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Abstract 

As optimizing compilers become more 
sophisticated, the problem of debugging the source 
code of an application becomes more difficult. In 
order to investigate this problem, we implemented 
DOC, a prototype solution for Debugging Optim- 
ized Code. DOC is a modification of the existing C 
compiler and source-level symbolic debugger for 
the HP9000 Series 800. This paper describes our 
experiences in this effort. We show in an actual 
implementation that source-level debugging of glo- 
bally optimized code is viable. 

1. Problem 

Code transformations performed by global 
optimization introduce problems which affect the 
ability to provide a source-level debugging environ- 
ment. Our optimizer was designed for a RISC- 
based architecture providing a large number of 
registers and an exposed instruction pipeline. [l]. 
In order to take advantage of the architecture, the 
compiler must make efficient use of the registers 
and must schedule instructions effectively. 

An optimizing compiler faces two main prob- 
lems which affect the ability to provide source-level 
debugging [2, 31. 1) The code location problem 
concerns maintaining a mapping between source 
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lines and machine instructions. 2) The data value 
problem concerns finding the current location of a 
variable’s value, and displaying it consistent with 
the user’s perception of the source. 

2. Related work 

2.1. Collection of compile-time information 

The first area of research related to this 
work concerns the idea that information about a 
program can be collected at compile-time. This 
information can be very useful to the programmer 
in trouble shooting and understanding his program 
[4,5, 6, 71. 

DOC is an extension of this idea in that the 
information collected is added to the usual debug 
information and is used by the debugger during an 
interactive debug session. 

2.2. General solutions 

The problem of symbolically debugging glo- 
bally optimized code is presented by Zellweger [8, 
21 and Seidner [3]. Both describe the general data 
value and code location problems. These works, 
as well as Teeple’s [9] work, discuss inlining and 
cross-jumping. These two types of transformations 
exemplify the traditional control-flow problem. 
DOC deals almost exclusively with the data value 
problem. 

Conway [lo] describes a PL/I compiler that 
does some local code optimizations, and interfaces 
with a symbolic debugger. DOC is based on a gIo- 
bal optimizer. 

Hennessy [ll] provides algorithms for 
recovering the values of non-current variables from 
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labeled DAGs. His work addresses the data value 
problems in detail, and therefore is the most 
closely related to our work. Some differences are: 
0 His work is at a higher level in the compiler 

model, where the nodes in the DAG 
correspond to symbol table entries for vari- 
ables. DOC is at a lower level, since our 
optimizer transforms compiler-generated 
assembly code. 

0 He does not address the problem of tracking 
the locations of a variable’s values from 
memory through registers. Providing a solu- 
tion to this problem was a major goal of 
DOC. 

23. Providing partial information 

Warren [12] suggests a system in which the 
user receives partial information concerning the 
values of variables. Our solution is similar. 

Warren also defined data structures to hold 
the information the debugger would require. He 
estimated the memory requirements, and con- 
cluded that the cost would not be prohibitive. 
While our data structures are quite different, we 
show in an actual implementation that source-level 
debugging of globally optimized code is viable. 

The TLD Systems Ada debugger [7l supports 
source-level debugging of globally optimized code. 
It warns the user if a variable’s memory location 
might not have an up-to-date value at all points in 
its lifetime. DOC attempts to be more specific, by 
tracking the locations of variables through registers 
and memory. 

3. The DOC prototype 

The DOC prototype was implemented as an 
extension to a family of compilers, each of which 
use the same debugger and optimizer. 

3.1. Overview of the compiler 

The compiler used for the prototype solution 
consists of a language-dependent front-end, and a 
language-independent global optimizer. The com- 
piler front-end provides aliasing information for 
the optimizer, and provides information about user 
variables and source lines for the debugger. 

The aliasing information is communicated to 
the optimizer through a table containing entries 
for every memory location and register used in the 
program [13]. 

The global optimizer is a multiple pass 
optimizer [14] that uses global data flow iuforma- 

tion contained in intervals to perform various local 
and global optimizations. These optimizations 
include register promotion, common subexpression 
elimination, loop optimizations, coloring register 
allocation, and instruction scheduling [15]. 

Most optimizations are performed by 
separate passes of the optimizer [16]. 

3.2. Overview of the debugger 

The debug information generated by the 
compiler is contained in the object file, in an area 
that is not loaded during normal execution of the 
program. 

The debugger is a source-level symbolic 
debugger [17], which displays the source in one 
window while commands are entered in another. 

4. Goals 

The overall design constraint placed on the 
DOC team was to implement a practical solution 
to the problem. The purpose of DOC was to 
demonstrate the feasibility of providing this capa- 
bility in a product. At the same time, we wanted 
to provide useful functionality to our users. 

In addition to the constraints of practicality 
and usability, other goals of DOC included: 
0 There would be no change in the optimized 

code when compiling with debug enabled. 
0 The user would never be mislead by receiv- 

ing incorrect information from the debugger. 
0 The implementation would have a miniial 

impact on performance and resource con- 
sumption. 

In order to meet the above objectives we 
decided to implement a solution that would give 
the debug user partial information. In the cases 
where the user wants data that we cannot supply, 
we try to provide enough background information 
to allow hi to recreate the data himself. 

We also decided to disallow data and control 
flow modification from within the debugger. This 
simplified the complexity of the task, since no 
optimization assumptions would be invalidated at 
runtime. 

5. Optimizations addressed by DOC 

In order to prove the feasibility of our solu- 
tion, we wanted to address the optimizations caus- 
ing the most trouble for a source-level symbolic 
debugger. DOC concentrates on this subset of 
optimizations performed by our compiler, includ- 
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ing: 

0 register promotion and assignment 
0 loop variable elimination (induction variable 

elaboration) 
a instruction scheduling 

6. DOC session example 

The following simple program fragment 
demonstrates some of the features of DOC. 
There is a mistake in the for statement of the 
second loop, where i is compared to 0 rather than 
assigned 0. The first if statement causes the optim- 
izer to believe that i might be initialized. Without 
this if statement, DOC would display the following 
message at compile time: 

WARNING: use of undefined variable i in func- 
tion main at line 15 

12: k=I5; 
13: if (!inh) 
14: i = 0; 
15: for (i==O; i!=9; i++) { 
16: for (j=i+l; j!=lO; j+ +) { 
17: if (a[i].n > afi],n) { 
18: tmp = a[i]; 
19: a[i] = afi]; 
20: ab] = tmp; 
21: I 
22: 1 
23 } 

Optimization causes the following debugging 
problems in this program: 
a Line 12 is eliminated. 
a k is a constant; it does not exist in memory 

or in a register. 
a The assignment into j at line 16 is moved 

across a statement boundary. 
a j is eliminated and replaced by an induction 

variable within the second for loop. 

The debug session is begun with a break- 
point on line 12. 

>b 12 
Added: 
1: count: 1 Active main: 13: if (!init) i = 0; 

Line 12 has been eliminated, so the breakpoint is 
set on line 13. The user now starts up the pro- 
&?=- 

>r 
Starting process 25796: “a-out” 
breakpoint at OxOOOO1200 

The user asks to print the value of k DOC is able 
to recreate the value. 

‘pk 
k=5 

The user then asks to print the value of j, which 
does not yet have a value. 

>pj 
The value of variable j is not available at this line 

The user now single steps, which takes him to line 
15 (since the if test fails), and requests the value of 
i. At this point i has been placed in a register by 
the optimizer, and contains a spurious value. 

>s 
>pi 
i= 5 

The user now steps to line 16, and requests the 
value of j. The assignment to j has already 
occurred, because it was moved into the code for 
line 15. 

>S 

>A 
Variable j was set early 
New value was set during execution of line 15 
-- 
~-45 

After stepping to line 17, the user requests the 
value of j again. At this point, j has been replaced 
by an induction variable, so DOC must recreate 
the value. 

>s 
>Pj 
J 6 *= 

7. General solution 

7.1. Code location solution 

In our early investigation, we discovered that 
most of the problems turned out to be data value 
problems. Even when code is moved or elim- 
inated, the main effect is that data values may not 
be as the user expects at every point during execu- 
tion of the program. 
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Statement boundaries are tracked by attach- 
ing a label to the frost instruction of the statement. 
When the first instruction is moved or deleted, the 
label is moved to the next instruction. One 
instruction can have multiple labels, if the code for 
an entire statement has been moved or deleted. 

7.1.1. Breakpoints on eliminated statements 

When the user requests a breakpoint on an 
eliminated statement, the breakpoint is set at the 
instruction associated with the (moved) statement 
label. When the user is concerned with a relative 
control flow position, such as breaking at the first 
statement in a procedure or a loop, this is the 
desired interpretation. 

When this is not what he wants, then either: 

1. 

2. 

He wants to see the value of a variable after 
modification by a previous statement, or 

He wants to see the value of a variable 
before it is modified by a subsequent state- 
ment. 

In case 1, moving the breakpoint to a later 
statement wiIl not cause debugging problems. The 
variable has already been modified, and remains 
modified at the breakpoint. 

In case 2, moving the breakpoint to a later 
statement will only cause debugging problems if 
the variable that the user is interested in was 
modified by the eliminated statement. If the elim- 
inated statement did not modify the variable, its 
value will remain unmodified at the breakpoint. If 
the eliminated statement did modify the variable, 
its value will not be what the user expects at the 
breakpoint. 

For example, see Figure 1. 

In either case, what really matters is elii- 
inating variable updates, or moving them across 
statement boundaries. These transformations can 
cause debugging problems even when we can set a 
breakpoint on the desired line. 

1 
2 
3 

break at 2 
print a 
print y 
print x 

a= 5; 
x = a; this stmt is eliminated 
Y = x; 

actually breaks at 3 
no problem 
no problem 
problem 

Figure 1. 

7.1.2. Moving instructions 

Only those instructions that modify user data 
are troublesome, and only when they are moved 
across a statement boundary. Thus, many code 
motion problems can be solved by the same tech- 
niques as for data value problems. 

7.2. Data value solution 

Our solution for data value problems is to 
communicate to the debugger ranges of informa- 
tion about variables affected by optimization. 
These ranges can contain location information, or 
information about updates of user variables that 
have been moved. All the problems with debug- 
ging optimized code that we have investigated can 
be solved by variations on one basic range data 
structure. 

73.1. The range data structure 

Our fist task was to design an efficient way 
to represent ranges in the debug information. The 
information needed for most uses of ranges is 
minimal. For example, Figure 2 shows a code 
fragment, and three ranges that could be used to 
describe the locations of the variable X. 

ox2ma h&3 x=aprl 
(ha024 inst 

m80 *** last use 28 

* * * 0x2100 store x x=expr2 

ox22m --- last load x 

Figure 2. 

In this example, x lives in three different 
locations. By comparing the program counter 
against the low and high addresses of each range, 
the debugger can determine which range, if any, is 
currently active. 

The type field tells the debugger how to 
interpret the location. If the type of range is regis- 
ter, the value of x can be found in the specified 
register. If the type is constant, the location field is 
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the actual constant value of x. If the type is it finds the range list corresponding to the current 
memory, the location field contains the memory function, and then searches the range list to find 
location (in this case, a stack offset). the range(s) enclosing the current code location. 

If the program counter is not contained in 
any of the ranges, the value of x is unavailable at 
that point, and the debugger prints a message to 
this effect. 

8. Compiler implementation details 

8.1. Communication of variable information to 
the optimizer 

7.2.2. Range implementation details 

In addition to minimal space consumption, 
another consideration for the range representation 
was to minimize the time the debugger needed to 
search for the appropriate range. We decided to 
sort the range list in some order. This allows the 
debugger to tell when it has searched far enough, 
without always looking through the entire list. We 
chose to sort by the low address, although a sort 
on the high address would also have worked. 

The ranges are emitted to the output file 
sequentially. The ranges for each variable are del- 
imited by a flag set on the last range for that vari- 
able. The debug entry for each variable described 
by one or more ranges contains an index to the 
first range for that variable. 

Since a global may have ranges in more than 
one procedure, these ranges must be linked 
together. This is done by allocating a continuation 
range as the first range for that global in each pro- 
cedure. This range contains the index of the pro- 
cedure for which the following list of ranges 
applies. All continuation ranges for a particular 
variable are lied together (see Figure 3). 

Debug Symbol Table Range Table 

proc 111 ex 
next lz!a unuse 

cont. ag 

Figure 3. 

When the debugger needs to fmd the value 
of a global, it traverses the continuation chain until 

Since the optimizer operates at the 
assembly-level, it does not explicitly deal with user 
variables. Instead, it tracks memory locations and 
registers through resource IDS. Whenever the 
front-end wishes to reference a new memory loca- 
tion or register, it allocates a resource ID which is 
then attached to the instruction. Register 
resources are allocated by the code generator 
based on an infinite register set; actual registers 
will be assigned by the optimizer during register 
allocation. 

In order to support DOC, we now need to 
associate debug information with the resource IDS 
corresponding to user variables. 

8.2. Register promotion 

Information about the definitions and uses of 
resources is kept in a flow-based data structure 
similar to def-use chains [18]. One resource could 
have several chains associated with it. When regis- 
ter promotion occurs, it is actually a def-use chain 
that is promoted. Thus, for a single user variable, 
there may be some chains that stay in memory and 
some chains that are promoted to registers. 

When register promotion involves a user 
variable, we now need to associate the new register 
resource ID with the originJ memory resource ID. 
We also need to mark the instruction defining the 
new register resourde as a pseudo-store. This tells 
later optimizer components to keep track of any 
movement or deletion of the instruction, since it 
“stores” into a user variable. 

8.3. Register allocation 

The register allocator attempts to assign the 
registers in the most efficient way possible. Thus, a 
single variable can reside in different locations in 
different parts of the code. There may also be 
regions where it does not exist at ail. Conversely, 
a single register can be used to hold multiple vari- 
ables. 
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83.1. Range calculation 

Ranges of sequential instructions must be 
calculated using data flow information. For exam- 
ple, see Figure 5. 

1 defx 
2 got0 5 
3 defy 
4 got0 -7 
5 use x 
6 goto 8 
7 use y 
8 . . . 

def x 

i 
use x 

def y 

1 
use y 

Figure 5. 

The live ranges for x and y are disjoint, so 
the same register could be assigned to both. A 
simple sequential pass through the code without 
regard for data flow would result in the range for x 
including instructions 3 and 4. 

The register allocator performs register 
coloring based on interferences [19]. It constructs 
an initial interference graph using the def-use 
chains and interval data flow information. If the 
graph cannot be successfully colored with the avail- 
able actual registers, registers are spilled to 
memory and the graph is adjusted. 

The interference graph is built by traversing 
each basic block interval in reverse order. The ini- 
tial interference set at the end of the basic block 
has been previously calculated by interval analysis 
[20, 211. As each instruction in the basic block is 
examined for definitions and new uses of registers, 
interferences are deleted from and added to the 
interference set. 

Ranges can be calculated as the initial 
interference graph is constructed. When a new 
interference is added to the graph, it marks one 
endpoint of a range. When an interference is 
removed, it marks the other endpoint. The begin- 
ning and end of a basic block may also mark end- 
points of ranges. (See Figure 6.) 

In this example, there are three basic blocks 
(instructions l-2, 3-4, and 5-8). The ranges for x 
are calculated as follows: 

Instruction 8 is the end of a basic block. 
The initial interference set, i-set, is empty. 
Instruction 7 has a use of x. Since x is not 
already in i-set, it marks a high bound. 
Instruction 6 is another use of x, but x is 
already in i-set. Instruction 5 is the top of a 

1 defx i-set = low bound x 
2 got0 5 i-set = x high bound x 
3 inst i-set = 
4 gOtO 8 i-set = 
5 inst i-set =x bw bound x 
6 use x i-set = x 
7 use x i-set = x high bound x 
8 inst i-set = 

Figure 6. 

basic block, so it marks a low bound for any 
resources in i-set (in this case, x). 

Instruction 4 is the end of a basic block, and 
the initial i-set is empty. Instruction 3 is the 
top of a basic block, and i-set is still empty. 

Instruction 2 is the end of a basic block, and 
the initial i-set contains x, so it marks a high 
bound. Instruction 1 is a definition of x, so 
it marks a low bound. 

In addition to tracking register ranges, we 
need to track memory ranges for user variables 
that have had any of their def-use chains promoted 
to registers. (Normal memory variables do not 
need to be tracked, since their locations will not 
change.) This tracking can be done in a similar 
fashion, by keeping track of deftitions (stores) 
and uses (loads). 

We cannot generate the register ranges as 
they are calculated, since register assignment will 
not occur until later. Register spill may also alter 
the location of the variable. We save the list of 
ranges calculated for each def-use chain until we 
know exactly what information to generate. 

83.2. Copy elimination 

Once the initial interference graph has been 
built, the register allocator performs copy elimina- 
tion. It does this by merging def-use chains that 
are joined by a single copy. The resource ID for 
one of the chains is changed to that of the other 
chain. 

This merging could effectively remove a user 
variable. The ranges for both chains must be saved 
so that they can all be generated when the merged 
chain is assigned a register. We need to associate 
each list of ranges with the appropriate user vari- 
able (see Figure 7). 

When an actual register is finally assigned to 
resource rl, the ranges for x and y are generated. 
The location for both variables will be the same 
register. 
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Before 

10 def rl 
20 inst 
30 copy rl,r2 
40 inst 
50 use r2 

After 

10 def rl 
20 inst 

40 inst 
50 use rl 

rl: var x lines 20-30 rl: var x lines 2030, 
r2: var y lines 40-50 var y lines 40-50 

Figure 7. 

8.33. Register spill 

Register spiIl occurs when the register allo- 
cator decides that keeping a value in a register is 
more costly than reloading it, or when the interfer- 
ence graph cannot be colored with the available 
actual registers. When a user variable is spilled, 
the ranges already calculated for it can still be 
used; the location is all that changes. If the regis- 
ter is spilled to memory, the location is the stack 
offset of the spill location. (This spill location is 
not the same as the original memory location.) 
The range can be built at this point, since we have 
all the necessary information. 

In the case of “spilling” a constant, the con- 
stant is created before each use, rather than actu- 
ally saving the value and loading it from memory. 
If the register containing the constant is a user 
variable, this can effectively eliminate the variable. 
In this situation, we generate constant ranges, 
again using the previously calculated range bounds. 
The location field in each range holds the value of 
the constant. 

8.4. Recreating loop variables 

The values of loop variables eliminated due 
to strength reduction and induction variable ela- 
boration can be recreated by the debugger. 

Induction variable temporaries are intro- 
duced when a multiplication is strength-reduced 
into successive additions. The location of the tem- 
porary, and the value or location of the multiplica- 
tion factor are communicated to the debugger with 
an induction variable range. The debugger can 
recreate the value of the loop variable by dividing 
the value of the temporary by the multiplication 
factor. 

DOC currently supports strength reduction 
of multiplications only, although the technique can 
be extended to other replacement functions. 

85. Instruction scheduling 

The scheduler component of the optimizer is 
responsible for rearranging instructions in order to 
minimize memory interlocks, and to take advan- 
tage of branch delay slots. Instruction scheduling 
can move instructions across statement boundaries, 
corrupting the mapping between source and object 
code. This can cause both code location and data 
value problems. 

85.1. The scheduler code location solution 

In our architecture, the instruction following 
a branch is executed before the branch completes. 
The instruction scheduler is responsible for filling 
these branch delay slots with useful instructions. 
The target instruction of the branch can often be 
moved or copied into the delay slot. The branch is. 
then adjusted to go to the instruction following the 
original target. 

Copying the target into the delay slot may 
introduce a code location problem. If the original 
target is the first instruction of a source statement, 
a breakpoint set there will not always be hit. 

The solution is to move the statement label 
to the new target instruction. Thus, the original 
target is treated as if it had been moved, even 
though it actually still exists in the same relative 
position (see Figure 8). 

Before sched. After sched. After DOC 

stmt2 

w store x stmt2 store x store x 
stmt2 

instl tgt instl tgt instl 
. . . . . . . . . 
got0 tgt got0 tgt goto w 
nop store x store x 

Figure 8. 

8.52. The scheduler data value solution 

User variables are the only data resources 
that a user has access to in a source-level debug- 
ging environment. Therefore, the solution for the 
data value problem only needs to address the 
modiication of user variables. 

The scheduler may move instructions that 
update user variables. If such a move crosses a 
statement boundary, a debugging problem can 
occur. The value of the affected variable may not 
be what the user expects, if he asks to see it 
between the original position of the instruction and 
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the new position. In order to avoid giving mislead- 
ing information, we must keep track of the ranges 
of source code affected by all such moves. 

There are two types of updates that need to 
be tracked: ordinary store instructions, and 
pseudo-stores. 

The first instruction generated for a source 
statement will be referred to as a senhy (statement 
entry). Sentry instructions can be recognized by a 
flag which is set by the code generator when debug 
is enabled. 

Before scheduling is done, instructions are 
numbered in ascending order. The instruction 
numbers are used as the basis for detecting 
instruction movement caused by scheduling. 

A senrry table is built during the pass over 
the instructions prior to scheduling. Each table 
entry contains a sentry instruction number and its 
corresponding line number. 

After the scheduling pass is run, another 
pass over the instructions is made to check for 
early and late updates of user variables. 

An ear@ update occurs when a store or 
pseudo-store instruction is moved before the sentry 
of the statement which originally contained the 
instruction. A lute update occurs when a store or 
pseudo-store instruction is placed after the sentry 
of the statement following that which originally 
contained the instruction. 

When an early or late update is detected, a 
range record is built for that variable. The range 
record contains information about the location of 
the variable, and the range of source lines over 
which the variable will not have its expected value. 

Within a debugging session, when a user asks 
for the value of a variable having a scheduler 
range, the debugger informs the user of the early 
or late variable update. 

853. Aggregate resource updates 

The scheduler moves instructions without 
regard for resource type, and thus could make 
transformations on aggregate (aliased memory) 
resources. Aggregates include array element refer- 
ences and pointer indirection. Debug entries are 
not created for source expressions that reference 
these types of resources. 

In order to provide information to the user 
about these types of resources, a flag in the 
resource table entry indicates whether the resource 
is an aggregate. The debug information for the 

aggregate resource is associated with the base for 
the aggregate (the pointer or array). When an 
early or late update involves an aggregate 
resource, the type field of the range indicates this. 
If the debugger encounters such a range, the user 
is informed with one of the following messages: 

A pointer dereference using ref_var was set early, 
or 

A pointer dereference using rtf-var was set late 

One problem with this solution is that this 
message will be displayed for user requests of any 
element of the aggregate within the update range. 
In most cases, however, the user should be able to 
determine which element of the aggregate is 
affected by the early update due to the source con- 
text. 

9. Range update 

Since the optimizer is multi-pass, later passes 
may invalidate ranges created by earlier passes. 
For example, the register allocator may build a 
range indicating that a variable resides in a register 
for some range of instructions. The instruction 
scheduler may then decide to move the instruction 
that sets the register into the code for another 
statement. The register range would no longer be 
correct. 

In order to solve this problem, we have 
prioritized the types of ranges. The priority of a 
range type is generally based on the order of exe- 
cution of the optimizer pass that generates it. 
When a lower priority range overlaps with a higher 
priority range, the lower priority range is shor- 
tened to eliminate the overlap. In Figure 9, the 
instruction scheduler range has higher priority 
(since it is generated later), so the register range is 
shortened. 

register scheduler updated 
range range ranges 

stmtl stmtl stmtl 
inst1 inst1 inst1 
inst2 

StIllt2 

1 
stmt2 

ins0 
inst4 %]stma~~d& 

stmt.3 stmt3 Stmt3 

inst5 insts inst5 reg. 
inst6 inst6 1 inst6 range 

Figure 9. 
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10. Debugger modifications 

The modifications to the debugger were 
minimal. When looking for the location of a vari- 
able, it is now necessary to check a flag to see if 
any ranges are present. If the flag is set, the list of 
ranges for that variable is traversed to see if the 
program counter lies within any of them. 

If a low bound is seen that is greater than 
the program counter, or if the last range is 
encountered, the variable is assumed to be dead. 
If a valid range is found, the information is used to 
fmd the correct value or print a message. 

11. Results 

The range information generated by DOC 
averages 3.5% of the relocatable object file size. 
Optimization decreases file size more than the 
range information increases file size, so DOC 
object files average 2.6% smaller than unoptimized 
debug object files. Based on an analysis of all 
components of our optimizer, we expect compar- 
able results when range information is generated 
for the full set of optimizations performed by our 
compiler. 

In order to calculate the effect of DOC on 
compiler performance and memory usage, we cal- 
culated the effects for a normal compile, for debug 
alone and for optimization alone. The increases for 
debug and for optimization were added to the base 
effects of a normal compile, and this total used to 
compare to a DOC compile. 

Compile time for DOC increased an average 
of 3%. This represents the additional time to cal- 
culate and process the range information. 

Compiler memory usage for DOC increased 
an average of 0.4%. 

Scanning the range information does not add 
significant overhead to debugger search time (the 
time it takes to find a variable and display its 
value). Measurements show that 91% of the vari- 
ables with ranges have only 1 to 5 ranges. The 
debugger search time averaged less than 0.25 
seconds real time to find and print the information 
contained in the 30th range of a local variable. 

The extra overhead for processing globals 
does not have a significant impact since only 12% 
of variables with ranges are globals, and these 
average only two continuation ranges each. 
Debugger search time for a global with 10 con- 
tinuation ranges averages less than 0.10 seconds 
real time. 

l2. Further work 

Further work could be done to determine if 
there is some way to map machine instructions 
back to the source in a space efficient manner. 
This would provide a means to report the location 
of an exception consistent with the user’s percep- 
tion of the source. 

DOC does not currently allow the user to 
modify the values of variables or the program con- 
trol flow within the debugger. To do so would 
introduce a level of complexity similar to the prob- 
lem of incremental optimization [22]. However, 
not all data and control flow modifications invali- 
date optimizer ranges. Those that do not could be 
allowed during a debug session if the debugger 
had access to additional information. 

Improvements could be made in the ability 
to recreate the values of variables at debug time, 
in situations where we currently tell the user that 
the value is unavailable. 

Assembly-level debuggers are used when 
debugging low-level system code. There might be 
an opportunity to apply DOC concepts to 
assembly-level debugging, especially in the area of 
register/memory tracking. 

The process of ascertaining whether an 
object code patch is safe in globally optimized 
code is at best ad-hoc. A tool that extended some 
of our prototype’s techniques might be of benefit. 

13. Conclusions 

0 One additional debugger data structure will 
handle all the data value and code location 
problems our optimizer introduces. 

0. The values of eliminated variables can often 
be reconstructed. 

0 Only instructions that modify user data need 
to be tracked, and only when they are moved 
across statement boundaries. 

0 Only a small amount of extra information is 
necessary to provide adequate usability. 
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