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Abstract
Image processing pipelines are continuously being developed to de-
duce more information about objects captured in images. To facil-
itate the development of such pipelines several Domain Specific
Languages (DSLs) have been proposed that provide constructs for
easy specification of such computations. It is then upto the DSL
compiler to generate code to efficiently execute the pipeline on
multiple hardware architectures. While such compilers are getting
ever more sophisticated, to achieve large scale adoption these DSLs
have to beat, or at least match, the performance that can be achieved
by a skilled programmer.

Many of these pipelines use a sequence of convolution kernels
that are memory bandwidth bound. One way to address this bot-
tleneck is through use of tiling. In this paper we describe an ap-
proach to tiling within the context of a DSL called Forma. Using the
high-level specification of the pipeline in this DSL, we describe a
code generation algorithm that fuses multiple stages of the pipeline
through the use of tiling to reduce the memory bandwidth require-
ments on both GPU and CPU. Using this technique improves the
performance of pipelines like Canny Edge Detection by 58% on
NVIDIA GPUs, and of the Harris Corner Detection pipeline by
71% on CPUs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Optimization

Keywords Fusion, Tiling, Domain Specific Languages, Convolu-
tions, GPU

1. Introduction
Recently many Domain Specific Languages (DSLs) have been de-
veloped that allow application developers to easily specify image
processing pipelines [3, 9, 10, 12, 13]. These DSLs provide con-
structs that not only allow easy specification of common opera-
tions in image processing, like stencils and convolutions, but can
also generate code to target multiple architectures, like multi-core
CPUs and GPUs, from the same specification. It also allows the
DSL compiler to capture the producer-consumer relationship be-
tween different stages of the pipeline and perform optimizations,
like fusion of multiple stages, that are outside the scope of tradi-
tional compilers like GCC and NVCC.
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1 stencil blurx(vector #2 float X){
2 return (X@[-1,0] + X + X@ [1 ,0])/3.0;
3 }
4 stencil blury(vector #2 float Y){
5 return (Y@[0,-1] + Y + Y@ [0 ,1])/3.0;
6 }
7 parameter M,N;
8 vector #2 float input[M,N];
9 temp = blurx(input);

10 output = blury(temp);
11 return output;

Listing 1. Blur in Forma

i npu t blurx ou t pu tblury

Figure 1. DAG of producer-consumer relationship of Forma pro-
gram in Listing 1

While DSLs are capable of generating good quality code, there
is still much scope for improvement. Typically stencil computa-
tions are bandwidth bound. To get around this issue application
developers have used strategies like tiling that utilize hardware fea-
tures like caches on CPUs and shared memory buffers on GPUs
to reduce the bandwidth requirement of computations. Some DSLs
have adopted similar techniques to improve the performance of the
generated code. PolyMage [10] uses sophisticated polyhedral anal-
ysis to increase reuse across pipeline stages on CPUs. Halide [12]
allows users to specify a schedule that implements tiling and uses
auto-tuning to determine the tile sizes. In this paper, we explore the
use of tiling to improve performance of a sequence of convolution
kernels within Forma [13]. This DSL can generate CUDA code to
target NVIDIA GPUs, as well as C code with OpenMP pragmas
to target multi-core CPUs. While our main goal is to improve per-
formance on GPUs, the developed approach shows a considerable
benefit on CPUs as well.

Listing 1 shows the specification of a simple image processing
pipeline in Forma. A stencil computation is specified as a func-
tion prefixed with the keyword stencil that is to be applied over
the image passed as argument to the function. For example, the
function blurx specifies a stencil that operates on a 2D image or
vector#2. Applying this function to an image input at Line 9,
performs the stencil computation on input to generate the image
temp. The data type used for storing the image, as well as its size
is computed automatically by the compiler based on the specifica-
tion of the stencil. For example, the image temp is deduced to be a
2D image of floats with its size being same as the size of input.
The body of a stencil function specifies the computation that gives
the value at a point (i, j) of the result image. Use of the @ operator
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(a) blurx : input→ temp

(b) blury : temp→ output

Figure 2. Naive execution of Listing 1

allows access to neighboring points of the image passed as argu-
ment to the function. For example, X@[-1,0] refers to the value at
a point (i − 1, j) of X while computing the value at point (i, j) of
the result. References to the argument without use of the @ operator
are analogous to the expression X@[0,0]. The Forma compiler can
also capture the producer-consumer relationship between the dif-
ferent stages of the image processing pipeline in form of a Directed
Acyclic Graph (DAG). Figure 1 shows the different stages involved
in computing the image output from the image input using the
pipeline specified in Listing 1.

A naive execution of the computation shown in Listing 1 on the
GPU would be to have two separate kernels, one to perform the
computation corresponding to blurx, and another to perform the
computation corresponding to blury. Within each of these kernels,
a thread on the GPU would be responsible to compute the value of
a single point of the result image. For the first kernel (Figure 2a),
each thread would read 3 elements of the image input from global
memory and perform 1 global memory write of the result at a point
in image temp. The same would happen for the second kernel
(Figure 2b). Therefore, computing the value at a single point of
the final image (output) would require 6 global memory loads
and 2 global memory writes. This results in significant pressure on
the bandwidth to global memory. While hardware mechanisms like
vectorized loads of coalesced accesses and caching accesses within
a thread block ease some of this pressure, they are less effective for
larger stencils. For example a simple 5 × 5 Gaussian blur kernel
issues 25 loads per thread and 1 global memory store. The same
is true for a naive execution on the CPU. The computation for
each of the stencil is performed within loop nests that iterate over
the output image and compute the value of each pixel. The value
at points of the intermediate image temp that are along the same
column (along y-axis) are reused while computing the value at

Figure 3. Tile of input loaded into shared memory → Tile of
temp computed in shared memory→ Tile of output computed

points along the same column of the output image. When image
sizes are large, these values are evicted from cache before they can
be reused resulting in a performance degradation.

In this paper we use a combination of tiling and fusion to re-
duce the number of global memory accesses required to compute
the final image after applying a sequence of convolution kernels,
like the ones shown in Listing 1. Unlike optimizing compilers like
PluTo [1] which operate on C codes and are constrained by the
manner in which intermediate results of the pipeline are comput-
ed/stored by the input code, the Forma compiler only needs to gen-
erate the output image in memory. It is free to compute/store in-
termediates in a manner that would help improve the performance
of the generated code. While a domain expert can manually imple-
ment such schemes, doing so is extremely tedious and error-prone,
especially while handling boundary conditions.

The rest of the paper is organized as follows. Section 2 describes
the code generation algorithm that implements our code genera-
tion scheme that can be refered to as fusion through tiling, for both
CPUs and GPUs. Section 3 evaluates the performance of the gener-
ated code on three common image processing pipelines. Section 4
describes other related work on stencil optimizations with Section 5
summarizing the contributions of this paper.

2. Evaluating the DAG in a Tiled Fashion
In this section we describe the tiled execution of the code generated
by Forma on GPUs and the algorithm to generate that code. We then
describe how a similar approach with a some modifications is used
to generate tiled code on the CPU as well.

2.1 Tiling and Fusion on the GPU
To reduce the bandwidth requirement, a combination of tiling and
fusion is used. Consider the GPU execution schematic shown in
Figure 3. The output image is computed using the stencil function
blury. On the GPU, each tile is evaluated by a thread-block such
that each thread computes the value at a single point. For example
in Figure 3, a tile of size 2×2 of the image output is computed by
a single thread block. From the DAG of the computation (Figure 1),
the compiler knows that the argument to the function blury is itself
computed using the stencil function blurx. So the compiler gener-
ates code to compute in shared memory, the tile of the result of the
stage blurx needed to compute a tile of the result of stage blury.
Since the stencil blury access neighboring points at a distance 1
and −1 along the y-direction, the size of this intermediate tile has
to be increased by 1 along the positive and negative y-directions.

To compute the values of this intermediate tile, the function
blurx is applied to a region of the image input. Since this image
is already in memory, the compiler generates code to read the
required region of this image into shared memory. The stencil
blurx accesses neighboring points at a distance 1 and −1 along
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Algorithm 1: ComputeTile(G,v,~T )
Input : G : DAG of the computation

v : Node in the DAG being analysed
~T : The tile size along each dimension used to compute the

result of v
1 begin
2 Consumed = φ ;
3 foreach p ∈ v.Predecessor do
4 ~E = MaxPositive(v,p) - MaxNegative(v,p) ;
5 ~Tp = ~T + ~E ;
6 if p.IsStencil then
7 pval = ComputeTile(G,p, ~Tp) ;
8 Consumed = Consumed ∪ pval ;

9 else
10 ComputeInMemoryIfUnavailable(G,p) ;
11 pval = LoadTileToShared(p, ~Tp) ;
12 Consumed = Consumed ∪ pval ;

13 R = ConsumeFromSharedMem(v,~T ,Consumed) ;

Algorithm 2: ComputeInMemoryIfUnavailable(G,v)
Input : G : DAG of the computation

v : Node in the DAG being evaluated
1 begin
2 if ¬ v.IsComputed then
3 if v.IsStencil then
4 ~T = DEFAULT TILE SIZE ;
5 R = ComputeTile(G,v,~T ) ;
6 I = ComputeTileIndex(~T ,v.Size) ;
7 StoreTileToGlobalMemory(R,I) ;

8 else
9 foreach p ∈ v.Predecessor do

10 ComputeInMemoryIfUnavailable(G,p) ;

11 ComsumeFromGlobalMem(G,v) ;

12 v.IsComputed = true ;

the x-direction of the input image. Consequently, the size of the
region needed is the size of the intermediate tile increased by 1
along the positive and negative x-direction.

The entire computation is performed within a single kernel with
most threads reading one element from global memory and storing
one value to the global memory. Therefore the sequence of con-
volution kernels have been fused into a single kernel. However, it
should be noted that neighboring blocks of the kernel execution
end up computing values along the extended regions of interme-
diate tiles in redundant fashion. This approach is similar to the
overlapped-tiling approach to tiling developed in [7] for iterative
stencil applications. There the authors showed that on GPUs, the
benefit of reducing global memory accesses outweighs the cost of
performing redundant computations. PolyMage [10] uses a similar
approach of tiling on CPUs.

Algorithm 2 describes the procedure to generate the tiled code
on GPU. To generate the code for computing the result of the
pipeline the compiler invokes the function ComputeInMemoryIfU-
navailable on the node in the producer-consumer DAG that com-
putes the result image. If this stage is a stencil 1, the compiler starts

1 Forma provides other operations like compose and interpolation /extrapo-
lation that are not targeted by the present approach

with a default tile size (the size of the thread block on the GPU),
and invokes the tiling code generation function ComputeTile. This
function is described in Algorithm 1. For each predecessor in the
producer-consumer DAG the size of the intermediate tile used to
store the output of the predecessor node is computed at Line 4.
This size is the current tile size increased by the maximum pos-
itive and negative offsets used to accesses the result produced by
the predecessor node within the stencil body of the current node.
If the predecessor is a stencil operation itself, a recursive call is
made to generate the code that computes the intermediate tile in
shared memory. If not, the entire image corresponding to the out-
put of the predecessor is evaluated in global memory by calling
the function ComputeInMemoryIfUnavailable described in Algo-
rithm 2, followed by the required tile loaded into shared memory.
Since all the values needed to compute a tile of the output is now
in shared memory, the compiler generates code to use these values
and generate the output tile in shared memory as well.

On returning from the call to ComputeTile at Line 7, the com-
piler generates code to compute the index of the tile evaluated
(ComputeTileIndex) and to store the computed tile to global mem-
ory (StoreTileToGlobalMemory). Note that for this final step, in-
stead of computing the result tile in shared memory and later writ-
ing it to global memory, it is more efficient to write the values di-
rectly to global memory. The description of this has been left out
for the sake of clarity. Finally, if the function ComputeInMemory-
IfUnavailable is invoked on a stage that is not a stencil, the code
generator falls back to the default mode of first computing the re-
sult of all the predecessor nodes in global memory and consuming
them to produce the result of this stage.

2.1.1 Adjusting Shared Memory Usage for Valid Kernel
Execution

The amount of shared memory required to execute the fused kernel
is a function of the block size used for the kernel launch. For
example, say the block size used for the fused version of the kernel
for the computation in Listing 1 is bx, by. The size of the shared
memory used would be (bx+2)*(by+2) for the input image, and
bx*(by+2) for the intermediate image. The compiler generates
code to adjust the block size so that the launched kernel does not
use more shared memory than what is available on the device. It
does so by iteratively halving the block size along each dimension
till the constraints of shared memory usage are met. Since shared
memory usage always decreases on decreasing the block size, this
approach is guaranteed to find a configuration that is valid for
the given device. While this might affect device occupancy during
kernel execution, for the experiments described in Section 3 this
was not an issue.

2.1.2 Handling Boundary Conditions in Presence of Tiling
The syntax of Forma allows the developers to easily specify
boundary conditions that are to be used while applying a sten-
cil. For the example in Listing 1, mirror boundary conditions
can be applied by changing the stencil application at Line 9 to
blurx(input:mirror) and at Line 10 to blury(temp:mirror)
2. If tiling has to be used in such situations, while computing along
the edges of the output image, the values in the intermediate tiles
have to computed while respecting these boundary conditions. Our
code-generator automatically generates code to handle such bound-
ary conditions appropriately. The tedious details of the implemen-
tation are skipped here, but such a feature demonstrates the ad-
vantage of using a DSL like Forma. Manually implementing tiling
algorithms like the one described in this section while handling

2 Other boundary conditions like clamped and constant can also be speci-
fied [13]
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boundary conditions appropriately requires considerable effort on
part of application developers. The Forma compiler can automati-
cally handle boundaries even while generating tiled code.

2.2 Reducing Branching Overhead on GPUs
The code generation algorithms described in Section 2.1 required
that intermediate tiles computed in shared memory to be of size
bigger than the size of the output tile being computed to account
for the accesses to neighboring points in the body of the stencil
function. Since the size of the thread block used is same as the
size of the output tile, some threads have the additional work of
computing (or initializing from global memory) the value of points
along the extended regions of the intermediate tiles. This serializes
the computation of some parts of the intermediate tiles. One way
to address this issue is to increase the size of the thread block to be
as big as the size of the biggest intermediate tiles. So each thread
would either have to compute the value at either one or no points.
As the kernel computes all the intermediate tiles and the final
output tile, threads become inactive but none of the computation
is serialized. This approach increases the register usage per kernel
and could potentially hurt the achieved occupancy on the GPU, but
in practice this was not found to be a limiting factor. An additional
tweak that helped improve the performance was to ensure that
thread with higher index values become inactive as the computation
proceeds so that all inactive threads are collected within a single
warp.

2.3 Code Generation on the CPU
The code generation algorithm described in Section 2.1 can also
be used on the CPU with some modifications. Without tiling, the
Forma code generator for CPUs generates loop nests that iterate
over the size of the result of each stage (output) and computes the
value of each point. For large image sizes there would be no reuse
across the multiple uses of values of the input image. Instead, using
a smaller buffer which stores only those values of an intermediate
image needed to compute a tile of the output would reduce the cost
of multiple accesses to these values when the buffer fits in some
level of the hardware cache.

To use this approach, a tiled loop nest that iterates over the
size of the result image is generated. The outer loops corresponds
to those that iterate over the tiles of the result, while the inner
loops iterate over points within a tile. At a point before these
inner loops, the compiler generates code that computes the value
of intermediate tiles used for computing the final output. The size
of the result tile computed is chosen such that all the intermediate
buffers fit in L2 cache simultaneously. Padding is used to avoid
conflict misses. Unlike the GPU code generation scheme, there is
no need to explicitly move elements of images that have already
been fully computed into a smaller buffer. The caching mechanism
on the hardware provides this functionality automatically. The tile
sizes for the loop have to be adjusted so that there is enough space
for caching elements of these images as well.

3. Experimental Evaluation
In this section we evaluate the improvement in performance ob-
tained by fusion through tiling algorithm described in Section 2.
For evaluation we used three benchmarks, one is the simple blur
computation described in Listing 1. The other two are the Canny-
edge detection pipeline [2] and the Harris Corner Detection [5] al-
gorithm.

3.1 GPU Performance
The Forma compiler targets NVIDIA GPUs by generating CUDA
code. The code generator was modified to incorporate Algorithms 1
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Figure 4. Performance Improvement from Fusion through Tiling
on GPU (Tesla K20c)
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Figure 5. GPU Performance Metrics for Blur

and 2. NVCC-6.5 was used for compiling the generated code.
Since the amount of shared memory used by a block has to be
less than 48KB, the backend also generates a function to calculate
the amount shared memory used by a thread block for a particular
block size. Using this, the generated code adjusts the block size to
achieve maximum occupancy.

The benefit of tiling was evaluated on an NVIDIA Tesla K20c.
Figure 4 shows the improvement in the total kernel execution times
observed for the three benchmarks. While there is a slight loss of
performance with Blur, with Canny and Harris there is a significant
improvement. Figures 5, 6 and 7 provide an explanation for the per-
formance observed. Tiling for Canny (Figure 7) leads to a signifi-
cant drop in the number of global memory loads. The relatively low
Instructions Per Cycle (IPC) for the untiled code compared to the
tiled code shows that this was indeed a bottleneck. For Harris kernel
(Figure 6), the number of global memory loads is reduced by only
a factor of 4.35, but the IPC of the tiled code is almost twice that of
the untiled code suggesting that the loads from global memory were
still a bottleneck for the kernel execution. With Blur however (Fig-
ure 5), even though the number of global memory loads reduced
by a factor of 3.38, the IPC of the untiled code was already pretty
high which suggests that for this kernel global memory loads were
not a significant bottleneck. Since the tiling approach used here in-
creases the number of floating point operations, the performance of
the Blur kernel dropped by a small amount.

3.2 CPU Performance
The performance on CPU was measured on a quad-core Intel Core
i7-4820K. Figure 8 shows the speed up obtained. For Blur and
Harri, an improvement of 79% and 71% respectively was observed.
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Figure 8. Performance Improvement from Fusion through Tiling
on CPU (i7-4820K)

For Canny, the improvement was 25%. The reason for the higher
speed up obtained on CPU is that bandwidth to main memory is
typically lower than that available on the GPU, whereas bandwidth
to caches is pretty high. The Forma C backend was modified to
modify the tile sizes based on the cache sizes automatically. As
described in Section 2.3, use of padding for the tiles helps reduce
conflict misses resulting in better cache utilization.

4. Related Work
The approach of using tiling to improve data locality is a classic
transformation. PLuTo [1] implements state-of-the art loop trans-
formations to enhance data locality through fusion and tiling. While
PLuTo is source-to-source compiler that targets a wide range of

applications written in C, PolyMage [10] from the same authors
uses similar techniques but is targeted towards image processing
pipelines. AlphaZ [14] also groups together operations that have a
producer-consumer relationship but operates at the granularity of
individual statements, and not at the granularity of images as is
done in this paper. Several other compiler techniques [4, 6–8] have
been developed to target iterative stencil computations where tiling
is done across the time stepping loop in order to improve data local-
ity. These techniques are target low level C code and cannot elim-
inate the use of large temporary buffers as was done in this paper
through fusion.

Previous work have also explored the used of tiling to improve
performance on other architectures. KernelGenius [9] uses tiling to
improve performance of image processing applications on embed-
ded architectures. Pouchet et.al. [11] have used tiling to improve
the performance of stencil applications on FPGAs.

In context of image processing applications, Halide [12] is the
most popular DSL. In Halide the programmer splits the compu-
tation in two parts, a specification and a schedule. The schedule
allows programmers to specify the manner in which the specified
computation is executed. This is where a programmer can make use
of techniques like tiling and vectorization to improve the perfor-
mance of the pipeline. The optimal tile size can be deduced through
auto-tuning. The approach in this paper is to free the programmer
from even having to decide when and how to tile the computation.
Instead, the DSL compiler automatically uses tiling to improve the
performance of the generated code when it finds an opportunity to
do so.

5. Conclusion
In this paper we have developed a code generation algorithm within
the context of a DSL for image processing pipelines, that uses the
high level description of such pipelines to fuse a sequence of convo-
lution kernels using tiling. On GPUs this reduce the global memory
bandwidth requirements by utilizing the fast shared memory. The
same technique can be used to improve the performance on CPUs
as well by making use of the hardware caching mechanism. On
GPUs this lead to an improvement of 58% on the Canny edge de-
tection pipeline and 44% on the Harris Corner pipeline. On CPUs
an improvement of 25% and 71%, respectively, was observed for
the same pipelines. The approach described is not specific to image
processing but can be applied to any domain, like machine learning,
where a sequence of convolutions are used.
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