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Abstract

SQL is the de facto language for manipulating relational

data. Though powerful, SQL queries can be difficult to

write due to their highly expressive constructs. Using the

programming-by-example paradigm to help users write SQL

queries presents an attractive proposition, as evidenced by on-

line help forums such as Stack Overflow. However, develop-

ing techniques to synthesize SQL queries from input-output

(I/O) examples has been difficult due to SQL’s rich set of

operators.

In this paper, we present a new scalable and efficient al-

gorithm to synthesize SQL queries from I/O examples. Our

key innovation is the development of a language for abstract

queries, i.e., queries with uninstantiated operators, that can ex-

press a large space of SQL queries efficiently. Using abstract

queries to represent the search space nicely decomposes the

synthesis problem into two tasks: (1) searching for abstract

queries that can potentially satisfy the given I/O examples,

and (2) instantiating the found abstract queries and ranking

the results. We implemented the algorithm in a new tool,

called SCYTHE, and evaluated it on 193 benchmarks col-

lected from Stack Overflow. Our results showed that SCYTHE

efficiently solved 74% of the benchmarks, most in just a few

seconds. Queries synthesized by SCYTHE range from simple

ones involving a single selection to complex ones with six

levels of nested queries.

CCS Concepts • Software and its engineering → Pro-

gramming by example; • Information systems → Struc-

tured Query Language

Keywords Program Synthesis, Query by Example, SQL

1. Introduction

Relational databases serve an important role in modern data

management, and SQL remains one of the most commonly

used query languages to manipulate relational data. SQL

can be used for many basic tasks, such as selecting columns

from a table; its rich features also make it useful for solving

complex data manipulation tasks, such as computing arg

max and joining multiple tables together with aggregates.

However, the various operators available in SQL and the many

ways that they can be combined to form advanced idioms

(e.g., correlated subqueries, unions, nested queries, groupings,

various types of joins, etc) make the language difficult to

master, as evidenced by over 10,000 Stack Overflow SQL

related posts. In fact, many problems are so common among

end users that they are grouped with popular tags, such as

“greatest-n-per-group,” “argmax,” and “moving-average.”

Though end users find solving these problems to be

challenging, they can often specify the problems using input-

output (I/O) examples, as observed in many Stack Overflow

posts. Given the recent advances in programming-by-example

(PBE) systems [12, 13, 15, 17, 29], building a tool that helps

users write SQL by soliciting I/O examples from users would

alleviate their need to learn complex SQL constructs and

idioms.

Prior work [36, 40] has developed automatic synthesizers

for SQL queries using I/O examples. However, it handles

only a small subset of the language and does not cover a

wide range of practical tasks. We observe that the difficulty

in developing automatic synthesizer for SQL queries results

from several of its unique features. First, the space of SQL

queries is huge: many SQL operators (selection, projection,

joins, grouping, etc) are parameterized by predicates, and

they can be composed with each other. Second, the first-

class value in SQL, table, is a type of compound value

that is expensive to compute and memoize: tables computed

from joins and unions can contain hundreds to thousands

scalar values. Third, unlike spreadsheet data transformation

languages, whose operators can be decomposed and inferred
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backwardly from output examples, SQL operators cannot

be trivially decomposed and learned in this way. For the

example in Figure 1, the Join predicates cannot be inferred

independently from its nested subqueries as they jointly affect

the output table. Thus, it is unclear whether the “divide-and-

conquer” synthesis algorithms used in other domains [12, 13,

26, 32] would remain scalable in SQL.

Our key insight to address the above challenges is to

develop a new abstraction – the language of abstract queries –

to decompose the originally challenging synthesis problem.

Abstract queries in this language are syntactically similar to

SQL queries except that filter predicates are replaced with

holes that can be instantiated with any valid predicate. Since

operators in abstract queries are no longer parameterized by

predicates, the search space of abstract queries is significantly

reduced than the original one. Furthermore, the language

contains a set of evaluation rules: given an abstract query,

the rules evaluate it into a table that over-approximates the

results of all queries that can be instantiated from it, allowing

us to prune the search space earlier.

With this abstraction, we decompose the SQL synthesis

problem into two phases. In the first phase, we search for

abstract queries that can potentially be instantiated into SQL

queries that satisfy the given I/O examples, and we prune

away others based on their evaluation result. Then, in the

second phase, we search for proper predicates for each

synthesized abstract query to instantiate it into desired SQL

queries and return top candidates to the user. To make the

predicate search process efficient, we cluster predicates into

semantically equivalence classes and encode tables using

bit-vectors.

We implemented our algorithm in a PBE tool called

SCYTHE. To evaluate SCYTHE, we collected 165 real-world

benchmarks from Stack Overflow and 28 benchmarks from

previous work [40]. Results showed that SCYTHE quickly

and precisely solved more than 74% of the benchmarks and

80% out of these solved benchmarks were solved within a

few seconds. Our algorithm solved 51 more cases within 600

seconds compared to the enumerative search algorithm [25,

37] and outperformed SQLSynthesizer [40] on their project

benchmarks with 4 more cases solved.

In sum, our paper makes the following contributions:

• We present a new approach to decompose the SQL query

synthesis problem. Our key innovation is the design of the

language of abstract queries and rules to evaluate them.

(Section 4)

• We describe efficient synthesis algorithms optimized us-

ing properties of abstract queries to solve the two sub-

problems after decomposition, i.e., searching for abstract

queries and instantiating them. (Section 5)

• We implemented our algorithm in a PBE system SCYTHE

and evaluated it on 193 real-world benchmarks. Results

show that SCYTHE makes substantial improvement com-

pared to the enumerative search algorithm and other prior

tools for synthesizing SQL queries. (Section 6)

2. Overview

We first demonstrate our algorithm with a running example.

Problem Statement. We formalize a user’s query as a triple

(I, Tout, C), where I = {T1, ..., Tn} stands for input tables,

Tout stands for the output table, and C = {v1, ..., vk} stands

for a set of predicate constants. We seek to synthesize a query

q such that q(I) = Tout with the additional constraint that all

constants used in predicates in q must come from C.

Note two special characteristics of our problem formal-

ization that are tailored to relational queries in constrast to

PBE systems in other domains [12, 28, 38]. First, we ask

users to provide constants that will be used in predicates to

make the problem less ambiguous as well as to boost the

search efficiency. Based on our study of Stack Overflow ques-

tions, we find that users are usually willing to provide such

constants along with table examples (e.g., return values that

are between dates “12/24” and “12/25”) because failing to

provide them would result in a degree of ambiguity that must

be resolved in a dialogue with experts.

Second, our problem formulation allows only one I/O

example pair (I, Tout): the rationale is that users tend to

resolve the ambiguities in the provided example by revising

the example rather than creating a completely new one, so

our algorithm needs to accept only one I/O pair.

Running Example. We combine two Stack Overflow posts

into a running example to demonstrate the full features

of our algorithm.1 This example contains two input tables

I = {T1, T2}, an output table Tout (as shown below), and

constants {“12/25”, “12/24”, 50}.

T1

id date uid

1 12/25 1

2 11/21 1

4 12/24 2

T2

oid val

1 30

1 10

1 10

2 50

2 10

Tout

c0 c1 c2 c3 c4
1 12/25 1 1 30

4 12/24 2 2 10

The Solution. Figure 1 shows one correct solution. The

query contains three steps. It (1) selects the rows in T1 whose

date column is “12/25” or “12/24”, (2) groups T2 on oid

and calculates the maximum val below 50 for each group,

and (3) joins the results computed from steps 1 and 2 using the

predicate uid = oid. Note the use of the provided constants

as part of the selection predicates in this case.

Subset of SQL Used in This Section. To focus on the key

ideas without loss of generality, we restrict our synthesis

algorithm to consider only a subset of SQL operators: selec-

tion, join, and aggregation (Figure 2); other features such as

projection and union are discussed later in Section 3.

1 http://stackoverflow.com/questions/39761697,

http://stackoverflow.com/questions/14995024
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Select *

From (Select *

From T1

Where T1.date = 12/24

Or T1.date = 12/25) T3

Join (Select oid, Max(val)

From (Select *

From T2

Where T2.val < 50) T4

Group By oid) T5

On T3.uid = T5.oid

Figure 1: A solution for the running example.

--select

Select *

From q

Where f

--join

Select *

From q1

Join q2

On f

--aggregation

Select c,α(ct)
From q

Group By c

Having f

Figure 2: A subset of SQL grammar; q refers to an input table or a

nested subquery, f refers to a predicate, α refers to an aggregation

function, and c refers to a column name.

2.1 Enumerative Search with Equivalence-Class

Before explaining our algorithm, we first discuss the enumer-

ative search approach, which is a class of widely adopted

algorithms used to solve many synthesis problems. Such al-

gorithms enumerate all programs in the program space of

a given depth limit and retain only those consistent with

the provided I/O examples. Previous enumerative synthesiz-

ers [2, 25, 37] adopt the concept of equivalence classes to

optimize the search process: they group programs into equiv-

alence classes based on their behaviors on the input example

to compress the search space. The search then proceeds it-

eratively: within each stage, the algorithms enumerate all

programs in the current search space, group them based on

an equivalence metric, and proceed to the next stage. Assume

that r is the average reduction rate from programs to values

per stage; the total reduction rate at stage d is rd, which makes

the algorithms much more scalable than simple enumeration.

Figure 3 illustrates how this technique is applied to SQL

query synthesis to solve the running example. Queries are

grouped into equivalence classes based on their evaluation

results on the input example, and each iteration enumerates all

queries that can be constructed from these equivalence class

representatives using an operator from Figure 2. However,

when applied to SQL, this algorithm performs inefficiently

because grouping queries into equivalence classes cannot

effectively compress the search space. There are a number of

reasons for this. First, the main complexity of query synthesis

comes from the generation of a large number queries per-

stage rather than a large number of stages. For instance, the

number of intermediate queries generated at the last stage of

Figure 3 is 554,856 even if we only consider the grammar

shown in Figure 2. More importantly, grouping queries into

equivalence classes represented by tables cannot effectively

reduce search complexity: since tables are compound values

that may contain thousands of cells (e.g., tables evaluated

from nested Joins), evaluating queries and memoizing tables

during the search process both contribute to large algorithmic

overhead.

2.2 Our Approach

Our key insight for the challenges is to design a language of

abstract queries to break down the synthesis process. Abstract

queries resemble SQL queries except that they can contain

uninstantiated filter predicates in the form of holes. This

language lets us decompose the original synthesis problem

into the following two subproblems that can be efficiently

solved:

1. Synthesizing all abstract queries that can potentially be

instantiated into queries satisfying the given I/O examples

and pruning away the rest.

2. Searching for predicates to fill holes in these abstract

queries, instantiating them into concrete ones, and deter-

mining which ones are consistent with the I/O examples.

We next describe the language of abstract queries and how

this decomposition makes the synthesis problem tractable.

2.2.1 The Language of Abstract Queries

The grammar for abstract queries resembles the SQL gram-

mar shown in Figure 2, except that all filter predicates (in

Where, Having, On clauses) are replaced with holes “�” (we

use q̃ to refer to abstract queries). As in SQL, abstract queries

can also be composed (as in the case of Join).

Evaluating abstract queries is similar to evaluating SQL

queries. For instance, an abstract Select or Join query is

evaluated as a SQL query with its predicate hole replaced

with True. We define the formal evaluation rules in Section 4.

All evaluation rules satisfy the following over-approximation

property: asumme q̃ is an abstract query; then, for any

concrete query q instantiated from q̃, i.e., with all holes

replaced with any syntactically valid predicates, the result

of q is contained in the result of q̃. Thus, any abstract query

whose result does not contain the output example will not

lead to a valid query and can be pruned.

2.2.2 Problem 1: Searching for Valid Abstract Queries

We first search for abstract queries whose evaluation results

contain the output example via enumerative search. Figure 4

shows the search process for the running example. The search

process is similar to that shown in Figure 3, yet with different

grammar and evaluation rules. Table T̃6 in the figure contains

the output example, so that the tree of queries from input

tables to T̃6 forms a candidate abstract query. All abstract

queries that do not contain Tout are removed.

Since abstract queries do not contain filter predicates,

far fewer intermediate tables are generated: for the running

example, only 105 different intermediate tables (in total 2,710

cells) are generated in the last stage of Figure 4 compared
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Figure 3: Equivalence-class based enumerative search algorithm, the subtree (queries in dash boxes) from T1, T2 to T6 corresponds to the

solution shown in Figure 1.

Figure 4: Searching for candidate abstract queries, where dash line arrows show evaluation of abstract queries. The tree from T̃1, T̃2 to T̃6

corresponds to a candidate abstract query. Note the reduction in the number of tables and queries as compared to Figure 3.

to 1,889 tables and 42,680 cells for the search process

in Figure 3. Furthermore, the over-approximation property

prunes as many as 90% of the abstract queries generated in

the last stage.

2.2.3 Problem 2: Predicate Synthesis

Once candidate abstract queries are identified, we synthesize

predicates to instantiate each of them. Specifically, for the

running example, we need to find predicates for holes �a−d

(examples shown in Figure 5) to instantiate the abstract query

to a SQL query whose evaluation result is Tout.

This search remains highly challenging since: (1) the num-

ber of candidate predicates is huge (4,692 syntactically differ-

ent predicates for �c alone, due to the large number of com-

pound predicates built from conjunction/disjunction/nega-

tion) and (2) evaluating and memoizing intermediate tables

remain expensive. We use two optimizations to address these

issues.

Locally grouping candidate predicates. First, for each sub-

query of the given abstract query, we group its candidate

predicates into equivalence classes. The idea is that if two

candidate predicates behave the same on the evaluation result

of a given abstract subquery,2 their behaviors on the whole

2 The behavior of a predicate on a table means evaluating the table and the

predicate as a simple Select query.

�
a

fa1 : date>=12/24

fa2 : date=12/25 Or date=12/24

· · · · · ·

�
b

fb1 : T2.val<50

fb2 : T2.val<>50

· · · · · ·

�
c

fc1 : True

fc2 : maxVal<50

· · · · · ·

�
d

fd1 : T3.id=T5.uid

fd2 : T3.oid=T5.uid

· · · · · ·

Figure 5: The abstract query in Figure 4 and candidate predicates

for each hole.

abstract query remains identical, no matter how other holes in

the query are instantiated. Hence, we need to retain only one

such predicate as a representative of the equivalence class.3

For example, the two candidate predicates “True” and

“maxVal <= 50” for �c in q̃3 in Figure 5 produce the same

3 To ensure the algorithm’s completeness, for each synthesized candidate

query, our algorithm generates all different versions of the query by replacing

predicate equivalence class representatives with all predicates in the group.
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results when evaluated on T̃5 in Figure 4; hence, only one

of them needs to be retained to reduce search complexity.

In total, the 4,692 candidate predicates for the hole �
c in

Figure 5 are grouped into 21 equivalence classes, with a

reduction rate of 200× compared to direct enumeration.

Encoding tables using bit-vectors. Our second optimiza-

tion encodes intermediate tables using bit-vectors to im-

prove search efficiency. The insight stems from the over-

approximation property of evaluating abstract queries. Be-

cause of that, when searching for the instantiation of an ab-

stract query q̃, we can use its abstract evaluation result T̃
together with a bit-vector β to represent the evaluation result

of every instantiation of q̃: the size of β is same as the number

of rows in T̃ , and the i-th bit in β represents whether the the

row i in T̃ appears in T .

For example, table T4 in Figure 3 (evaluated from q2)

can be represented using the pair (T̃4, [11101]) (T̃4 is the

evaluation result of the abstract query q̃2 in Figure 4), since

rows 0,1,2,4 of T̃4 appear in T4. Likewise, Tout can be

represented as the pair (T̃6, [010000000001]) as shown in

Figure 4.

Encoding tables into bit-vectors has two benefits. First, the

intermediate results of the predicate search process can be

fully represented using bit-vectors to reduce the memoization

overhead, since the tables evaluated from abstract queries are

shared among many and bit-vectors are cheap to memoize.

Second, we can optimize operators on queries into bit-vectors

operators benefiting from this representation; since many

bit-vector operators require no materialization of tables, the

computation overhead is also significantly reduced, as we

will show in Section 5.2.

With these optimizations, the predicate synthesis algo-

rithm efficiently searches for instantiations of abstract queries

that are consistent with the provided I/O example. These

candidate queries are later ranked and returned to the user.

2.3 Ranking and Interaction

Since the provided I/O example often does not completely

specify a task, our algorithm returns multiple candidate

queries that are consistent with the example. We use a

heuristic to rank [12, 28] the queries returned from the main

synthesis algorithm based on simplicity, naturalness and

constant coverage, as will be discussed in Section 5.3. We

present top-ranked queries to the user, who can provide a new

example to the system and re-run the tool if needed.

3. The SQL Language

We introduce the definition of tables and briefly review our

target language SQL in this section.

Table A table is a pair consisting of schema and content

(Figure 6), where the schema is a list of name-type pairs and

the content is a list of rows. Values we support include typed

scalars or null. Additionally, as we adopt bag-semantics [22]

for SQL, where duplicate rows are allowed in tables, and the

equivalence between two tables is defined as bag equivalence,

i.e., two tables are equal iff they mutually contain each other

regardless of row ordering.

For readability, we use the notation T1 ⊆ T2 to represent

that all rows in T1 are contained by T2, and the multiplicity

of each row in T1 is smaller or equal than its multiplicity in

T2.We also use T1 ∪ T2 to refer to the union of contents in T1

and T2 (when their schema type are compatible); the schema

of T1 ∪ T2 is the same as T1.

T ::= Table(schema, content) (Table)

schema ::= [c1 : τ1, ..., cm : τm] (Schema)

content ::= [r1, ..., rn] (Content)

r ::= [v1, ..., vm] (Row)

τ ::= int | double | string | date | time (Type)

Figure 6: The definition of tables and auxiliary functions on tables.

Metavariable c ranges over column names and v ranges over values.

SQL Figure 7 presents the grammar of SQL: a query

q is formed by one of Projection, Dedup, Select, Join,

Aggr, LeftJoin, Union or As constructors. The construc-

tor Aggr(c̄, ct, α, q, f) corresponds to the aggregation query

Select c̄, α(ct) From q Group By c̄ Having f , the construc-

tor Proj(c̄, q) corresponds to the projection query Select

c1, ..., cn From q, and others can be directly mapped to their

concrete forms.

We omit the evaluation rules for SQL in our formal

definition due to space limitations. We use the notation JqK to

denote evaluating the query q into a table.

4. The Language of Abstract Queries

The language of abstract queries is key to the decomposi-

tion of the query synthesis problem. Figure 8 presents its

grammar: an abstract query in the language is similar to a

concrete SQL query except that filter predicates are replaced

by uninstantiated holes (�). Abstract queries and concrete

queries have the following instantiation/abstraction relation.

Definition 1. (Instantiation and Abstraction) Given an ab-

stract query q̃ and a query q, we call q an instantiation of q̃,

if there exists a substitution φ = {�1 7→ f1, ...,�k 7→ fk}
(where k is the number of holes in q̃), such that substituting

holes in q̃ with φ results in q, i.e., q̃/φ = q. We also call q̃ the

abstraction of q (by definition, only one abstraction exists for

a query q).

Evaluation Rules Figure 9 shows evaluation rules for ab-

stract queries, and the over-approximation property for these

rules (as presented in Section 2.2.1) is formally defined below

(Property 1). These rules are designed to ensure the satisfac-

tion of the over-approximation property:

• Evaluating a table results in the table itself.

• When evaluating an abstract Join or Select query, the

result is obtained by evaluating it with the predicate True.
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q ::= T (Named Table)

| Proj(c̄, q) (Projection)

| Dedup(q) (De-duplication)

| Select(q, f) (Select)

| Join(q1, q2, f) (Join)

| Aggr(c̄, ct, α, q, f) (Aggregation)

| Union(q1, q2) (Union)

| LeftJoin(q1, q2, c̄ = c̄′) (Left Join)

| Rename(q,name, c̄) (Rename)

f ::= True | v binop v (Predicates)

| Exists q | Is Null c
| f And f | f Or f | Not f

v ::= c | const | null (Values)

α ::= Max | Min | Avg | Count | Sum (Aggregators)

| Count-Distinct | Concat
binop ::= = | > | < | <= | >= | <>

Figure 7: SQL grammar. The metavariable T ranges over tables,

c ranges over column names, const ranges over constant values,

and name ranges over fresh table names. Bar notation is used to

represent repetitive elements.

q̃ ::= T (Named Table)

| Proj(c̄, q̃) (Projection)

| Dedup(q̃) (De-duplication)

| Select(q̃,�) (Select)

| Join(q̃1, q̃2,�) (Join)

| Aggr(c̄, ct, α, q̃,�) (Aggregation)

| Union(q̃1, q̃2) (Union)

| LeftJoin(q̃1, q̃2, c̄ = c̄′) (Left Join)

| Rename(q̃,name, c̄) (Rename)

α ::= Max | Min | Avg | Count | Sum (Aggregators)

| Count-Distinct | Concat

Figure 8: The grammar of abstract queries. The symbol “�” refers

to an uninstantiated predicate, and the metavariable c ranges over

column names.

• Given an abstract LeftJoin query, we first compute the

evaluation results T1, T2 of its abstract subqueries and

then return the union of (1) the left join result of T1, T2

and (2) the left join result of T1 and an empty table whose

schema is the same as T2’s. The second part ensures that

the over-approximation property is satisfied no matter how

q̃2 is instantiated.

• Given an abstract Aggr query, we first evaluate the inner

abstract subquery into a table T ; we next compute the

aggregation result for all tables that are contained by

T with Having clause set to True, and we finally union

the results. We must consider all possibilities in the

rule to ensure the over-approximation property, since the

grouping result is dependent to how its abstract subquery

is instantiated.

• Evaluation rules for other abstract queries resemble their

concrete version, since the over-approximation property

propagates automatically from their subqueries.

Complexity and Optimization We measure the complexity

of evaluating an abstract query using the number of SQL

operators executed in the evaluation process and the output

ẽval(T ) = T ẽval(Proj(c̄, q̃)) = JProj(c̄, ẽval(q̃))K

ẽval(Dedup(q̃)) = JDedup(ẽval(q̃))K

ẽval(Select(q̃,�)) = JSelect(ẽval(q̃), True)K

ẽval(Join(q̃1, q̃2,�)) = JJoin(ẽval(q̃1), ẽval(q̃2), True)K

ẽval(Aggr(c̄, ct, α, q̃,�)) =

let T0 = ẽval(q̃) in

t
Dedup

(
⋃

T⊆T0

JAggr(c̄, ct, α, T, True)K
)|

ẽval (Union(q̃1, q̃2)) = JUnion(ẽval(q̃1), ẽval(q̃2))K

ẽval(LeftJoin(q̃1, q̃2, c̄ = c̄′)) =

let T1 = ẽval(q̃1), T2 = ẽval(q̃2), T3 = JSelect(T2, False)K
in JLeftJoin(T1, T2, c̄ = c̄′)K ∪ JLeftJoin(T1, T3, c̄ = c̄′)K

ẽval(Rename(q̃,name, c̄)) = JRename(ẽval(q̃),name, c̄)K

Figure 9: The evaluation rules for abstract SQL. Notation JqK refers

to evaluating a concrete query based on SQL semantics.

table’s size. Assume the abstract queries are evaluated on an

input table (or input tables) with r rows and c columns in

total. From the rules in Figure 9, the worst-case measures

for evaluating abstract Aggr queries are both exponential

in r since we must compute the aggregation result of all

tables contained by the input table and union the results,

while the worst-case measures for all other abstract queries

are polynomial in r × c. Thus, the bottleneck of evaluating

abstract queries lies in evaluating Aggr subqueries in an

abstract query.

Fortunately, we can optimize the evaluation rules for

abstract Aggr queries formed with many commonly used

aggregation functions, including Max, Min, Count and Count

Distinct to avoid the bottleneck. Since Max and Min return

only existing values from the input tables, the output table

size of an abstract Aggr query that uses such aggregates is

polynomial to the size of its input table. This property lets us

to simplify the evaluation rule into JDedup(T )K (where T is

the evaluation result of the inner abstract subquery) without

violating the over-approximation property. An example is

the evaluation of q̃3 to T̃5 in Figure 4. Similarly, the only

new values produced by Count and Count-Distinct are

column counts, and the evaluation rules for abstract queries

containing them can likewise be simplified.

Property 1. (Over Approximation) Given an abstract query

q̃ and a query q instantiated from q̃, JqK ⊆ ẽval(q̃).

Proof Sketch. By induction on the abstract query constructors,

we can prove that every row in any instantiation of the abstract

query is contained in its evaluation result. �

5. Synthesis Algorithm

We now introduce our synthesis algorithm (Algorithm 1).

Given an example containing input tables I , output table Tout,
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and a set of constants C, the Synthesis algorithm constructs

a set of candidate queries within the given time limits. For

each depth , the algorithm first searches for all abstract

queries that can potentially be instantiated into candidate

queries (line 5); then, for each synthesized abstract query q̃,

it constructs all of instantiations of q̃ that are consistent with

the I/O example (lines 6,7); finally, the algorithm selects

all synthesized queries whose score is beyond a system

predefined threshold, and returns candidates to the user after

ranking (lines 9,10).

1 Synthesis(I, Tout, C):

// Input: input tables I , output table Tout, constants C

// Output: Queries that are consistent with the input-output examples.

2 depth ← 1;

3 while timeout() = false:

4 Sq ← ∅;

5 Sq̃ ← SynthesizeAbstractQuery(I, Tout, depth);

6 foreach q̃ in Sq̃ :

7 Sq ← Sq ∪ PredSynthesis(q̃, I, Tout,Const);

8 candidates ← {q | q ∈ Sq ∧ Score(q) > threshold};

9 if candidates 6= ∅:

10 return Rank(candidates);

11 depth ← depth + 1;

12 return ∅;

Algorithm 1: The main synthesis algorithm.

5.1 Abstract Query Synthesis

The first part of the algorithm is abstract query synthesis, the

goal of which is presented by the completeness condition

below.

Definition 2. (Completeness Condition) Given an example

(I, Tout, C) and search depth d , suppose Sq̃ is the set of

abstract queries returned by the abstract query synthesis

algorithm, then for all q in the query space that are consistent

with the input output example whose length is with d, its

corresponding abstract query q̃ is contained in Sq̃ .

Our algorithm achieves this goal with the help of the over-

approximation property of the abstract queries: as long as

every abstract query whose evaluation result contains Tout is

included in the result, our algorithm will not miss any abstract

queries that can potentially be instantiated into queries that

are consistent with the I/O example.

The algorithm (Algorithm 2) adopts an enumerative search

approach for all abstract queries satisfying this condition:

starting from the input tables I with depth d = 1, the

algorithm iteratively (1) enumerates all abstract queries can

be constructed from tables in ST (by iterating over all query

constructors for all tables in ST ) (line 4), (2) maintains

a mapping between the abstract evaluation result of these

abstract queries and their syntactical form using the map M
(line 5), and (3) updates the ST with newly generated tables

(line 6). When the given search depth is reached, on lines

8-9, the algorithm retrieves all tables that fully contains Tout

and decodes them into abstract queries with the help of the

mapping M (by recursively substituting intermediate tables

with their corresponding abstract subqueries). At the end of

the phase, the algorithm returns a set of abstract queries.

The enumerative search approach can be applied effi-

ciently in this phase since the size of the abstract query space

is much smaller than that of the concrete query space, as all

predicates are kept as holes. On the other hand, Algorithm 2

has one bottleneck: the number of tables enumerated at each

stage is exponential to the maximum column size of input

tables since our algorithm enumerates all possible grouping

by columns for each aggregation query to ensure complete-

ness. Fortunately, the input examples provided by the user are

typically reasonably small and a majority of these abstract

queries are immediately pruned in this phase if they cannot

be instantiated into candidate queries. As a result, the num-

ber of abstract queries sent to the second phase algorithm is

sufficiently small to ensure that the overall algorithm runs

efficiently.

1 SynthesisAbstractQuery(I, Tout, depth):

// Input: input output tables (I, Tout), search depth (depth)

// Output: all abstract queries constructed from I within depth depth ,

whose evaluation result fully contains Tout.

2 d ← 1, ST ← I , M ← ∅;

3 while d ≤ depth:

4 Sq̃ ← Sq̃ ∪ EnumOneStepAbstractQuery(ST );

5 M ←M ∪ {(T, q̃) | T = ẽval(q̃) ∧ q̃ ∈ Sq̃};

6 ST ← {T | q̃ ∈ Sq̃ ∧ T = ẽval(q̃)};

7 d ← d + 1;

8 candidates ← {T | T ∈ ST ∧ Tout ⊆ T};

9 return DecodeToAbstractQuery(candidates,M);

Algorithm 2: The abstract query synthesis algorithm; the sub-

routine EnumOneStepAbstractQuery enumerates all abstract

queries that can be directly constructed table(s) in ST .

Lemma 1. Algorithm 2 is complete (Definition 2).

Proof Sketch. This condition is guaranteed since (1) if q is a

query consistent with the I/O example, its evaluation result

contains the output example according to Property 1, and

(2) Algorithm 2 searches for every abstract queries whose

evaluation result contains Tout. �

5.2 Predicate Synthesis

Given an abstract query synthesized by the previous algo-

rithm, the predicate synthesis algorithm synthesizes predi-

cates for the abstract query to instantiate it into candidate

queries. We first present a simple (but inefficient) algorithm

that can solve this problem (Algorithm 3). First, the simple

algorithm searches (with memoization, as in Algorithm 2) for

all tables that can be obtained from queries instantiated from

the abstract query q̃, by enumerating all predicates that can

be filled into the predicate holes (line 1). Then, if the output

table is found in the search process, the algorithm generates

queries from the output table, according to its memoization

result (function GenQuery in line 3). Algorithm 4 shows the
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enumeration rules. The function EnumAllPredicates in the

rule enumerates all possible syntactically different filter pred-

icates for Select, Join and Aggr abstract queries, by iterating

over all valid predicates defined by the SQL grammar (Fig-

ure 7).

SimplePredSynthesis(q̃, I, Tout, C):

// Input: an abstract query q̃, input output example I, Tout, C

// Output: candidate queries instantiated from q̃.

1 ST ← DFS(q̃, I, C);

2 if Tout ∈ ST :

3 return GenQuery(Tout);

4 return ∅;

Algorithm 3: A simple predicate synthesis algorithm.

DFS(T ) : return {T};

DFS(Proj(c̄, q̃)) : return {JProj(c̄, T )K | T ∈ DFS(q̃)};

DFS(Dedup(q̃)) : return {JDedup(T )K | T ∈ DFS(q̃)};

DFS(Select(q̃,�)) :
F ← EnumAllPredicates(Select(q̃,�), I, C);
return {JSelect(T, f)K | T ∈ DFS(q̃) ∧ f ∈ F};

DFS(Join(q̃1, q̃2,�)) :
F ← EnumAllPredicates(Join(q̃1, q̃2,�), I, C);
return {JJoin(T1, T2, f)K | Ti ∈ DFS(q̃i) ∧ f ∈ F};

DFS(Aggr(c̄, ct, α, q̃,�)) :
F ← EnumAllPredicates(Aggr(c̄, ct, α, q̃,�), I, C);
return {JAggr(c̄, ct, α, T, f)K | T ∈ DFS(q̃) ∧ f ∈ F};

DFS(Union(q̃1, q̃2)) := {JUnion(T1, T2)K | Ti ∈ DFS(q̃i)};

DFS(LeftJoin(q̃1, q̃2, c̄ = c̄′)) :
return {JLeftJoin(T1, T2, c̄ = c̄′)K | Ti ∈ DFS(q̃i)};

DFS(Rename(q̃,name, c̄)):
return {JRename(T,name, c̄))K | T ∈ DFS(q̃i)}

Algorithm 4: The DFS algorithm searching for all tables that can

be evaluated from queries instantiated from an abstract query q̃.

C and I refer to constants and input tables from the user. The

function EnumAllPredicates enumerates all candidate predicates

for the given abstract query.

Though simple, without any optimization, this algorithm

is prohibitively expensive to be used in practice due to the

challenges that arise from: (1) the large number of filter

predicates to be searched, and (2) the expensive process of

evaluating and memoizing tables during the search process.4

Our algorithm takes advantages of the over-approximation

properties of abstract queries to speed up the algorithm by

(1) locally grouping predicate candidates into equivalence

classes for each hole to reduce the number of predicates to

be enumerated and (2) encoding intermediate results into

bit-vectors to increase search efficiency.

Predicate Enumeration and Grouping Given an abstract

query q̃ constructed from Select, Join or Aggr that contain

a predicate hole, the predicate enumeration algorithm (Al-

gorithm 5) enumerates all filter predicates that can be filled

4 Not doing so will make algorithm even less efficient as the number of

different programs in the space is several magnitudes more than the number

of their evaluation results.

into the hole of q̃ (lines 4, 10), groups them into equivalence

classes based on their behavior on the evaluation result of q̃,

(i.e., ẽval(q̃)) (lines 7-8, lines 11-12), and returns the repre-

sentatives of all predicate groups.

The reason we can group these candidate predicates with-

out losing completeness of the filter behaviors is shown below

in Property 2. The key idea is that filter predicates in each

equivalence class behaves indistinguishably in all possible

instantiations of q̃ (no matter how subqueries of q̃ are instan-

tiated).

Property 2. (Predicate Equivalence) Let q̃ be an abstract

query formed by one of Select, Join, Aggr constructor with a

hole �0, T = ẽval(q̃), and f1, f2 be two predicate candidates

for �0 that are equivalent on T , i.e., JSelect(T, f1)K =

JSelect(T, f2)K. Then, for any φ, a substitution of holes in

subqueries in q̃, we have Jq̃/(φ◦{�0 7→ f1})K = Jq̃/(φ◦{�0 7→

f2})K.

Proof Sketch. First, we have T0 = Jq̃/(φ◦{�0 7→ True})K ⊆ T

according to the over-approximation property of abstract

evaluation. Since f1, f2 are equivalent on T , they are also

equivalent on any table that is contained by T , i.e., they are

also equivalent on T0, so that the equation is satisfied. �

With this property, instead of needing to search all pred-

icates from EnumAllPredicates as in Algorithm 4, we

only need to search predicate representatives returned by

EnumAndGroupPred, which reduces the search space size.

Note that when candidate queries are synthesized. We also

expand representatives to all predicates in their equivalence

classes to obtain different versions of the candidates, which

ensures the completeness of syntactically different queries.

1 EnumAndGroupPred(q̃,Const , I):

// Input: an abstract subquery q̃, constants Const , input tables I

// Output: representative predicates

2 T ← ẽval(q̃);

3 V ← schema(T ) ∪ Const ;

4 primitives ← EnumPrimitivePred(V, I);

5 rep ← ∅;

6 foreach p ∈ primitives:

7 if 6 ∃f ∈ rep.(JSelect(T, f)K = JSelect(T, p)K):
8 rep ← rep ∪ {p};

9 compound ← EnumCompoundPred(rep);

10 foreach p ∈ compound :

11 if 6 ∃f ∈ rep.(JSelect(T, f)K = JSelect(T, p)K):
12 rep ← rep ∪ {p};

13 return rep;

Algorithm 5: Predicate Enumeration Algorithm. The func-

tion EnumPrimitivePred enumerates primitive predicates using

given values V and tables (tables are used for enumerating Exists

predicates) and the function EnumCompoundPred generates com-

pound predicates (and, or, not) from given predicates.

Encoding Tables into Bit-Vectors The second optimization

is to encode of intermediate results in the search process to

avoid the expensive computation and memoization caused
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Encode(T0, T ) = [b1, ..., bn]n where n = rowNum(T ) ∧ T0 ⊆ T

bi =





1 if T [i] ∈ T0

∧ occur(T [i], T [1, ..., i− 1]) < occur(T [i], T0)

0 otherwise

Decode([b1, ..., bn]n, T ) = Table(schema(T ), [ri | ri ∈ T ∧ bi = 1])

where n = rowNum(T ), i ∈ [1, n]

[b1, ..., bn]n & [b′1, ..., b
′
n]n = [b1&b′1, ..., bn&b

′
n]

[b1, ..., bn]n ++ [b′
1
, ..., b′m]m = [b1, ..., bn, b′1, ..., b

′
m]

[b1, ..., bn]n × [b′
1
, ..., b′m]m = [ci∗m+j |ci∗m+j = bi+1&bj ]m×n

where i ∈ [0, n− 1], j ∈ [1,m]

Figure 10: Bit-vector operators, where & refers to bit-‘and’, ++
refers to list concatenatior and × refers crossproduct operator.

by inefficient table representation. Suppose q is a query

instantiated from an abstract query q̃, T0 = JqK and T =

ẽval(q̃); according to Property 1, we have T0 ⊆ T , so that

we can represent T0 as a bit-vector based on T . As shown

in Figure 10, we use a bit-vector β of length rowNum(T ) to

represent T0: we mark the i-th bit bi as 1, if row i of T is

also a row in T0 (the second condition ensures that duplicates

are correctly handled). Also, we can decode a bit-vector β of

length rowNum(T ) into a table together with T , and the result

is a table that contains only rows whose index bit is marked

as ‘1’ in T .

With this encoding, we reduce the original predicate

synthesis problem (Algorithm 3) into a search problem whose

intermediate results are bit-vectors, (Algorithm 6): given an

abstract query q̃, our goal is to search over the space of bit-

vectors that encodes instantiations of q̃ for ones that can be

decoded to Tout.

Besides making memoization more efficient, this reduc-

tion also brings us the opportunity to simplify the computa-

tion shown in Algorithm 4, since many operators on table

can be simplified into operators on bit-vectors that require no

materialization of the tables (Figure 10). For example, when

computing a bit-vector representation of a Join query result,

we do not need to instantiate the Cartesian product table; in-

stead, we only need to merge bit-vectors from its subqueries

using the bit-wise crossproduct operator shown in Figure 10.

Additionally, our algorithm also conducts pruning in

the bit-vector decoding process (line 3 of Algorithm 6)

using output table Tout. Our algorithm precomputes a set

S containing all bit-vectors that encode Tout based on the

evaluation result of q̃; thus, we only need to check whether a

bit-vector is in S to determine whether it leads to a candidate,

which avoids the materialization of all tables in the last step.

The correctness of the search algorithm is ensured by the

property below. The property suggests that given an abstract

query q̃, if a table T can be found by the original algorithm,

the new algorithm that operates on bit-vectors is also able to

find a bit-vector whose decoding result is T , so that no table

that the original algorithm found is missed after optimization.

PredSynthesis(q̃, I, Tout,Const):

1 B ← BVDFS(q̃, I,Const);

2 T ← ẽval(q̃);

3 candidates← {β | β ∈ B ∧ Decode(β, T ) = Tout};

4 return GenQuery(candidates);

Algorithm 6: The Predicate Synthesis Algorithm.

Property 3. (Soundness of Encoding) Given an abstract

query q̃, we have DFS(q̃) = {Decode(β, ẽval(q̃)) | β ∈

BVDFS(q̃)}.

Proof Sketch. The proof can be achieved by induction on

constructors of q̃: for each abstract query constructor, we can

prove that for each table T in DFS(q̃) there exists at least one

bit-vector β ∈ BVDFS(q̃) whose decoding result on ẽval(q̃)
is T . �

At the end of this phase, our algorithm returns all possible

instantiations of candidate abstract queries that are consistent

with the I/O example. These queries are passed to the ranking

and user interaction phase of our algorithm.

BVDFS(T ) : return Encode(T, T );

BVDFS(Proj(c̄, q̃)) : return BVDFS(q̃);

BVDFS(Dedup(q̃)) :

T ← ẽval(Dedup(q̃)), B ← BVDFS(q̃);
return {Encode(JDedup(Decode(β, T ))K, T ) | β ∈ B};

BVDFS(Select(q̃,�)) :
B ← {EncodeFiltersToBV(Select(q̃,�), f) | f ∈ F};
B1 ← BVDFS(q̃);
return {β&β1 | β ∈ B ∧ β1 ∈ B1};

BVDFS(Join(q̃1, q̃2,�)) :
B ← {EncodeFiltersToBV(Join(q̃1, q̃2,�), f) | f ∈ F};
B1 ← BVDFS(q̃1), B2 ← BVDFS(q̃2);
return {(β1 × β2)&β | βi ∈ Bi ∧ β ∈ B};

BVDFS(Aggr(c̄, ct, α, q̃,�)) :

B ← {EncodeFiltersToBV(Aggr(c̄, ct, α, q̃,�), f) | f ∈ F};

ST ← {Decode(β, ẽval(q̃)) | β ∈ BVDFS(q̃)};

T ← ẽval(Aggr(c̄, ct, α, q̃,�));
B1 ← {Encode(JAggr(c̄, ct, α, t, True)K, T ) | t ∈ ST };
return {β1&β | β1 ∈ B1 ∧ β ∈ B};

BVDFS(Union(q̃1, q̃2)) :
B1 ← BVDFS(q̃1), B2 ← BVDFS(q̃2);
return {β1 ++β2 | β1 ∈ B1 ∧ β2 ∈ B2};

BVDFS(LeftJoin(q̃1, q̃2, c̄ = c̄′)) :

T ← ẽval(LeftJoin(q̃1, q̃2, c̄ = c̄′));

ST1 ← {Decode(β, ẽval(q̃1)) | β ∈ BVDFS(q̃1)};

ST2 ← {Decode(β, ẽval(q̃2)) | β ∈ BVDFS(q̃2)};
return {Encode(JLeftJoin(T1, T2, c̄ = c̄′)K, T ) | Ti ∈ STi};

BVDFS(Rename(q̃,name, c̄)) : return BVDFS(q̃);

EncodeFiltersToBV(q̃):

T ← ẽval(q̃), r ← rowNum(T );
F ← EnumAndGroupPred(q̃, I,Const);
return {[b1...br]r | f ∈ F ∧ bi = Eval(f, T [i])};

Algorithm 7: The optimized version of Algorithm 4 that searches

over bit-vectors instead of tables. (All BVDFS functions are passed

with the input table I and constant set C, we omitted them in the

algorithm for simplicity consideration.)
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We present the main theorem (completeness property) of

our synthesis algorithm below.

Theorem 1. (Completeness) Given an example (I, Tout,C ),
suppose q is a query consistent with the provided I/O example

with subquery depth is d; then, given unlimited timeout,

Algorithm 1 can find q in the d-th iteration.

Proof Sketch. This theorem is the direct conclusion of

Lemma 2 and Properties 2,3: the former ensures that the

abstract query q̃ corresponding to q is included in the result

at depth d of Algorithm 2, and the latter two ensure that the

two optimizations do not change the result of the predicate

enumeration algorithm (Algorithm 3). �

5.3 Ranking and User Interaction

After obtaining candidate queries from the main synthesis

algorithm, our system heuristically scores and ranks them

before returning them to users. Queries are scored based on

the following criteria:

• Simplicity. Queries with simpler structures and filter pred-

icates are scored higher than more complex ones. For

example, queries with predicates formed by column com-

parisons are scored higher than those containing com-

pound predicates or predicates formed by Exists. Sim-

ilarly, queries with fewer nested subqueries are scored

higher.

• Predicate naturalness. Queries containing more nat-

ural predicates are scored higher, e.g., the predicate

T1.id=T2.id has a higher score than T1.id>T2.value since

equi-join predicates are more commonly seen in practice.

• Constant coverage. Queries with a better coverage of

constants are scored higher than those that lacks such

coverage.

After ranking, our system returns the top candidates to the

user. If none of top queries is correct, the user can return our

system to refine the result by providing new I/O examples or

aggregation functions that the query could use.

In general, crafting a new I/O example from scratch can be

costly and ineffective at refining synthesis results. However,

in the case of SQL, the new I/O example can be easily created

by incrementally modifying the old one. As often observed

from Stack Overflow, users typically create new examples

by appending new rows or modifying contents of a few table

cells in previously provided tables.

While our current ranking model is simple, it can already

effectively rank the correct solution among top 5 of the candi-

dates for a relatively large number of real-world benchmarks

(see Section 6). In addition, our synthesis algorithm is orthog-

onal to ranking algorithms and interaction models. Hence, it

can be integrated with other interaction models [20, 29, 31]

to further increase usability. For example, our system can be

integrated with COSETTE [6, 7], a solver for SQL queries,

to further reduce the need to provide further I/O examples:

given the top k synthesized queries, COSETTE can be used

to compute a distinguishing set of input tables S such that

applying each of the top k queries on S yields different query

output. Using distinguishing tables, the user only need to

choose the correct result that matches the input example to

obtain the correct candidate query.

6. Evaluation

We implemented our algorithm in Java as a system called

SCYTHE. In this section, we report the evaluation of SCYTHE

on a set of 193 real-world benchmarks. The evaluation was

performed on a quad-core Intel Core i7 2.67GHz CPU with

4GB memory for the Java VM.

6.1 Implementation Optimization

We adopted the following two additional optimizations in

our implementation. First, our implementation avoided enu-

merating semantically equivalent queries, i.e., queries that

are equivalent on all possible inputs, as much as possible

to increase search efficiency. For example, we avoided enu-

merating both “Select T1.a, T2.b From T1 Join T2” and

“Select T1.a, T2.b From T2 Join T1” by restricting the

order of tables in Join. Second, we performed the group-

ing of predicates for abstract queries during the first phase

(directly when they are enumerated) and made the grouping

result sharable among different abstract queries, since differ-

ent abstract queries may contain same abstract subqueries.

6.2 Benchmarks

We collected 193 benchmarks for evaluation, including 165

benchmarks from Stack Overflow and 28 benchmarks from

prior work [40]. Each benchmark includes an input-output

example pair and a reference solution (accepted answers on

Stack Overflow or solutions provided in [40]). The statistics

of benchmarks are shown in Figure 11 (for example size)

and Figure 13 (for feature statistics). Besides, among the

193 benchmarks, there are 61 benchmarks contain constants

provided by the user: 44 benchmarks contain exactly 1 con-

stant, 15 benchmarks contain 2 constants, and 2 benchmarks

contain 4 constants.

Stack Overflow Our main evaluation benchmarks are the

165 Stack Overflow posts, divided into three groups.

• Development set (so-dev): These 57 benchmarks are

collected from posts under tags “sql”, “moving-average”,

“great-n-per-group” in our development time.

• Top-voted posts (so-top): These 57 benchmarks are all

top-voted (i.e., vote greater than 30) Stack Overflow posts

containing input-output examples and are not marked as

“duplicate posts,”5 featuring most common tasks that end-

users have trouble with. In our collection process, we

exhaustively went through the search result and picked all

posts about SQL programming that contained input-output

5 With the search term “[sql] is:question score:30.. lastactive:5y.. hasac-

cepted:yes duplicate:no”.

461



No. Size SCYTHE ENUM Zhang.

so-dev 57 31.6 55 (96%) 33 (58%) -

so-top 57 24.7 41 (72%) 33 (58%) -

so-recent 51 34.6 29 (57%) 18 (35%) -

ase13 28 56.8 18 (64%) 8 (29%) 15(53%)

total 193 34 143 (74%) 92 (48%) -

Figure 11: Benchmark statistics and the the number of benchmarks

that can be solved by different algorithms given 600 seconds

limit. The “Size” column shows the average size of the benchmark

examples (the size for a benchmark refers to the the number of cells

in the input output tables plus the number of provided constants).

examples. We excluded posts that were not related to SQL

programming (e.g., how to avoid SQL inject attack) or

posts about how to write queries to update database (e.g.,

queries that start with SET or UPDATE).

• Recent posts (so-recent): These 51 benchmarks are all

the posts containing input-output examples posted during

the 14 day period between 2016-10-09 and 2016-10-23,

with additional constraints that the posts should contain

an accept answer and they are not marked as duplicate

posts.6 These tasks are more specialized and typically in-

volve more complex features compared against top-voted

questions, featuring long-tail end-user SQL problems. The

collection process are the same as that for top voted posts.

ASE’13 Benchmarks We obtained an additional 28 bench-

marks from SQLSynthesizer [40], containing 5 forum posts

and 23 textbook questions.

6.3 Evaluation Process

We compared SCYTHE to the implementation of the equivalence-

class based enumerative search algorithm described in Sec-

tion 2 (ENUM). The same algorithm was used to rank the

output in both cases.

For the ASE’13 benchmark, we also compared our al-

gorithm to SQLSynthesizer [40] based on their paper re-

port.7 SQLSyntheiszer is a PBE system that synthesizes

SQL queries using decision trees: queries in its grammar

has a fixed template “Select c̄ From T̄ Where p Group By

c̄ Having p”; SQLSynthesizer heuristically enumerates ta-

bles (T̄ ) to be joined and then adopts a decision tree designed

for the template to learn column names and predicates to fill

the the template.

We ran each benchmark using the different algorithms by

feeding the provided input-output example provided by the

user, subject to a 600 seconds time limit. If the algorithm

terminated within the time limit, we checked the returned

candidate queries against the reference solution: we marked

the problem “solved” if the reference solution (or a seman-

6 With search term “table result [sql] score:0.. is:question created:2016-10-

09..2016-10-23 duplicate:no hasaccepted:yes”

7 We did not compare our algorithm against SQLSynthesizer on the Stack

Overflow benchmarks as the tool is not publicly available.

tically equivalent one determined manually) was among the

top 5 returned result. If the algorithm failed to terminate or

the correct query was not among top 5, we either 1) manually

modified the original example based on the text description

shown in the posts and re-evaluated the algorithm on the new

example or 2) extracted the aggregation functions from the

post and supplied it to the algorithm (if exists) and reran it

with only provided aggregation functions. If the algorithm

continued to fail after this interaction, we marked the problem

as “failed”. The statistics we collected during the evaluation

process are reported below.

6.4 Number of Solved Benchmarks

Figure 11 shows the number of benchmarks solved by differ-

ent algorithms, Figure 12 shows the performance comparison

between SCYTHE and ENUM, and Figure 13 shows the statis-

tics of the queries synthesized by SCYTHE.

SCYTHE solved 143 cases within the 600 seconds time

limit (114 within 10 seconds). ENUM solved only 92 cases

within the 600 seconds time limit (18 within 10 seconds).

Cases that SCYTHE solved but ENUM did not are typically

those containing higher subquery nesting levels or large

example sizes. A comparison between SCYTHE and ENUM on

benchmarks that both algorithms solved shows that SCYTHE

is on average 57× faster (ranging from 7-200× faster).

Figure 12: The percentage of benchmarks solvable with the increas-

ing time limit specified by the x-axis (out of the 143 cases that

SCYTHE successfully solved).

For the ASE’13 benchmark, SCYTHE solved 3 more cases

than SQLSynthesizer since our algorithm supports more op-

erators (Exists, Left Outer Join, and Union). Furthermore,

although SCYTHE searched over a significantly larger space

of queries (as it supports more types of subquery nesting,

more operators, and have no template restriction in com-

parison to SQLSynthesizer), it showed no compromise in

performance: for the 18 benchmarks that SCYTHE solved,

12 were solved in 10 seconds, and 6 of them were solved

with over 10 seconds but within 120 seconds. In comparison,

SQLSynthesizer solved 14 cases within 10 seconds and 1

with 120 seconds.
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so-dev so-top so-recent ase13 total

Join 40 31 18 10 90

Aggr 43 39 19 13 113

Left-Join 2 1 3 1 7

Union 1 0 9 1 11

Feature(>1) 35 30 18 9 92

Figure 13: Statistics for the occurrences of advanced SQL in the

solutions synthesized by SCYTHE. Row “Feature(>1)” refer to

queries containing more than one of the advanced operators shown

above.

6.5 Algorithm Statistics

We present several statistics of our algorithm to demonstrate

how different parts of our algorithm contributes to the overall

efficiency improvements.

Abstract Grammar We measured the effectiveness of the

abstract query synthesis algorithm in SCYTHE (Section 5) by

measuring (1) the number of intermediate results generated

by SCYTHE compared to ENUM, and (2) the search space

reduction rate resulted from pruning away abstract queries

that were inconsistent with the output.

For the first question, on the benchmarks that both algo-

rithms can solve, the average number of tables generated by

SCYTHE is 996, while that generated by ENUM is on aver-

age 7× more (ranging from 1.5-36×). Furthermore, for the

50 cases that only SCYTHE successfully solved, the average

number of intermediate tables is 27,832 (max 471,316), thus

the reduction is essential to allow SCYTHE to find answers to

these more complex cases.

For the second question, pruning with abstract grammar

reduces the size of search space by a factor of 2145× (ranging

from 1.1-169,028×). The reduction rate is typically higher

for cases whose output table size is larger or those whose

solution contains aggregation subquery.

Predicate Synthesis We measured the effectiveness of the

predicate synthesis algorithm (Section 5.2) in SCYTHE by

measuring the reduction rate due to enumerating predicates

that were in the same equivalence class rather than all

syntactically equivalent ones. For each predicate hole in an

abstract query, the average reduction rate from candidate

predicates to their equivalence classes is 45,179× (ranging

from 51-2,170,150×).

6.6 Effectiveness of Ranking

Next, among the 143 cases that SCYTHE solved, we need to

provide additional input-output examples for 22 cases, specify

aggregation functions for 9 cases, and provide both extra

information (a second example or aggregation functions) for

3 cases to help SCYTHE disambiguate consistent queries. For

every one of the cases that requires additional input-output

examples, the average number of cells added to example

(considering cells added to both input and output example) is

7.8 (maximum 17).

Besides, we also found 1 out of the 50 cases that SCYTHE

failed to solve was failed due to our interaction model design

limitation, as the query can only be constraint with at least

two I/O example pairs at the same time, while our system

allows only one I/O pair at a time.

Thus, though imperfect, our ranking algorithm remains

effective in finding correct solutions from the large number

of candidates.

6.7 Failed Cases

We classified the 50 cases that SCYTHE failed to solve into

the following five categories to summarize the limitations

of our algorithm: (1) cases requiring adding other standard

SQL features to our grammar [f-exp1], (2) cases requiring

additional non-standard SQL features (e.g., arithmetic expres-

sions, date/string transformations, pivoting, window functions

or dense ranking) [f-exp2], (3) cases that our language is able

to express but failed due to scalability issues (e.g., increasing

the level of nested queries) [f-scale], and (4) cases expressible

but the corrected answer is unable to be disambiguated even

after providing new examples [f-rank].

f-exp1 f-exp2 f-scale f-rank total

so-dev 1 0 1 0 2

so-top 0 16 0 0 16

so-recent 0 17 5 0 22

ase13 0 0 9 1 10

total 1 33 15 1 50

Figure 14: Benchmarks that SCYTHE fails to solve.

As shown in Figure 14, a major fraction of the unsolv-

able cases (33 cases) are due to non-standard SQL features.

Adding support for these specialized features requires that our

algorithm work cooperatively with synthesizers from other

domains, e.g., arithmetic expression synthesizer [30] or string

solvers [12, 14], which we consider as future work.

There are also 15 cases SCYTHE failed to solve due

to scalability. Those cases either requires a solution with

highly nested subqueries (> 5) or contains large I/O example

table size (> 60 cells). They meet the bottleneck of our

synthesis algorithm, making the pruning costly and relatively

ineffective. We noticed that a majority of them (9 cases) are

the textbook questions from the ASE’13 benchmarks, which

are designed for teaching purposes and appear rarely in online

forums.

We also found 1 failure case caused by the unsupported

SQL feature (keyword Limit) and 1 caused by interaction

model limitation. Note that although other operators like

Except, All do not directly appear in our grammar, they

can be reformulated into queries written using the keyword

Exists such that they can be expressed using our language.

6.8 Threat of Validity

Our main study and evaluation were based on the benchmarks

from Stack Overflow, but it is possible that these benchmarks
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do not representative all end-user tasks in practice. In analyz-

ing the ranking effectiveness of SCYTHE, we measured only

the number of cells needs to be added to the original example,

not how hard it might be for end-users to come up with such

additional examples. Studying end-user behavior could help

us better address this problem.

7. Related Work

Programming by Examples SCYTHE is inspired by Pro-

gramming by Example (PBE) applications: users of such

systems specify a program using I/O examples, and the sys-

tem subsequently synthesizes a program consistent with the

examples. This approach has been used to synthesize data

transformation programs [5, 12, 13, 29, 32], data extraction

scripts [17], map-reduce programs [1, 33], data structure

transformations [39] and also SQL queries [4, 36, 40].

SQLSynthesizer [40] and Query By Output [36] are two

PBE systems for SQL queries. Both of them synthesize

queries using the decision tree algorithm: the systems come

with a set of templates and they complete holes in the template

using the decision tree algorithm. Since the decision tree

algorithm is limited by the facts that (1) the algorithm needs

to build a different decision tree for every query template

and (2) the decision tree size for a template is exponential to

the number of rows and columns of the I/O example. Thus,

neither systems support advanced SQL features like Left

Join, Union, Exists and free-form subquery nesting, which

is essential in solving real-world problems. In contrast, due

to the scalability improvement of our two-phase synthesis

algorithm, SCYTHE supports a wider range of SQL features

used in practical settings.

Program Synthesis Algorithms Inductive program synthe-

sis algorithms [2, 3, 11] can be roughly classified into the fol-

lowing five categories: (1) enumerative search algorithms [10,

18, 24, 25, 37], (2) constraint-solver aided synthesis [34, 35],

(3) type-directed synthesis [9, 23], (4) version space algebra

based inference [12, 16, 26], and (5) stochastic search [27].

Our synthesis algorithm is most closely related to enumer-

ative search algorithms, which were adopted in Transit [37],

Lenses [25], CodeHint [10] and AlphaRegex [18]. The first

three systems are optimized using the concept of equivalence-

class reduction where intermediate results are grouped to-

gether based on their evaluation results so that behaviorally

equivalent programs are visited only once. Our algorithm

differs from them in our development of abstract queries to

decompose the search process, which is essential to solve the

challenge of memoizing tables to scale up the synthesis algo-

rithm. Besides, AlphaRegex, an enumerative synthesizer for

regular expressions whose pruning strategy resembles the first

phase of our algorithm, enumerates all regular expressions

within the search space to find those consistent with user pro-

vided examples; it prunes intermediate regex skeletons based

on their under/over-approximation to increase scalability. Our

first phase algorithm differs in how over-approximations are

computed: evaluating query skeletons requires the design of

the abstract query language with different evaluation rules,

while evaluating regular expression skeletons can be achieved

purely using built-in operators.

Interactive Refinement Statistical ranking algorithms [28,

31] and interactive disambiguation interfaces [19, 20] have

been proposed to improve PBE system accuracy. SCYTHE can

potentially integrate such techniques to enhance the quality

of the synthesized programs.

Other Related Techniques Inductive logic programming

(ILP) [8, 21] is an approach adopted by the AI community

for learning general logic representations from demonstra-

tions: given N I/O examples together with their logical rep-

resentations, ILP algorithms learn the set of programs that

generalizes all examples using bottom-up searches. However,

ILP cannot be directly applied to SQL query synthesis. First,

it requires multiple examples to learn a general form. In our

case, each task is specified using only one I/O pair, and tables

cannot be trivially decomposed into smaller I/O examples for

query synthesis (since doing so will likely change the user’s

intention). Second, using ILP requires logical representations

of each I/O example, and constructing them from I/O exam-

ples for SQL is highly non-trivial, as shown by Polozov and

Gulwani [26].

8. Conclusion

In this paper, we presented a system called SCYTHE, which

efficiently synthesizes SQL queries from I/O examples. The

key idea of our approach is the design an abstract language

of queries to decompose the original complex synthesis

problem into easier-to-solve subproblems. The evaluation

of SCYTHE on a set of 193 real-world benchmarks shows that

it can effectively and efficiently solve real world SQL query

synthesis tasks.
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