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Abstract
We present a compiler and a typed intermediate language for a
subset of APL. The intermediate language treats all numeric data
as multi-dimensional arrays and the type system makes explicit the
ranks of arrays. Primitive operators are polymorphic in rank and in
the type of the underlying data operated on.

The frontend of the APL compiler deals with much of the gory
details of the APL language, including infix resolution, resolution
of identity items for reduce operations, resolution of default ele-
ment values for empty arrays, scalar extensions, and resolution of
certain kinds of overloading.

We demonstrate the usefulness of the intermediate language
by showing that it can be compiled efficiently, using known tech-
niques, such as delayed arrays, into a C-like language. We also
demonstrate that the language is sufficiently expressive that some
primitive operators, such as APL’s inner product operator, which
works on arrays of arbitrary dimensions, can be compiled using
more primitive operators.

Categories and Subject Descriptors D.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory—Semantics

Keywords APL, Lambda Calculus, Compilation, Optimization,
Fusion

1. Introduction
In recent years, array languages have received renewed attention
due, in large parts, to the profound promise of data parallelism and
the use of array combinators as an important abstraction mecha-
nism for operating, efficiently, on bulk data objects.

APL is an array programming language pioneered by Kenneth
E. Iverson in the 60’s [11]. The language is a dynamically typed,
multi-dimensional language with a functional core supporting first
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and second-order functions. The language makes extensive use of
special characters for denoting the many different special built-in
functions and operators, such as array transposition ( ), rotation
( ), and a generalized multi-dimensional inner-product operator. Its
concise syntax1 and its rapid prototyping and debugging facilities
are being considered harmful by some and fruitful by others. APL
and its derivatives, such as J [3] and K [20], are still being used
extensively in certain domains, such as in the financial industry,
where large code bases are still operational and being actively
developed.

Traditionally, APL is an interpreted language, although there
have been many attempts at compiling APL into low-level code,
both in online and offline settings. For instance, Guibas and Wyatt
have demonstrated how a subset of APL can be compiled using
a delayed representation of arrays [8]. Other attempts at compiling
APL include APEX [1], which also contains a backend for targeting
SaC [7].

Until recently, the programming language semantics commu-
nity have paid only little attention to the APL language, and Ken-
neth E. Iverson never developed a semantics for APL in terms of
a formal model. Apart from recent work by Slepak et al. [16],
there have been few attempts at developing formal models or type
systems for APL. On the other hand, recent development in data-
parallel language implementations [5, 12, 14] have resulted in
promising and scalable techniques for high-level programming of
highly-parallel hardware, such as GPGPUs.

In this paper, we present a compiler that compiles a subset of
APL into a typed intermediate representation, which should serve
as a practical and well-defined intermediate format for targeting
parallel-architectures through a large number of existing tools and
frameworks. The intermediate language is conceptually close to
the language Repa [12]. It supports shape-polymorphic functions
and types that classify shapes. The compiler takes a simplified ap-
proach to certain aspects of APL. Following other APL compilation
approaches, the compiler is based on lexical (i.e., static) identifier
scoping and has no support for dynamic compilation (APL execute)
[1, 2].

As a simple example of the compilation, consider the following
signal processing program, derived from the APEX benchmark
suite [1]:

diff {1 - 1 }
signal { 50 50 50 (diff 0, ) 0.01+ }
+/ signal 9 8 6 8 7 4 4 3 2 2 1 2 4 5 6

This program declares two one-parameter functions diff and
signal, in which the formal parameter is referenced using . In
the diff function, the expression 1 specifies that the param-

1 Conway’s Game of Life can be written in one line—see youtube video:
http://www.youtube.com/watch?v=a9xAKttWgP4&fmt=18
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let v0:Sh(15) = [9,8,6,8,7,4,4,3,2,2,1,2,4,5,6] in
let v3:Sh(16) = consSh(0,v0) in
reduce(addd,0.00,
each(fn v11:[double]0 => maxd(i2d(~50),v11),
each(fn v10:[double]0 => mind(i2d(50),v10),
each(fn v9:[double]0 => muld(i2d(50),v9),
sum(divd,
each(i2d,
drop(1,sum(subi,v3,rotateSh(~1,v3)))),
each(fn v2:[double]0 => addd(0.01,v2),
each(i2d,v0)))))))

Figure 1. The result of compiling the example APL program into
an explicitly typed intermediate representation. Notice the presence
of shape types with explicit length attributes.

eter vector is rotated one entry to the right. This vector is then
subtracted from the argument vector (point-wise), and the result
of this subtraction is returned as the result with the first element
dropped. The last line of the program calls the signal function on
an input vector and sums (i.e., sum-reduces) the result of the call.
In the compiled version of the program, which is presented in Fig-
ure 1, bulk operations are replaced with calls to the each function,
which is much like map in other functional languages. Moreover,
the compiler has inserted explicit integer-to-double coercions to as-
sure that all arrays contain elements of the same type. Array types
in the target language are annotated with explicit ranks; the type
[double]0, for instance, is the type of double-precision scalar
values, which are treated in the type system as arrays of rank zero.
Also notice the special shape types (e.g., Sh(16)), which range
over integer vectors2 of a specific length. Finally, notice that the
compiler has identified 0.0 as the neutral element for a reduction
with the addd operation.

The contributions of this paper are threefold:

1. In Section 2, we present a statically typed intermediate array
language with support for multi-dimensional arrays and opera-
tions on such arrays. We demonstrate that the language is suit-
able as the target for an inference algorithm for an APL com-
piler. The compiler is open source and available in source form
at https://github.com/melsman/aplcompile.

2. We demonstrate the flexibility of the typing features, which in-
clude shape types and singleton types. Following Repa, the type
system keeps track of the shape of an array in its type and con-
tains a separate type for array shapes. Moreover, the type system
also makes use of singleton types for singleton integers and for
one-element integer vectors. As we shall see in Section 3, these
typing features allow the compiler to treat complex operations,
such as matrix-multiplication, and generalized versions thereof
(inner products of higher-ranked arrays) as operations derived
from the composition of other more basic operations.

3. Finally, we demonstrate, also in Section 3, that the intermediate
language is useful as a language for further array-compilation,
by demonstrating, as an example, that the array language can
be compiled into a C-like language, using functional delayed
arrays [5, 6], also called pull arrays.

2. A Typed Intermediate Array Language
We assume a denumerable infinite set of program variables (x).
We use i and n to range over integers and d to range over doubles.
Whenever z is some object, we write ~z to range over sequences of
similar objects. When we want to be explicit about the size of a

2 Vectors are arrays of rank 1.

sequence ~z = z0, · · · , z(n�1), we often write it on the form ~z(n)

and we write z, ~z to denote the sequence z, z0, · · · , z(n�1).
Shapes (�), primitive operators (op), values (v), and expressions

(e) are defined as follows:

� ::= h~ni (shapes)
a ::= i | d

op ::= addi | subi | muli | mini | maxi (operators)
| addd | subd | muld | mind | maxd
| iota | each | reduce | i2d
| reshape0 | reshape | rotate
| transp | transp2 | zipWith
| shape | take | drop | first
| cat | cons | snoc (derived ops)
| shapeSh | catSh | consSh | snocSh (shape ops)
| iotaSh | rotateSh
| takeSh | dropSh | firstSh

v ::= [~a]� | �x.e (values)
e ::= v | x | [~e] | e e0 (expressions)

| let x = e1 in e2 | op(~e)

Notice that array expressions [~e] are always one-dimensional,
whereas array values [~a]� may be multi-dimensional with their
dimensionality specified by the shape �. We often write i and d to
denote scalar values [i]hi and [d]hi, respectively.

2.1 Type System with Shape Polymorphism
We assume denumerable infinite sets of type variables (↵) and
shape variables (�).

 ::= int | double | ↵ (base types)
⇢ ::= i | � | ⇢+ ⇢0 (shape types)
⌧ ::= []⇢ | Sh ⇢ | I ⇢ | VI ⇢ | ⌧ ! ⌧ 0 (types)
� ::= 8~↵~�.⌧ (type schemes)

Types are segmented into base types (), shape types (⇢), types
(⌧ ), and type schemes (�). Shape types (⇢) are considered identical
upto associativity and commutativity of + and upto evaluation of
constant shape-type expressions involving +.

In addition to the array type and shape type constructors, in-
troduced in Section 1, the type system supports singleton integers
(I ⇢), single-element integer vectors (VI ⇢), and function types. As
special notation, we often write  to denote the scalar array type
[]0.

A type substitution (St) maps type variables to base types. A
shape substitution (Ss) maps shape variables to shape types. A
substitution (S) is a pair (St, Ss) of a type substitution and a shape
substitution. Applying a substitution S to some object B, written
S(B), has the effect of simultaneously applying St and Ss to
objects in B (being the identity outside their domain). A type ⌧ 0

is an instance of a type scheme � = 8~↵~�.⌧ , written � � ⌧ 0, if
there exists a substitution S such that S(⌧) = ⌧ 0.

A type ⌧ is a subtype of another type ⌧ 0, written ⌧ ✓ ⌧ 0, if the
relation can be derived according to the following rules:

Subtyping ⌧ ✓ ⌧ 0

⌧ ✓ ⌧
(1)

⌧1 ✓ ⌧2 ⌧2 ✓ ⌧3
⌧1 ✓ ⌧3

(2)

VI ⇢ ✓ Sh 1

(3)
Sh ⇢ ✓ [int]1

(4)
I ⇢ ✓ int

(5)

The subtyping relation is used for allowing known-sized vectors
(one-dimensional arrays) to be treated as shape vectors with the
number of dimensions being statically known. For instance, we
shall see that the constant integer vector expression [1, 2, 3] is given
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APL op(s) TySc(op)
addi, . . . : int ! int ! int
addd, . . . : double ! double ! double
iota : int ! [int]1

each : 8↵��.(↵ ! �) ! [↵]� ! [�]�

/ reduce : 8↵�.(↵ ! ↵ ! ↵) ! ↵
! [↵]1+�

! [↵]�

shape : 8↵�.[↵]� ! Sh �

reshape0 : 8↵��0.Sh �0
! [↵]� ! [↵]�

0

reshape : 8↵��0.Sh �0
! ↵ ! [↵]� ! [↵]�

0

reverse : 8↵�.[↵]� ! [↵]�

rotate : 8↵�.int ! [↵]� ! [↵]�

transp : 8↵�.[↵]� ! [↵]�

transp2 : 8↵�.Sh � ! [↵]� ! [↵]�

take : 8↵�.int ! ↵ ! [↵]� ! [↵]�

drop : 8↵�.int ! [↵]� ! [↵]�

first : 8↵�.↵ ! [↵]� ! ↵
zipWith : 8↵1↵2��.(↵1 ! ↵2 ! �)

! [↵1]
�
! [↵2]

�
! [�]�

, cat : 8↵�.[↵]�+1
! [↵]�+1

! [↵]�+1

, cons : 8↵�.[↵]� ! [↵]�+1
! [↵]�+1

, snoc : 8↵�.[↵]�+1
! [↵]� ! [↵]�+1

Figure 2. Operator type schemes for standard operations.

APL op(s) TySc(op)
shapeSh : 8�.Sh � ! VI �
takeSh : 8�.I � ! [int]1 ! Sh �
dropSh : 8��0.I � ! Sh (� + �0

) ! Sh �0

, consSh : 8�.int ! Sh � ! Sh(1 + �)
, snocSh : 8�.Sh � ! int ! Sh(1 + �)

firstSh : 8�.VI � ! I �
iotaSh : 8�.I � ! Sh �
rotateSh : 8�.Sh � ! Sh �

, catSh : 8��0.Sh � ! Sh �0
! Sh (� + �0

)

Figure 3. Operator type schemes for operations on shapes.

the type Sh 3, but that the expression can also be given the type
[int]1 using the subtyping relation. Similarly, when asking for the
shape of a shape vector with type Sh �, we obtain a one-element
shape vector containing the value �. For typing this value, we can
use the singleton vector type VI �, which is a subtype of Sh 1, the
type of one-element shape vectors.

Each operator, op, is given a unique type scheme, �, as specified
by the relation TySc(op) = � defined in Figure 2 and Figure 3. For
all operators op, such that TySc(op) = 8~↵~�.⌧1 ! . . . ! ⌧n ! ⌧ ,
where ⌧ is not a function type, we say that the arity of the operator
op, written arity(op), is n.

Type assumptions � map variables to type schemes:

� ::= �, x : � | •

The type system allows inferences among sentences of the form
� ` e : ⌧ , which are read: “under the assumptions �, the expression
e has type ⌧ .”

Shape typing ` � : ⇢

` h~n(i)
i : i

(6)

Value typing � ` v : ⌧

` � : ⇢

� ` [

~i]� : [int]⇢
(7)

` � : ⇢

� ` [~r]� : [double]⇢
(8)

� ` [

~i]hni
: Sh n

(9)
�, x : ⌧ ` e : ⌧ 0

� ` �x.e : ⌧ ! ⌧ 0 (10)

� ` [n]h1i : VI n
(11)

� ` n : I n
(12)

Expression typing � ` e : ⌧

� ` e : I n
� ` [e] : VI n

(13)
�(x) � ⌧
� ` x : ⌧

(14)

⌧ ✓ ⌧ 0

� ` e : ⌧

� ` e : ⌧ 0 (15)

� ` ei :  i = [0;n[

� ` [~e(n)
] : []1

(16)
� ` ei : int i = [0;n[

� ` [~e(n)
] : Sh n

(17)

� ` e1 : ⌧ 0
! ⌧

� ` e2 : ⌧ 0

� ` e1 e2 : ⌧
(18)

� ` e1 : ⌧
fv(~↵~�) \ fv(�, ⌧ 0

) = ;

�, x : 8~↵~�.⌧ ` e2 : ⌧ 0

� ` let x = e1 in e2 : ⌧ 0 (19)

TySc(op) � ⌧0 ! . . . ! ⌧(n�1) ! ⌧
arity(op) = n � ` ei : ⌧i i = [0;n[

� ` op(~e(n)
) : ⌧

(20)

Notice that operators are required to be fully applied. In exam-
ples, however, when an operator op is not applied to any arguments
(it is perhaps given as argument to a higher-order function), it is
eta-expanded into the form �x1. · · ·�xn.op(x1, · · · , xn), where
n = arity(op).

As indicated by the operator type schemes, certain limitations
apply. For instance, in accordance with APL, the each operator
operates on each base value of a multi-dimensional array. One may
consider, instead, providing a map operator with the following type
scheme:

map : 8↵��.([↵]� ! [�]�) ! [↵]1+�
! [�]1+�

However, it is not possible, with the present type system, to express
that the function returns arrays with the same extent for all argu-
ments; the only guarantee the type system can give us is that result
arrays have the same rank (number of dimensions). More expres-
sive type systems, based on dependent types, such as those found in
AgdaAccelerate [17] and Qube [18, 19], allow for expressing more
accurately, the assumptions of the higher-order operators.

Similarly, one may consider providing a reduce’ operator with
the following type scheme:

reduce’ : 8↵�.([↵]� ! [↵]� ! [↵]�) ! [↵]�

! [↵]1+�
! [↵]�

The idea here is that the operator operates on entire subparts of the
argument array. In a system supporting only map and reduce’ (and
not each and reduce), nested instances of maps can be used instead
of each and nested instances of maps with an inner reduce’ can be
used instead of reduce. Additionally, one may consider providing
a sequential fold operator that does not require associativity of the
argument function:

fold : 8↵��.([↵]� ! [�]�
0
! [�]�

0
) ! [�]�

0

! [↵]1+�
! [�]�

0

As we shall see in the next section, the semantics of reduce
is that it reduces the argument array along its last dimension,
following the traditional APL semantics [11, 13].
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The implementation of the APL compiler uses a hybrid ap-
proach of type inference and local context querying for resolving
array ranks, scalar extensions, and identity items (neutral elements)
during intermediate language program generation. The type infer-
ence is based on a simple unification algorithm using conditional
unification for the implementation of the simple subtyping infer-
ence.

2.2 Example Programs
We now present a few example programs that utilizes the various
operators. The dot-product of two integer arrays can be defined in
the language as follows:

dotpi : 8�.[int]1+�
! [int]1+�

! [int]� =
�x.�y.reduce(addi,0,zipWith(muli,x,y))

Notice that this function also works with integer matrices and
integer arrays of higher dimensions. In case the extents of the
argument arrays do not match up, the zipWith expression—and
therefore the dotpi call—will result in a runtime error, as further
specified in section 2.3. We can generalize the above function to be
useful in a broader sense:

dotp : 8�↵.(↵ ! ↵ ! ↵) ! (↵ ! ↵ ! ↵) ! ↵
! [↵]1+�

! [↵]1+�
! [↵]� =

�add.�mul.�n.�x.�y.
reduce(add,n,zipWith(mul,x,y))

2.3 Dynamic Semantics
Evaluation contexts, ranged over by E, take the following form:

E ::= [·] | [~vE~e] | E e | v E

| let x = E in e | op(~vE~e)

When E is an evaluation context and e is an expression, we write
E[e] to denote the expression resulting from filling the hole in E
with e.

The dynamic semantics is presented as a small step reduction
semantics, which is explicit about certain kinds of errors that are
not easily checked statically. Intuitively, a well-typed expression e
is either a value or it can be reduced into another expression or the
special token err. Errors that are treated explicitly include negative
values passed to iota.

We first define a few helper functions for computations on
shapes and for converting between flat indexing and multi-dimensional
indexing. We assume a reverse operation (rev) on shapes and an
operation, named product, that takes a shape of an array and re-
turns the number of elements in the flattened version of the array.
An expression fromSh��

0 takes a shape � of an array and a multi-
dimensional index �0 into the array and returns a corresponding
index into the flattened version of the array.

fromShhihi = 0

fromShhn,~nihi,~ii = i ⇤ p+ fromShh~nih~ii
where p = product(~n)

An expression toSh�i takes a shape � and an index i into the
flattened version of the array and returns the corresponding multi-
dimensional index into the array.

toShhi0 = hi

toShhn,~nii = hi div p,~ii
where p = product(~n)

h

~ii = toShh~ni(i mod p)

The expression exchange��
0 exchanges the elements in the shape

�0 according to �:

exchangeh~p(n)ih~q
(n)

i = hqp0 , · · · , qp(n�1)
i

where 8ij.i 6= j ) pi 6= pj

Notice the partiality of the exchange function; if �0 = exchangeh~i(k)i�

then~i(k) is known to be a permutation of 0, · · · , (k � 1).
A majority of the dynamic semantics rules are given below.

For space reasons, we have left out the rules for rotate, cat,
cons, snoc, and drop. We have also left out the rules for the
shape-versions of the operations (e.g., takeSh), which are all easily
defined in terms of the non-shape versions.

Small Step Reductions e ,! e0/err

e ,! e0 E 6= [·]

E[e] ,! E[e0]
(21)

e ,! err E 6= [·]

E[e] ,! err (22)

let x = v in e ,! e[v/x]
(23)

(�x.e) v ,! e[v/x]
(24)

[~a(n)
] ,! [~a(n)

]

hni (25)

i = i1 + i2
addi(i1, i2) ,! i

(26)
d = d1 + d2

addd(d1, d2) ,! d
(27)

n � 0

iota(n) ,! [1, · · · , n]hni (28)
n < 0

iota(n) ,! err (29)

e = [vf a0, · · · , vf a(n�1)]

each(vf , [~a
(n)

]

�
) ,! reshape0(�, e)

(30)

� = h~n,mi k = product(~n) i = [0;m[

ei = vf a(i⇤k) (· · · (vf a(i⇤k+m�1) v) · · · )

reduce(vf , v, [~a
(n)

]

�
) ,! reshape0(h~ni, [~e(k)])

(31)

m = product(�0) f(i) = i mod n n > 0

reshape(�0, a, [~a(n)
]

�
) ,! [af(0), · · · , af(m�1)]

�0
(32)

m = product(�0) ai = a i = [0;m[

reshape(�0, a, []�) ,! [a0, · · · , a(m�1)]
�0

(33)

�0 = rev(�) f = fromSh�0 o rev o toSh�

transp([~a(n)
]

�
) ,! [af(0), · · · , af(n�1)]

�0
(34)

�0 = exchange�0
(�)

f = fromSh�0 o exchange�0 o toSh�

transp2(�0, [~a
(n)

]

�
) ,! [af(0), · · · , af(n�1)]

�0
(35)

¬9�0.�0 = exchange�0
(�)

transp2(�0, [~a]
�
) ,! err

(36)

m � 0 �0 = hm,~ni j = product(�0)
f(i) = if i < k then ai else a

take(m, a, [~a(k)
]

hn,~ni
) ,! [f(0), · · · , f(j � 1)]

�0
(37)

m < 0 �0 = h�m,~ni j = product(�0)
f(i) = if i < k then a(k�1�i) else a

take(m, a, [~a(k)
]

�
) ,! [f(0), · · · , f(j � 1)]

�0
(38)

k > 0

first(a, [~a(k)
]

�
) ,! a0

(39)
first(a, []�) ,! a

(40)

The transitive, reflexive closure of ,!, written ,!⇤, is defined
by the following two rules:

e ,! e0 e0 ,!⇤ e00

e ,!⇤ e00
(41)

e ,!⇤ e
(42)

We further define e " to mean that there exists an infinite se-
quence e ,! e1 ,! e2 ,! · · · . The presented language does
not support general recursion or uncontrolled looping, thus all pro-
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grams represented in the intermediate language are guaranteed to
terminate. The semantic machinery, however, does support the ad-
dition of recursion (e.g., for implementing APL’s recursion opera-
tor r).

2.4 Properties of the Language
In the following, we give a few definitions before we present a
unique decomposition proposition. This proposition is used for
the proofs of type preservation and progress, which allow us to
establish a type soundness result for the language [15].

A redex, ranged over by r, is an expression of the form

r ::= (�x.e) v | let x = v in e | op(~v) | [~v]

The following unique decomposition proposition states that any
well-typed term is either a value or the term can be decomposed
into a unique context and a unique well-typed redex. Moreover,
filling the context with an expression of the same type as the redex
results in a well-typed term:

PROPOSITION 1 (Unique Decomposition). If ` e : ⌧ then either
e is a value v or there exists a unique E, a unique redex e0, and
some ⌧ 0 such that e = E[e0] and ` e0 : ⌧ 0. Furthermore, for all
e00 such that ` e00 : ⌧ 0, it follows that ` E[e00] : ⌧ .

PROOF By induction over the derivation ` e : ⌧ . ⇤
The proofs of the following type preservation and progress

propositions are then straightforward and standard [15].

PROPOSITION 2 (Type Preservation). If ` e : ⌧ and e ,! e0 and
e0 6= err then ` e0 : ⌧ .

PROOF By induction over the structure of the typing derivation
` e : ⌧ , using Proposition 1. ⇤

PROPOSITION 3 (Progress). If � ` e : ⌧ then either

1. e is a value; or
2. e ,! err; or
3. there exists an expression e0 such that e ,! e0.

PROOF By induction over the structure of the typing derivation. ⇤

PROPOSITION 4 (Type Soundness). If ` e : ⌧ then either e" or
there exists v such that e ,!⇤ v/err.

PROOF By induction on the number of machine steps using Propo-
sition 2 and Proposition 3. ⇤

3. Compiling the Inner Product
We now adopt the technique used by Guibas and Wyatt [8] for
compiling away the “dot” operator in APL, by representing it by
a sequence of simpler APL-operations. The APL source code is
given in Figure 4, which consist of the definition of an APL dyadic
operator dot and use of the operator.

We shall not go into discussing and explaining the details of
the APL code for the dot-operator, except from mentioning that
the left and right function argument to the operator is referenced
within the definition of the dot-operator using and , respec-
tively. The intermediate language code resulting from compiling
the dot-operator example is shown in Figure 5. The intermediate
language code generated for the inner product of two matrices may
seem a bit extensive. However, once traditional fusion techniques
and other optimizations are applied, the code is simplified drasti-
cally, as can be seen in Figure 6, which contains the result of using
Obsidian-style pull-arrays for compiling the program [5]. A back-
end compiler based on pull-arrays is of course only one out of many
possibilities for compiling the intermediate language. We envision

dot {
WA (1 ),
KA ( )-1
VA WA
ZA (KA 1 VA), 1 VA
TA ZA WA Replicate, transpose
WB ( 1 ),
KB
VB WB
ZB0 (-KB) KB ( VB)
ZB ( 1 ( KB)),ZB0,KB
TB ZB WB Replicate, transpose

/ TA TB Compute the result
}

A 3 2 5 Example input A
B A Example input B
R A + dot B
R2 / +/ R

1 3 5
2 4 1

1 2 5 11 7 -+-> 23 |
3 4 11 25 19 -+-> 55
5 1 7 19 26 -+-> 52 |

65780 v

Figure 4. The definition of a general dot-operator in APL together
with an application of the operator to functions + and and two
matrices A and B.

that the intermediate language can be compiled into other array lan-
guages, such as Futhark [9, 10], or into uses of array libraries such
as Accelerate [4] or Repa [12].

4. Conclusion and Future Work
We have presented a statically typed intermediate language, used
as a target for an APL compiler.

There are several directions for future work. First, several oper-
ations, including boolean operations, need to be added to the lan-
guage and to the compiler in order to test the feasibility of the ap-
proach for larger APL programs. We do not see any problems ex-
tending the approach in this direction.

Second, it would be interesting to compare the performance of
the generated code with various array libraries and languages, in-
cluding Repa [12] and Futhark [9, 10], and compare the perfor-
mance of this generated code with the performance of a state-of-
the-art APL interpreter, such as Dyalog APL [13].

Finally, as mentioned earlier, it would be interesting to inves-
tigate the possibility for compiling the intermediate language into
efficient code for multi-core CPUs or many-core GPUs using array
libraries such as Repa and Accelerate.
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