers reserved 
for inter-procedural use. 

Greedy coloring did not do as well as 6 register coloring for 
some of the larger applications. With this strategy 309 webs 
out of 489 were colored in the PA Optimizer. However, it 
failed to color some of the more important webs that were 
colored with 6 register coloring. 

6.3. Memory Reference Reduction 
Table 5 shows the percentage reduction in singleton memory 
references executed in a subset of the benchmarks. A single- 
ton memory reference is roughly defined as an access of a 
simple variable (not an element of an array or structure) and 
whose size is one, two, or four bytes. 

Table 5 indicates that global variable promotion is effective in 
eliminating many of the singIeton memory references remain- 
ing after normal level two optimization. How much this 
impacts overall performance depends on the percentage of the 
total memory references that are eliminated. Note that inter- 
procedural register allocation will not reduce the number of 
references to elements of arrays and other data structures. 
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Percent Reduction in Dynamic Singleton Memory References 
(Over Level 2 Optimization) 

Benchmark ]] A B C D E F -I 

Dhrystone I] 14.0 14.0 25.6 25.6 41.9 25.6 

7. Limitations and Extensions 

7.1. Two-pass Compilation 

The interprocedural register allocation scheme described in 
this paper improves register usage across module boundaries 
by using a two-pass approach. This two-pass approach has 
the following limitations: 
0 It requires management of additional files (summary 

files, intermediate files and program database files). 
l There is additional compile-time overhead. Aside from 

the execution time of the program analyzer, the com- 
piler second phase has to query the program database 
and either read in the intermediate files or reprocess 
the source files. 

0 Source level changes need to be tracked carefully and 
can be very expensive. 

l Interprocedural register allocation is not performed 
across calls to run-time libraries. 

Most of the limitations associated with a two-pass approach 
can be circumvented by deferring interprocedural register 
allocation to link-time as described in [Wall 861. The linker 
would need to perform the job of the program analyzer and 
implement interprocedural register allocation by re-writing 
each module appropriately. Module rewriting may be accom- 
panied by certain local optimizations (e.g. peephole optimiza- 
tion, and instruction scheduling). 
Alternatively, interprocedural register allocation could be per- 
formed in the context of a programming environment such as 
R” [Cooper 861. The module editor used to create source 
files could generate approximate summary infomlation. The 
program compiler could compute interprocedural register 
allocation information. This information could be communi- 
cated to the module compiler, which would serve as the com- 
piler second phase. 

7.2. Partial Call Graphs 

The methods described in this paper, can be applied to partial 
call graphs, where not all procedures and global variable 
references are exposed to the program analyzer. This situa- 
tion might correspond to optimizing a set of run-time library 
sources. The program analyzer would be forced to make con- 
servative assumptions about externally visible procedures and 
variables in this case. Alternatively, additional compiler direc- 
tives could be supplied for the programmer to designate the 
non-exported procedures and variables. 
Assuming that summary files for run-time libraries are not 
available, the program analyzer will rarely see the ~lltole call 
graph. As long as the following assumptions hold true, partial 
call graphs pose no problems. 

0 Incoming calls are made only to the start nodes (nodes 
with no predecessors) of the partial call graph. 

0 Outgoing calls (e.g. to run-time library routines) return 
normally without invoking directly or indirectly a rou- 
tine belonging to the partial call graph. 

0 Global variables eligible for interprocedural register 
promotion are not accessed outside the partial call 
wph. 

There are cases involving the C run-time libra routines 
5 when the last two assumptions may not hold. ghen these 

assumptions are violated, the dataflow sets computed for glo- 
bal variable promotion will be invalid, potentially leading to 
incorrect optimizations. The program analyzer needs to be 
informed if any of the default assumptions are violated. 

7.3. Indirect Calls 

As mentioned earlier, the compiler first phase identifies pro- 
cedures whose addresses have been computed as well as pro- 
cedures that can make indirect calls. The program analyzer 
conservatively assumes that every procedure whose address 
has been computed can be a target of any indirect procedure 
call. This ensures that the dataflow set used in web construc- 
tion are correct. It is still possible to promote webs and iden- 
tify clusters that contain procedures that make indirect calls. 

7.4. Statics 

Global variables and routines declared to be static in C are 
private to individual modules. Since different modules may 
define identically named static global variables and routines, 
static identifiers need to be sufficiently qualified by the com- 
piler first phase. 
A more subtle complication is introduced by register promo- 
tion of static global variables. In particular, a web for a static 
global variable may need to be expanded to include an entry 
node defined in a different module. If such a web is pro- 
moted, the compiler second phase will be unable to correctly 
insert instructions at the entry routine to load and store a 
static global belonging to another module. The program 
analyzer could circumvent this problem by simply discarding 
such webs. 

7.5. Heuristics 
The program analyzer can use profile information instead of 
the heuristic call counts computed by the compiler first phase. 
Having accurate call counts can help cluster identification, but 
is of lesser value for global variable promotion. In prioritizing 
webs for coloring, we currently weight the heuristic reference 
counts for global variables within each web procedure by the 
call count for that procedure. A profiler that combines execu- 
tion counts for each optimized basic block with the number of 
remaining global variable accesses in the basic block will be 
able to provide more accurate information. 

If the user has previously optimized the application (e.g. for 
profiling), the number of callee-saves registers need for each 
procedure would be known. Otherwise, without performing 
code generation and optimization, it is difficult for the com- 
piler first phase to accurately estimate register need for each 
procedure. 

5. The qsoff() routine is passed the address of a user (comparison) 
routine that can be invoked indirectly. Also, global variables such as 

-crype can be referenced both in wer code and nm-time library routines. 
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7.6. Extensions 

Interprocedural register allocation is applicable to languages 
other than C, and architectures other than the load-store 
RISC variety. Spill code motion may not be of use on an 
architecture that provides hardware support for creating a new 
register context at a procedure call. Interprocedural global 
variable promotion, however, may improve application perfor- 
mance on any machine providing storage locations with faster 
access time than main memory. 

7.6.1. Global Variable Promotion 

There are several opportunities for extending the global vari- 
able promotion strategy. One possibility is to split large but 
sparse global webs before coloring. A web with isolated vari- 
able references at two ends of a long call chain can be broken 
down into two smaller webs that more tightly encapsulate the 
procedures containing the references. If the higher level web 
is colored, the promoted global variable would need to be 
saved and restored around certain external calls. 

Splitting webs in this manner effectively reduces the number 
of web interferences, allowing more nodes of the interference 
graph to be colored. Alternatively, independent webs of a 
global variable can be remerged to allow sharing of entry 
nodes, at the expense of extra interferences. 

Another possibility is to introduce stub routines to load and 
store pTOmOted global variables instead of expanding webs 
that have entry nodes with both internal and external prede 
cessors. All incoming calls to the web entry node from exter- 
nal predecessors would be redirected through the stub rou- 
tines while incoming calls from internal predecessor would 
continue to go directly to the web entry node. Stub routines 
can also be inserted between internal web nodes and external 
callers. Using stub routines avoids having to reserve callee- 
saves registers in additional web entry procedures. However, 
sharing such stub routines among different promoted global 
variables can become complicated. 

By virtue of having done interprocedural dataflow analysis, the 
program analyzer can provide better than worst-case aliasing 
information for the optimization algorithms in the compiler 
second phase. The L-REF and C_REF sets for a called pro- 
cedure can be examined to determine which of the global 
variables that were eligible for interprocedural promotion may 
actually be referenced. 

7.6.2. Spill Code Motion 

Improvements to the spill code motion algorithm are also pos- 
sible. First, the heuristics used to decide whether a node is a 
candidate cluster root can be refined. In the prototype pro- 
gram analyzer, the incoming call counts to a potential root 
node are compared to the outgoing call counts to immediate 
successors that are dominated. We could also account for 
factors such as register need and call counts to dominated 
grandchild nodes. 

Our program analyzer implementation performs spill code 
motion after global variable promotion. Before pre-allocating 
callee-saves registers within a cluster, the program analyzer 
determines if global variables have been promoted over any 
nodes of the cluster. Callee-saves registers dedicated to glo- 
bal variables over any portion of the cluster are taken out of 
the AVAIL set at the cluster root node and not considered 
for pre-allocation. This is more conservative then necessary. 
Instead, we can simply remove callee-saves registers reserved 
for global variables from the FREE and AVAIL sets at web 

nodes that are part of the cluster. ?his would allow such 
calleesaves registers to be preallocated along paths within 
the cluster where the global variable is not live. 

Another possible improvement to the algorithm in Figure 6 
would allow more free registers along some paths within clus- 
ters. This enhancement can be understood by considering the 
example shown earlier in Figure 7. Assume we wanted to 
pre-allocate one callee-saves register to each of K and M 
while two registers are needed at L. The current algorithm 
will result in the following FREE sets, where rl, 12, and r3 
are some arbitrary calleesaves registers: 

ERBE[K] = { rl } FREE[L] = { rl, r2 } FREEM] = { r3 ) 

Since r2 will be included in MSPILL[J] and it is not used in 
M, it could be added to FREE[K]. K would then have an 
additional calleesaves register that it could use without exe- 
cuting spill code. 

The spill code motion algorithm we have described has 
focussed on calleesaves register spill. The program analyzer 
could also preallocate caller-saves registers (based on infor- 
mation provided by the compiler first phase) in a bottom-up 
order, as described in [Chow 881. The total caller-saves regis- 
ter usage for the call tree rooted at each procedure can be 
communicated to the compiler second phase. This would 
allow the compiler second phase to keep live values in caller- 
saves registers across calls that don’t make use of those 
caller-saves registers. This strategy would be subject to the 
limitation of not being able to effectively exploit such register 
usage information for procedures found in recursive call 
chains and at indirect call sites. 

8. Conclusions 

A two-pass compilation system and program analyzer tool 
have been presented that facilitate interprocedural register 
allocation in programs built from multiple modules. 
A graph coloring technique has been applied to webs of eligi- 
ble global variables in the call graph. This method allows a 
single calleesaves register to be used for different promoted 
global variables in disjoint regions of the call graph. Web 
coloring results in a larger number of promoted variables and 
fewer executed memory references than previous methods 
which dedicate a register to a promoted variable over the 
entire program. 

A clustering technique has been applied to nodes in the call 
graph to allow migration of calleesaves register spill code 
upwards in the call graph to infrequently executed procedures. 
Since clusters may be found at all levels of the call graph, this 
approach can result in a greater reduction in executed spill 
code than one which favors the procedures near the bottom of 
the call graph. 
The combined results for the two algorithms have been posi- 
tive. Generally, between 2 to 9 percent fewer machine cycles 
were executed, excluding the additional savings possible due 
to reduced cache misses. These results were obtained for a 
small collection of C programs for a RISC-based architecture. 
As expected, keeping global variables in registers across pro- 
cedure calls was found to be of greater benefit than moving 
spill code out of frequently called procedures. 

Additional large, representative benchmarks need to be meas- 
ured to fully characterize the overall performance benefits. 
However, our results show, that these techniques can measur- 
ably improve the use of limited hardware resources. 
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