
DOC: A Practical Approach to Source-Level Debugging of Globally
Optimized Code

Deborah S. Coutant
Sue Meloy

Michelle Ruscetta

Hewlett-Packard
19447 Pruneridge Ave.
Cupertino, CA 95014

Abstract

As optimizing compilers become more
sophisticated, the problem of debugging the source
code of an application becomes more difficult. In
order to investigate this problem, we implemented
DOC, a prototype solution for Debugging Optim-
ized Code. DOC is a modification of the existing C
compiler and source-level symbolic debugger for
the HP9000 Series 800. This paper describes our
experiences in this effort. We show in an actual
implementation that source-level debugging of glo-
bally optimized code is viable.

1. Problem

Code transformations performed by global
optimization introduce problems which affect the
ability to provide a source-level debugging environ-
ment. Our optimizer was designed for a RISC-
based architecture providing a large number of
registers and an exposed instruction pipeline. [l].
In order to take advantage of the architecture, the
compiler must make efficient use of the registers
and must schedule instructions effectively.

An optimizing compiler faces two main prob-
lems which affect the ability to provide source-level
debugging [2, 31. 1) The code location problem
concerns maintaining a mapping between source

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage.

the ACM copyright notice and the title of the publication and its date appear.

and notice is given that copying is by permission of the Association for

Computing Machinery To copy otherwise, or to republish. requires a fee and/

or specific permission.

0 1988 ACM 0-89791-269-l/88/0006/0125 $I .50

Language Design and Implementation
Atlanta, Georgia, June 22-24, 1988

lines and machine instructions. 2) The data value
problem concerns finding the current location of a
variable’s value, and displaying it consistent with
the user’s perception of the source.

2. Related work

2.1. Collection of compile-time information

The first area of research related to this
work concerns the idea that information about a
program can be collected at compile-time. This
information can be very useful to the programmer
in trouble shooting and understanding his program
[4,5, 6, 71.

DOC is an extension of this idea in that the
information collected is added to the usual debug
information and is used by the debugger during an
interactive debug session.

2.2. General solutions

The problem of symbolically debugging glo-
bally optimized code is presented by Zellweger [8,
21 and Seidner [3]. Both describe the general data
value and code location problems. These works,
as well as Teeple’s [9] work, discuss inlining and
cross-jumping. These two types of transformations
exemplify the traditional control-flow problem.
DOC deals almost exclusively with the data value
problem.

Conway [lo] describes a PL/I compiler that
does some local code optimizations, and interfaces
with a symbolic debugger. DOC is based on a gIo-
bal optimizer.

Hennessy [ll] provides algorithms for
recovering the values of non-current variables from

125

labeled DAGs. His work addresses the data value
problems in detail, and therefore is the most
closely related to our work. Some differences are:
0 His work is at a higher level in the compiler

model, where the nodes in the DAG
correspond to symbol table entries for vari-
ables. DOC is at a lower level, since our
optimizer transforms compiler-generated
assembly code.

0 He does not address the problem of tracking
the locations of a variable’s values from
memory through registers. Providing a solu-
tion to this problem was a major goal of
DOC.

23. Providing partial information

Warren [12] suggests a system in which the
user receives partial information concerning the
values of variables. Our solution is similar.

Warren also defined data structures to hold
the information the debugger would require. He
estimated the memory requirements, and con-
cluded that the cost would not be prohibitive.
While our data structures are quite different, we
show in an actual implementation that source-level
debugging of globally optimized code is viable.

The TLD Systems Ada debugger [7l supports
source-level debugging of globally optimized code.
It warns the user if a variable’s memory location
might not have an up-to-date value at all points in
its lifetime. DOC attempts to be more specific, by
tracking the locations of variables through registers
and memory.

3. The DOC prototype

The DOC prototype was implemented as an
extension to a family of compilers, each of which
use the same debugger and optimizer.

3.1. Overview of the compiler

The compiler used for the prototype solution
consists of a language-dependent front-end, and a
language-independent global optimizer. The com-
piler front-end provides aliasing information for
the optimizer, and provides information about user
variables and source lines for the debugger.

The aliasing information is communicated to
the optimizer through a table containing entries
for every memory location and register used in the
program [13].

The global optimizer is a multiple pass
optimizer [14] that uses global data flow iuforma-

tion contained in intervals to perform various local
and global optimizations. These optimizations
include register promotion, common subexpression
elimination, loop optimizations, coloring register
allocation, and instruction scheduling [15].

Most optimizations are performed by
separate passes of the optimizer [16].

3.2. Overview of the debugger

The debug information generated by the
compiler is contained in the object file, in an area
that is not loaded during normal execution of the
program.

The debugger is a source-level symbolic
debugger [17], which displays the source in one
window while commands are entered in another.

4. Goals

The overall design constraint placed on the
DOC team was to implement a practical solution
to the problem. The purpose of DOC was to
demonstrate the feasibility of providing this capa-
bility in a product. At the same time, we wanted
to provide useful functionality to our users.

In addition to the constraints of practicality
and usability, other goals of DOC included:
0 There would be no change in the optimized

code when compiling with debug enabled.
0 The user would never be mislead by receiv-

ing incorrect information from the debugger.
0 The implementation would have a miniial

impact on performance and resource con-
sumption.

In order to meet the above objectives we
decided to implement a solution that would give
the debug user partial information. In the cases
where the user wants data that we cannot supply,
we try to provide enough background information
to allow hi to recreate the data himself.

We also decided to disallow data and control
flow modification from within the debugger. This
simplified the complexity of the task, since no
optimization assumptions would be invalidated at
runtime.

5. Optimizations addressed by DOC

In order to prove the feasibility of our solu-
tion, we wanted to address the optimizations caus-
ing the most trouble for a source-level symbolic
debugger. DOC concentrates on this subset of
optimizations performed by our compiler, includ-

126

ing:

0 register promotion and assignment
0 loop variable elimination (induction variable

elaboration)
a instruction scheduling

6. DOC session example

The following simple program fragment
demonstrates some of the features of DOC.
There is a mistake in the for statement of the
second loop, where i is compared to 0 rather than
assigned 0. The first if statement causes the optim-
izer to believe that i might be initialized. Without
this if statement, DOC would display the following
message at compile time:

WARNING: use of undefined variable i in func-
tion main at line 15

12: k=I5;
13: if (!inh)
14: i = 0;
15: for (i==O; i!=9; i++) {
16: for (j=i+l; j!=lO; j+ +) {
17: if (a[i].n > afi],n) {
18: tmp = a[i];
19: a[i] = afi];
20: ab] = tmp;
21: I
22: 1
23 }

Optimization causes the following debugging
problems in this program:
a Line 12 is eliminated.
a k is a constant; it does not exist in memory

or in a register.
a The assignment into j at line 16 is moved

across a statement boundary.
a j is eliminated and replaced by an induction

variable within the second for loop.

The debug session is begun with a break-
point on line 12.

>b 12
Added:
1: count: 1 Active main: 13: if (!init) i = 0;

Line 12 has been eliminated, so the breakpoint is
set on line 13. The user now starts up the pro-
&?=-

>r
Starting process 25796: “a-out”
breakpoint at OxOOOO1200

The user asks to print the value of k DOC is able
to recreate the value.

‘pk
k=5

The user then asks to print the value of j, which
does not yet have a value.

>pj
The value of variable j is not available at this line

The user now single steps, which takes him to line
15 (since the if test fails), and requests the value of
i. At this point i has been placed in a register by
the optimizer, and contains a spurious value.

>s
>pi
i= 5

The user now steps to line 16, and requests the
value of j. The assignment to j has already
occurred, because it was moved into the code for
line 15.

>S

>A
Variable j was set early
New value was set during execution of line 15
--
~-45

After stepping to line 17, the user requests the
value of j again. At this point, j has been replaced
by an induction variable, so DOC must recreate
the value.

>s
>Pj
J 6 *=

7. General solution

7.1. Code location solution

In our early investigation, we discovered that
most of the problems turned out to be data value
problems. Even when code is moved or elim-
inated, the main effect is that data values may not
be as the user expects at every point during execu-
tion of the program.

127

Statement boundaries are tracked by attach-
ing a label to the frost instruction of the statement.
When the first instruction is moved or deleted, the
label is moved to the next instruction. One
instruction can have multiple labels, if the code for
an entire statement has been moved or deleted.

7.1.1. Breakpoints on eliminated statements

When the user requests a breakpoint on an
eliminated statement, the breakpoint is set at the
instruction associated with the (moved) statement
label. When the user is concerned with a relative
control flow position, such as breaking at the first
statement in a procedure or a loop, this is the
desired interpretation.

When this is not what he wants, then either:

1.

2.

He wants to see the value of a variable after
modification by a previous statement, or

He wants to see the value of a variable
before it is modified by a subsequent state-
ment.

In case 1, moving the breakpoint to a later
statement wiIl not cause debugging problems. The
variable has already been modified, and remains
modified at the breakpoint.

In case 2, moving the breakpoint to a later
statement will only cause debugging problems if
the variable that the user is interested in was
modified by the eliminated statement. If the elim-
inated statement did not modify the variable, its
value will remain unmodified at the breakpoint. If
the eliminated statement did modify the variable,
its value will not be what the user expects at the
breakpoint.

For example, see Figure 1.

In either case, what really matters is elii-
inating variable updates, or moving them across
statement boundaries. These transformations can
cause debugging problems even when we can set a
breakpoint on the desired line.

1
2
3

break at 2
print a
print y
print x

a= 5;
x = a; this stmt is eliminated
Y = x;

actually breaks at 3
no problem
no problem
problem

Figure 1.

7.1.2. Moving instructions

Only those instructions that modify user data
are troublesome, and only when they are moved
across a statement boundary. Thus, many code
motion problems can be solved by the same tech-
niques as for data value problems.

7.2. Data value solution

Our solution for data value problems is to
communicate to the debugger ranges of informa-
tion about variables affected by optimization.
These ranges can contain location information, or
information about updates of user variables that
have been moved. All the problems with debug-
ging optimized code that we have investigated can
be solved by variations on one basic range data
structure.

73.1. The range data structure

Our fist task was to design an efficient way
to represent ranges in the debug information. The
information needed for most uses of ranges is
minimal. For example, Figure 2 shows a code
fragment, and three ranges that could be used to
describe the locations of the variable X.

ox2ma h&3 x=aprl
(ha024 inst

m80 *** last use 28

* * * 0x2100 store x x=expr2

ox22m --- last load x

Figure 2.

In this example, x lives in three different
locations. By comparing the program counter
against the low and high addresses of each range,
the debugger can determine which range, if any, is
currently active.

The type field tells the debugger how to
interpret the location. If the type of range is regis-
ter, the value of x can be found in the specified
register. If the type is constant, the location field is

128

the actual constant value of x. If the type is it finds the range list corresponding to the current
memory, the location field contains the memory function, and then searches the range list to find
location (in this case, a stack offset). the range(s) enclosing the current code location.

If the program counter is not contained in
any of the ranges, the value of x is unavailable at
that point, and the debugger prints a message to
this effect.

8. Compiler implementation details

8.1. Communication of variable information to
the optimizer

7.2.2. Range implementation details

In addition to minimal space consumption,
another consideration for the range representation
was to minimize the time the debugger needed to
search for the appropriate range. We decided to
sort the range list in some order. This allows the
debugger to tell when it has searched far enough,
without always looking through the entire list. We
chose to sort by the low address, although a sort
on the high address would also have worked.

The ranges are emitted to the output file
sequentially. The ranges for each variable are del-
imited by a flag set on the last range for that vari-
able. The debug entry for each variable described
by one or more ranges contains an index to the
first range for that variable.

Since a global may have ranges in more than
one procedure, these ranges must be linked
together. This is done by allocating a continuation
range as the first range for that global in each pro-
cedure. This range contains the index of the pro-
cedure for which the following list of ranges
applies. All continuation ranges for a particular
variable are lied together (see Figure 3).

Debug Symbol Table Range Table

proc 111 ex
next lz!a unuse

cont. ag

Figure 3.

When the debugger needs to fmd the value
of a global, it traverses the continuation chain until

Since the optimizer operates at the
assembly-level, it does not explicitly deal with user
variables. Instead, it tracks memory locations and
registers through resource IDS. Whenever the
front-end wishes to reference a new memory loca-
tion or register, it allocates a resource ID which is
then attached to the instruction. Register
resources are allocated by the code generator
based on an infinite register set; actual registers
will be assigned by the optimizer during register
allocation.

In order to support DOC, we now need to
associate debug information with the resource IDS
corresponding to user variables.

8.2. Register promotion

Information about the definitions and uses of
resources is kept in a flow-based data structure
similar to def-use chains [18]. One resource could
have several chains associated with it. When regis-
ter promotion occurs, it is actually a def-use chain
that is promoted. Thus, for a single user variable,
there may be some chains that stay in memory and
some chains that are promoted to registers.

When register promotion involves a user
variable, we now need to associate the new register
resource ID with the originJ memory resource ID.
We also need to mark the instruction defining the
new register resourde as a pseudo-store. This tells
later optimizer components to keep track of any
movement or deletion of the instruction, since it
“stores” into a user variable.

8.3. Register allocation

The register allocator attempts to assign the
registers in the most efficient way possible. Thus, a
single variable can reside in different locations in
different parts of the code. There may also be
regions where it does not exist at ail. Conversely,
a single register can be used to hold multiple vari-
ables.

129

83.1. Range calculation

Ranges of sequential instructions must be
calculated using data flow information. For exam-
ple, see Figure 5.

1 defx
2 got0 5
3 defy
4 got0 -7
5 use x
6 goto 8
7 use y
8 . . .

def x

i
use x

def y

1
use y

Figure 5.

The live ranges for x and y are disjoint, so
the same register could be assigned to both. A
simple sequential pass through the code without
regard for data flow would result in the range for x
including instructions 3 and 4.

The register allocator performs register
coloring based on interferences [19]. It constructs
an initial interference graph using the def-use
chains and interval data flow information. If the
graph cannot be successfully colored with the avail-
able actual registers, registers are spilled to
memory and the graph is adjusted.

The interference graph is built by traversing
each basic block interval in reverse order. The ini-
tial interference set at the end of the basic block
has been previously calculated by interval analysis
[20, 211. As each instruction in the basic block is
examined for definitions and new uses of registers,
interferences are deleted from and added to the
interference set.

Ranges can be calculated as the initial
interference graph is constructed. When a new
interference is added to the graph, it marks one
endpoint of a range. When an interference is
removed, it marks the other endpoint. The begin-
ning and end of a basic block may also mark end-
points of ranges. (See Figure 6.)

In this example, there are three basic blocks
(instructions l-2, 3-4, and 5-8). The ranges for x
are calculated as follows:

Instruction 8 is the end of a basic block.
The initial interference set, i-set, is empty.
Instruction 7 has a use of x. Since x is not
already in i-set, it marks a high bound.
Instruction 6 is another use of x, but x is
already in i-set. Instruction 5 is the top of a

1 defx i-set = low bound x
2 got0 5 i-set = x high bound x
3 inst i-set =
4 gOtO 8 i-set =
5 inst i-set =x bw bound x
6 use x i-set = x
7 use x i-set = x high bound x
8 inst i-set =

Figure 6.

basic block, so it marks a low bound for any
resources in i-set (in this case, x).

Instruction 4 is the end of a basic block, and
the initial i-set is empty. Instruction 3 is the
top of a basic block, and i-set is still empty.

Instruction 2 is the end of a basic block, and
the initial i-set contains x, so it marks a high
bound. Instruction 1 is a definition of x, so
it marks a low bound.

In addition to tracking register ranges, we
need to track memory ranges for user variables
that have had any of their def-use chains promoted
to registers. (Normal memory variables do not
need to be tracked, since their locations will not
change.) This tracking can be done in a similar
fashion, by keeping track of deftitions (stores)
and uses (loads).

We cannot generate the register ranges as
they are calculated, since register assignment will
not occur until later. Register spill may also alter
the location of the variable. We save the list of
ranges calculated for each def-use chain until we
know exactly what information to generate.

83.2. Copy elimination

Once the initial interference graph has been
built, the register allocator performs copy elimina-
tion. It does this by merging def-use chains that
are joined by a single copy. The resource ID for
one of the chains is changed to that of the other
chain.

This merging could effectively remove a user
variable. The ranges for both chains must be saved
so that they can all be generated when the merged
chain is assigned a register. We need to associate
each list of ranges with the appropriate user vari-
able (see Figure 7).

When an actual register is finally assigned to
resource rl, the ranges for x and y are generated.
The location for both variables will be the same
register.

130

Before

10 def rl
20 inst
30 copy rl,r2
40 inst
50 use r2

After

10 def rl
20 inst

40 inst
50 use rl

rl: var x lines 20-30 rl: var x lines 2030,
r2: var y lines 40-50 var y lines 40-50

Figure 7.

8.33. Register spill

Register spiIl occurs when the register allo-
cator decides that keeping a value in a register is
more costly than reloading it, or when the interfer-
ence graph cannot be colored with the available
actual registers. When a user variable is spilled,
the ranges already calculated for it can still be
used; the location is all that changes. If the regis-
ter is spilled to memory, the location is the stack
offset of the spill location. (This spill location is
not the same as the original memory location.)
The range can be built at this point, since we have
all the necessary information.

In the case of “spilling” a constant, the con-
stant is created before each use, rather than actu-
ally saving the value and loading it from memory.
If the register containing the constant is a user
variable, this can effectively eliminate the variable.
In this situation, we generate constant ranges,
again using the previously calculated range bounds.
The location field in each range holds the value of
the constant.

8.4. Recreating loop variables

The values of loop variables eliminated due
to strength reduction and induction variable ela-
boration can be recreated by the debugger.

Induction variable temporaries are intro-
duced when a multiplication is strength-reduced
into successive additions. The location of the tem-
porary, and the value or location of the multiplica-
tion factor are communicated to the debugger with
an induction variable range. The debugger can
recreate the value of the loop variable by dividing
the value of the temporary by the multiplication
factor.

DOC currently supports strength reduction
of multiplications only, although the technique can
be extended to other replacement functions.

85. Instruction scheduling

The scheduler component of the optimizer is
responsible for rearranging instructions in order to
minimize memory interlocks, and to take advan-
tage of branch delay slots. Instruction scheduling
can move instructions across statement boundaries,
corrupting the mapping between source and object
code. This can cause both code location and data
value problems.

85.1. The scheduler code location solution

In our architecture, the instruction following
a branch is executed before the branch completes.
The instruction scheduler is responsible for filling
these branch delay slots with useful instructions.
The target instruction of the branch can often be
moved or copied into the delay slot. The branch is.
then adjusted to go to the instruction following the
original target.

Copying the target into the delay slot may
introduce a code location problem. If the original
target is the first instruction of a source statement,
a breakpoint set there will not always be hit.

The solution is to move the statement label
to the new target instruction. Thus, the original
target is treated as if it had been moved, even
though it actually still exists in the same relative
position (see Figure 8).

Before sched. After sched. After DOC

stmt2

w store x stmt2 store x store x
stmt2

instl tgt instl tgt instl
.
got0 tgt got0 tgt goto w
nop store x store x

Figure 8.

8.52. The scheduler data value solution

User variables are the only data resources
that a user has access to in a source-level debug-
ging environment. Therefore, the solution for the
data value problem only needs to address the
modiication of user variables.

The scheduler may move instructions that
update user variables. If such a move crosses a
statement boundary, a debugging problem can
occur. The value of the affected variable may not
be what the user expects, if he asks to see it
between the original position of the instruction and

131

the new position. In order to avoid giving mislead-
ing information, we must keep track of the ranges
of source code affected by all such moves.

There are two types of updates that need to
be tracked: ordinary store instructions, and
pseudo-stores.

The first instruction generated for a source
statement will be referred to as a senhy (statement
entry). Sentry instructions can be recognized by a
flag which is set by the code generator when debug
is enabled.

Before scheduling is done, instructions are
numbered in ascending order. The instruction
numbers are used as the basis for detecting
instruction movement caused by scheduling.

A senrry table is built during the pass over
the instructions prior to scheduling. Each table
entry contains a sentry instruction number and its
corresponding line number.

After the scheduling pass is run, another
pass over the instructions is made to check for
early and late updates of user variables.

An ear@ update occurs when a store or
pseudo-store instruction is moved before the sentry
of the statement which originally contained the
instruction. A lute update occurs when a store or
pseudo-store instruction is placed after the sentry
of the statement following that which originally
contained the instruction.

When an early or late update is detected, a
range record is built for that variable. The range
record contains information about the location of
the variable, and the range of source lines over
which the variable will not have its expected value.

Within a debugging session, when a user asks
for the value of a variable having a scheduler
range, the debugger informs the user of the early
or late variable update.

853. Aggregate resource updates

The scheduler moves instructions without
regard for resource type, and thus could make
transformations on aggregate (aliased memory)
resources. Aggregates include array element refer-
ences and pointer indirection. Debug entries are
not created for source expressions that reference
these types of resources.

In order to provide information to the user
about these types of resources, a flag in the
resource table entry indicates whether the resource
is an aggregate. The debug information for the

aggregate resource is associated with the base for
the aggregate (the pointer or array). When an
early or late update involves an aggregate
resource, the type field of the range indicates this.
If the debugger encounters such a range, the user
is informed with one of the following messages:

A pointer dereference using ref_var was set early,
or

A pointer dereference using rtf-var was set late

One problem with this solution is that this
message will be displayed for user requests of any
element of the aggregate within the update range.
In most cases, however, the user should be able to
determine which element of the aggregate is
affected by the early update due to the source con-
text.

9. Range update

Since the optimizer is multi-pass, later passes
may invalidate ranges created by earlier passes.
For example, the register allocator may build a
range indicating that a variable resides in a register
for some range of instructions. The instruction
scheduler may then decide to move the instruction
that sets the register into the code for another
statement. The register range would no longer be
correct.

In order to solve this problem, we have
prioritized the types of ranges. The priority of a
range type is generally based on the order of exe-
cution of the optimizer pass that generates it.
When a lower priority range overlaps with a higher
priority range, the lower priority range is shor-
tened to eliminate the overlap. In Figure 9, the
instruction scheduler range has higher priority
(since it is generated later), so the register range is
shortened.

register scheduler updated
range range ranges

stmtl stmtl stmtl
inst1 inst1 inst1
inst2

StIllt2

1
stmt2

ins0
inst4 %]stma~~d&

stmt.3 stmt3 Stmt3

inst5 insts inst5 reg.
inst6 inst6 1 inst6 range

Figure 9.

132

10. Debugger modifications

The modifications to the debugger were
minimal. When looking for the location of a vari-
able, it is now necessary to check a flag to see if
any ranges are present. If the flag is set, the list of
ranges for that variable is traversed to see if the
program counter lies within any of them.

If a low bound is seen that is greater than
the program counter, or if the last range is
encountered, the variable is assumed to be dead.
If a valid range is found, the information is used to
fmd the correct value or print a message.

11. Results

The range information generated by DOC
averages 3.5% of the relocatable object file size.
Optimization decreases file size more than the
range information increases file size, so DOC
object files average 2.6% smaller than unoptimized
debug object files. Based on an analysis of all
components of our optimizer, we expect compar-
able results when range information is generated
for the full set of optimizations performed by our
compiler.

In order to calculate the effect of DOC on
compiler performance and memory usage, we cal-
culated the effects for a normal compile, for debug
alone and for optimization alone. The increases for
debug and for optimization were added to the base
effects of a normal compile, and this total used to
compare to a DOC compile.

Compile time for DOC increased an average
of 3%. This represents the additional time to cal-
culate and process the range information.

Compiler memory usage for DOC increased
an average of 0.4%.

Scanning the range information does not add
significant overhead to debugger search time (the
time it takes to find a variable and display its
value). Measurements show that 91% of the vari-
ables with ranges have only 1 to 5 ranges. The
debugger search time averaged less than 0.25
seconds real time to find and print the information
contained in the 30th range of a local variable.

The extra overhead for processing globals
does not have a significant impact since only 12%
of variables with ranges are globals, and these
average only two continuation ranges each.
Debugger search time for a global with 10 con-
tinuation ranges averages less than 0.10 seconds
real time.

l2. Further work

Further work could be done to determine if
there is some way to map machine instructions
back to the source in a space efficient manner.
This would provide a means to report the location
of an exception consistent with the user’s percep-
tion of the source.

DOC does not currently allow the user to
modify the values of variables or the program con-
trol flow within the debugger. To do so would
introduce a level of complexity similar to the prob-
lem of incremental optimization [22]. However,
not all data and control flow modifications invali-
date optimizer ranges. Those that do not could be
allowed during a debug session if the debugger
had access to additional information.

Improvements could be made in the ability
to recreate the values of variables at debug time,
in situations where we currently tell the user that
the value is unavailable.

Assembly-level debuggers are used when
debugging low-level system code. There might be
an opportunity to apply DOC concepts to
assembly-level debugging, especially in the area of
register/memory tracking.

The process of ascertaining whether an
object code patch is safe in globally optimized
code is at best ad-hoc. A tool that extended some
of our prototype’s techniques might be of benefit.

13. Conclusions

0 One additional debugger data structure will
handle all the data value and code location
problems our optimizer introduces.

0. The values of eliminated variables can often
be reconstructed.

0 Only instructions that modify user data need
to be tracked, and only when they are moved
across statement boundaries.

0 Only a small amount of extra information is
necessary to provide adequate usability.

14. Acknowledgements

This work was made possible through the
support of the management and staff of the
Hewlett-Packard Computer Languages Laboratory.
The following people provided valuable assistance
in gaining an understanding of the compiler and
debugger internals, and in discussing solutions for
problems: Paul Chan, Richard Holman, Suneel
Jain, Steve Liier, Daryl Odnert, Karl Pet&, Vatsa

133

Sauthanam, Carol Thompson, and Shankar Unni.

15. References

PI

I21

131

PI

PI

PI

VI

F31

PI

PO1

WI

WI

Bimbaum, J., and Worley, W., ‘Beyond
RISC: High Precision Architecture”,
Hewlett-Packard Journal, 36(8):4-10, August
1985.

Zehweger, P., Interactive Source-Level Debug-
ging of Optimized Programs, Xerox PARC
Report CSL-84-5, [P84-000471, May 1984.

Seidner, R., and Tindall, N., “Interactive
Debug Requirements”, Proceedings of the
ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on High-level Debug-
ging, March 1983, pp. 9-22.

Lew, A., “On Interconnections Between
Optimization and Debugging”, Proceedings of
the Seventh Hawaii International Conference
on Systems Sciences, January 1974, pp. 164-
166.

Tischler, R., Schaufler, R., and Payne, C.,
“Static Analysis of Programs as an Aid to
Debugging”, Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering
Symposium on High-Level Debugging, March
1983.

Ottenstein, K. and Ottenstein, L., “High-level
Debugging Assistance Via Optimizing Com-
piler Technology”, ACM SIGPLAN Notices,
18(8):152-154, August 1983.

Personal conversation with Clark Oliphant,
TLD Systems Ltd., Torrance, CA.

Zellweger, P., “An Interactive High-Level
Debugger for Control-Flow Optimized Pro-
grams”, ACM SIGPLAN Notices, 18(8):159-
171, Aug. 1983.

Teeple, D., and Anderson, J., The Debugging
of Optimized Code, Unpublished draft from
MacDonald, Dethviler and Associates Ltd.,
Richmond B.C., Canada, March 1980.

Conway, R., and Wilcox, T., “Design and
Implementation of a Diagnostic Compiler for
PL/I”, Communications of the ACM,
16(3):169-179, March, 1973.

Hennessy, J., “Symbolic Debugging of
Optimized Code”, ACM Transactions on Pro-
gramming Languages and Systems, 4(3):323-
344, July 1982.

Warren, H., and Schlaeppi, H., ‘Design of
the PDS Interactive Debugging System”,
IBM Research Report RC7214, (IBM York-

P31

WI

WI

WI

PI

WI

PPI

PI

Pll

PI

town Heights), July 1978.

Coutant, D., “Retargetable High-Level Alias
Analysis”, Proceedings of the 13th ACM Sym-
posium on Principles of Programming
Languages, January 1986.

Coutant, D., Hammond, C., and Kelley, J.,
“Compilers for the New Generation of
Hewlett-Packard Computers”, Hewlett-
Packard Journal, 37(1):4-18, January 1986.

Gibbons, P., and Muchnick, S., “Efficient
Instruction Scheduling for a Pipelined Archi-
tecture”, Proceedings of the SIGPLAN ‘86
Symposium on Compiler Construction, June
1986, pp. 11-16.

Johnson, M., and Miller, T., “Effectiveness of
a Machine-Level, Global Optimizer”,
Proceedings of the SIGPLAN ‘86 Symposium
on Compiler Construction, June 1986, pp. 99-
108.

HP Symbolic Debugger User’s Guide,
Hewlett-Packard technical manual, June
1987.

Aho, A., Sethi, R., and Ulhnan, J., Com-
pilers, Principles, Techniques, and Tools,
Addison-Wesley, 1986.

Chaitin, G., “Register Allocation and Spilling
via Graph Coloring”, Proceedings of the SIG-
PLAN Symposium on Compiler Construction,
June 1982, pp. 98-105.

Sharir, M., “Structural Analysis: A New
Approach to Plow Analysis in Optimizing
Compilers”, Computer Languages, 5, Per-
gamon Press Ltd., 1980.

Jain, S., and Thompson, C., “An Efficient
Approach to Data Plow Analysis in a Multi-
ple Pass Global Optimizer”, Proceedings of
the ACM SIGPLAN ‘88 Conference on Pro-
gramming Language Design and Implementa-
tion, June, 1988.

Pollock, L., and Soffa, M., “INCROMINT -
An Incremental Optimizer for Machine
Independent Transformations”, Sofifair II - A
Second Conference on Software Development
Tools, Techniques, and Alternatives, IEEE
Computer Society Press, Washington, D.C.,
1985, pp. 162-171.

134

